
Black Holes – Problem Sheet 5

1. For the electrically charged Kerr-Newman black hole directly show that

M =
κ

4π
A+ 2ΩHJ +ΦHQ

This is called the Smarr formula (it can also be derived by directly manipulating the

Smarr formulae for the conserved charges).

2. The first law of black hole mechanics for uncharged black holes is

dM =
κ

8π
dA+ΩHdJ

Use dimensional analysis to put in factors of G and c in order to make this dimensionally

correct as a change in energy.

3. Use the second law of black hole mechanics (the Area Theorem) to prove that an un-

charged, non-rotating black hole cannot split into two uncharged, non-rotating black holes.

Assume that the initial state is stationary and the final state is well approximated by two

well separated black holes each approximated by the Schwarzschild metric.

4. Consider the reverse process where two uncharged, non-rotating black holes of masses M1

and M2, initially far apart, coalesce into a single non-rotating black hole. This process

will give off gravitational radiation. Use energy conservation and the second law to find

the maximum amount of work that can be extracted from the system during the process.

Show that the maximum efficiency of the process satisfies η ≤ 1 − 1√
2
and determine for

what initial masses this is achieved.

5. In the LIGO event measure in 2015 it was deduced that two black holes of mass 36M⊙ and

29M⊙ (and unknown rotation) coalesced to form a rotating black hole of mass 62M⊙ and

rotation parameter per unit mass of a/M = 0.68. Show that this is consistent with the

Area law. The merger took place in about 15ms. Work out the power produced during

the merger (for comparison the power emitted by the sun is about 3× 1026W ).

6. The Penrose process for the Kerr black hole can decrease the mass of the black hole.

Use the second law to show that when the mass decreases, the angular momentum must

decrease also. Find the maximum amount of energy that can be extracted from a Kerr

black hole with mass M and angular momentum J .

7. This question methodically works through the proof of an identity that was used in the

proof of the zeroth law. Let N be a Killing horizon of a Killing vector field ξ with surface

gravity κ.

(a) If we know A = 0 on N for some tensor Aµ1...µp then for an arbitrary tensor Bµ1...µp

we have A ·B ≡ Aµ1...µpB
µ1...µp = 0 on N . Thus N is a surface of constant A ·B and so

d(A ·B) (with components ∇µ(A ·B)) is normal to N and hence ξ ∧ d(A ·B) = 0 on N .
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(i) Show that ξ[µ∇ν]Aρ1...ρp = 0 on N .

(ii) Taking Aµ = ξν∇νξµ − κξµ use this and the Killing vector Lemma (∇µ∇νξρ =

Rσ
µνρξσ) to show that

ξµξ[σ∇ρ]κ+ κξ[σ∇ρ]ξµ =
(
ξ[σ∇ρ]ξ

ν
)
∇νξµ + ξνξ[σR

δ
ρ]νµξδ on N (1)

(b) Use Frobenius theorem to show that

ξρ∇µξν = −2ξ[µ∇ν]ξρ on N (2)

Hence show that
(
ξ[σ∇ρ]ξ

ν
)
∇νξµ = κξ[σ∇ρ]ξµ on N , so equation (1) reduces to

ξµξ[σ∇ρ]κ = ξνξ[σR
δ
ρ]νµξδ on N (3)

(c) Set Aµνρ = ξρ∇µξν+2ξ[µ∇ν]ξρ and use the result of (a)(i) and equation (2) (repeatedly)

to show that

ξρξ[σ∇δ]∇µξν = −2
(
ξ[σ∇δ]∇[νξ|ρ|

)
ξµ] on N

(where the bars on the index |ρ| imply exclude that index from the antisymmetrisation

inside the brackets) and hence using the Killing vector identity that

ξρξ[σR
γ
δ]µνξγ = 2ξ[σR

γ
δ]ρ[νξµ]ξγ on N

(d) Contract this equation on the indices ρ and δ, show that the LHS vanishes and thus

−ξ[µRν]
γξγξσ = ξ[µR

γ
ν]ρσξ

ρξγ on N

By relabelling indices hence show that

ξ[σ∇ρ]κ = −ξ[σRρ]
δξδ on N

This was the key result used in the lectures to show the zeroth law.
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