
Black Holes – Problem Sheet 4

1. Varying the action

S =

∫
dτgµν

dxµ

dτ

dxν

dτ

with the normalisation condition gµν
dxµ

dτ
dxν

dτ = −1 gives affinely parametrised timelike

geodesics with affine parameter the proper time τ . In Boyer-Lindquist coordinates the

Kerr metric has non-zero metric components gtt, gtϕ, gϕϕ, gθθ and grr all of which are

functions of r, θ. Write down the form of the geodesic equation, identifying two conserved

quantities. Consider a particle falling from rest at some r = R > r+ and θ = π/2 (i.e. in

the equatorial plane). Show, by considering the explicit form of gµν , that θ remains equal

to π/2 for all τ . Also show ϕ cannot remain constant.

2. A rank m Killing tensor is a totally symmetric tensor Kν1...νm = K(ν1...νm) that satisfies

∇(µKν1...νm) = 0. If V µ ≡ ẋµ is tangent to an affinely parametrised geodesic, show that

Q = V ν1 . . . V νmKν1...νm is constant along the geodesic. Remarkably, in addition to the

Killing vectors ∂t and ∂ϕ in Boyer-Lindquist coordinates, the Kerr metric also has an

irreducible rank two Killing tensor (ie one that can’t be expressed as Kµν = K1
(µK

2
ν)),

which allows one to obtain the geodesics explicitly.

3. For the Reissner-Nordstrom black hole in the coordinates given in the lectures with At =

−Q/r and Aϕ = −P cos θ, show that

P =
1

4π

∫
S2
∞

F, Q =
1

4π

∫
S2
∞

∗F,

and hence P,Q are the electric and magnetic charge of the black hole, respectively.

4. For the Kerr black hole in Boyer-Lindquist coordinates, show that the Komar integrals

give

M = − 1

8π

∫
S2
∞

∗dk, J =
1

16π

∫
S2
∞

∗dm,

where k,m are the one forms associated with the Killing vectors k = ∂t and m = ∂ϕ. Hint:

you only have to calculate the components and quantities that contribute to the integral

on the two-sphere at infinity.

5. Consider the Reissner Nordström metric in ingoing Eddington-Finklestein coordinates

ds2 = −∆

r2
dv2 + 2dvdr + r2dΩ

where ∆ = (r − r+)(r − r−) and r± = M ±
√
M2 − e2. Show that the outer and inner

horizons located at r = r± are null hypersurfaces. Show that they are Killing horizons

with respect to the stationary Killing vector ξ = ∂v. By calculating ∇µ(ξ
2)|r=r± show

that the surface gravity on the two Killing horizons is given by

κ =
r± − r∓
2r2±
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6. Consider the Kerr metric in Kerr coordinates (v, r, θ, χ). Show that the event horizon at

r = r+ is a Killing horizon for the Killing vector ξ = ∂v+ΩH∂χ, where ΩH = a/(r2++a2),

and that the surface gravity is

κ =

√
M4 − J2

2M(M2 +
√
M4 − J2)

(Note: one can avoid working out the inverse metric by showing ξ2 = 0 at r = r+ and

that lµ ∝ ξµ at r = r+ where lµ is the normal vector to the hypersurfaces of constant r.)

7. This questions illuminates the physical interpretation of the surface gravity κ of a black

hole.

Consider a stationary, asymptotically flat spacetime with Killing vector kµ such that

k2 → −1 at infinity. Let V 2 = −k2 where V is the gravitational redshift factor. Consider

a stationary particle of mass m. It moves on an orbit of k and its proper acceleration is

aµ = D
dτ v

µ where vµ = V −1kµ is the 4-velocity of the particle and D
dτ = vν∇ν where τ is

proper time. Let a ≡ (aµaµ)
1/2 be the magnitude of the acceleration.

(i) Show that aµ = ∇µ lnV .

(ii) Suppose the particle is kept stationary by an idealised string held by a stationary

observer at infinity. Let Fµ = maµ be the magnitude of the local force exerted on

the particle. Use conservation of energy arguments to show that the magnitude of

the force exerted at infinity is F∞ = V F .

(iii) Show that for Schwarzschild we have that a and hence F diverges as r → r+ but

that V a (i.e. F∞ per unit mass) equals the surface gravity κ of the event horizon.
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