

Black Holes – Problem Sheet 1

1. Planck units are the units of length, time and mass that can be formed from the fundamental constants of nature G , c and \hbar . Planck length $l_p = \sqrt{G\hbar/c^3}$, Planck mass $m_p = \sqrt{c\hbar/G}$, and Planck time $t_p = \sqrt{G\hbar/c^5} = l_p/c$. We can also define a Planck temperature, using Boltzmann's constant k_B , $T_p = m_p c^2/k_B$.
 - (i) Calculate these quantities in SI units.
 - (ii) Work out the age of the universe and the current temperature of the universe (i.e. of the CMB) in Planck units.
 - (iii) In particle physics, masses are often measured in units of eV/c^2 . Determine the Planck mass in units of GeV/c^2 and compare to the mass of the Higgs boson.
 - (iv) Write out the Schwarzschild metric including factors of the fundamental constants and convert to Planck units.
 - (v) In SI units, calculate the Schwarzschild radius, r_{Sch} , for a solar mass black hole, with mass $M = M_\odot$, and for a supermassive black hole in the centre of a galaxy with $M = 10^8 M_\odot$ and compare the latter to the size of the solar system. Define a *heuristic* “mean density” $\bar{\rho}$ of a black hole by viewing the mass as being located in a euclidean ball of volume given by $4/3\pi r_{Sch}^3$ and notice how it scales with mass. Calculate $\bar{\rho}$ for $M = M_\odot$ and $M = 10^8 M_\odot$ and identify other matter with comparable densities.
2. Prove the following simple facts:
 - (i) If $S_{\mu\nu} = S_{\nu\mu}$ (symmetric tensor) and $A^{\mu\nu} = -A^{\nu\mu}$ (anti-symmetric tensor), then $S_{\mu\nu}A^{\mu\nu} = 0$.
 - (ii) Show that a general tensor $T^{\mu\nu}$ may be split uniquely into $T_{\mu\nu} = T_{(\mu\nu)} + T_{[\mu\nu]}$, with $T_{(\mu\nu)}$ and $T_{[\mu\nu]}$ symmetric and anti-symmetric, respectively, and should be identified.
 - (iii) Thus if $S_{\mu\nu}$ is symmetric then $S_{\mu\nu}T^{\mu\nu} = S_{\mu\nu}T^{(\mu\nu)}$
 - (iv) Suppose $A_{\mu\rho\sigma} = A_{\mu[\rho\sigma]}$. Show that $A_{[\mu\rho\sigma]} = 1/3(A_{\mu\rho\sigma} + A_{\rho\sigma\mu} + A_{\sigma\mu\rho})$.
3. Let V^μ and W^μ be vector fields, S_μ , T_μ be co-vector fields (also called one-forms) and f a function. The Lie derivative of f and W with respect to V are given

$$(\mathcal{L}_V f) = V^\mu \partial_\mu f$$

$$(\mathcal{L}_V W)^\nu = V^\mu \partial_\mu W^\nu - W^\mu \partial_\mu V^\nu$$

- (i) Using the fact that the Lie derivative commutes with contraction, show that

$$(\mathcal{L}_V T)_\nu = V^\mu \partial_\mu T_\nu + T_\mu \partial_\nu V^\mu$$

- (ii) By consider the tensor with components $A_{\mu\nu} = S_\mu T_\nu$, and the fact that the Lie derivative satisfies the Liebnitz rule, show that

$$(\mathcal{L}_V A)_{\mu\nu} = V^\rho \partial_\rho A_{\mu\nu} + A_{\rho\nu} \partial_\mu V^\rho + A_{\mu\rho} \partial_\nu V^\rho$$

(iii) If we assume that, in addition, we have a metric $g_{\mu\nu}$ and Levi-Civita connection ∇_μ , show that in $(\mathcal{L}_V f)$, $(\mathcal{L}_V W)^\nu$ and $(\mathcal{L}_V T)_\nu$ we can replace the partial derivatives with covariant derivatives.

4. On a manifold with metric and Levi-Civita connection ∇_μ , let V and W both be Killing vectors satisfying $\nabla_{(\mu} V_{\nu)} = \nabla_{(\mu} W_{\nu)} = 0$. Show that $S \equiv \mathcal{L}_V W$ is also a Killing vector. Hint: recall that for an arbitrary vector field we have

$$(\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) V^\rho = R_{\mu\nu}{}^\rho{}_\sigma V^\sigma \quad (1)$$

5. On a manifold with metric and Levi-Civita connection ∇_μ , assume that V is a Killing vector, $\nabla_{(\mu} V_{\nu)} = 0$.

(i) By contracting (1) show that

$$\nabla_\mu \nabla^\mu V_\nu = -R_{\nu\sigma} V^\sigma \quad (2)$$

(ii) Prove the “Killing vector Lemma”

$$\nabla_\rho \nabla_\mu V_\nu = -R_{\mu\nu\rho\sigma} V^\sigma \quad (3)$$

Hint: use the Bianchi identity $R_{\mu\nu\rho\sigma} + R_{\mu\rho\sigma\nu} + R_{\mu\sigma\nu\rho} = 0$. Note that contracting (3) immediately gives (2).

6. Consider the round metric on the two-sphere

$$ds^2 = d\theta^2 + \sin^2 \theta d\phi^2 \quad (4)$$

(i) Show that the only non-vanishing Christoffel components are $\Gamma_{\phi\phi}^\theta$ and $\Gamma_{\theta\phi}^\phi$ and calculate them.

(ii) Show that the vector field $V^{(1)} = \partial_\phi$ is a Killing vector.

(iii) Show that the vector field $V^{(2)} = \sin \phi \partial_\theta + \cot \theta \cos \phi \partial_\phi$ is another Killing vector.

(iv) Show that a third Killing vector can be obtained via $V^{(3)} = \mathcal{L}_{V^{(1)}} V^{(2)}$ and determine its components.

(v) Can any other vector fields be obtained in a similar way? Comment on your result.