Black Holes - Jerome Gauntlett

Notes on differential forms

Let M be an n-dimensional manifold. A p-form is a tensor of type (0,p) that is totally anti-

symmetric:
Aty = Ay y) (1)

A 0-form is simply a function and a 1-form is a co-vector. We must have p < n.
Wedge product: Consider a p-form, A, and a g-form, B. We define the (p+¢q) form AA B

via

(p+9)
(A A B),ul...,upul...yq = p!q! [w1...ppPri..vg] (2)
We immediately have
ANB=(-1)»"BAA (3)

and a corollary is A A A =0 if p is odd.
In a given set of coordinates we can consider a basis for one-forms dz*. Using the wedge

product we can obtain a basis for p-forms and we can write

1
A= ;!Am__upda:“l A Adxh? (4)

Exterior derivative: This is a derivative operation that takes a p-form, A, to a p+1 form,

dA whose components are

(dA)Vl---Vp+1 = (p + 1)8[V1AI/2‘..VP+1} (5)

The factor (p + 1) corresponds to the fact that we can think of d as the operation dz” A d, in

the sense:

1
dA = jﬁpAﬂl,_.Mpd:cp ANdzt N - A daztr
p!

1
- ﬁa[pAm---up]dep AdzHt A - A dxt

(p + 1)! ((p + 1)8[1/1141,2.“/%“]) At Adx¥2 A - A da?rtt (6)

If A is a p-form and B is a g-form we have the Leibniz rule:
d(ANB)=(dA)AB+ (—1)PANA (dB) (7)
We also have the important property that
d? =0 (8)

We say a form A is “closed” if dA = 0. We say a form is “exact” if A = dB. Clearly an
exact form is closed from (8), but the converse is NOT true in general (and leads to study of

cohomology).



We have not yet assumed that we have a metric defined on M. Let us now do so, with
components g,,,. This gives a unique Levi-Civita covariant derivative V. It is useful to note

that we can write

(dA)lll...Verl = (p + 1)V[V1Aug...up+1} (9)

Volume n-form: The metric allows us to define a volume n-form, e, via

e =/|gldz' A--- A dz"

1
= E |g|6(ﬂla'-'7#n)dxul A Adahr ’ (10)

and thus

Cprpin = lgleery - s ptn) (11)

where €(u1, . .., tin) is the object (not the components of a tensor!) which equals +1if (u1, ..., tin)
is an even permutation of (1,2,...,n), equals —1 if (p1,...,4y) is an odd permutation of
(1,2,...,n) and equals zero if any index is repeated. Note that this definition is coordinate
independent because the transformation of \/m and dzH* A --- A dx*™ compensate each other.

We can raise indices using the metric to get

Hibn — ghavt | ghntne
— g g glen, - vi)
- det(g)_le(/u, . 7Mn)\/@
= j:ie(ul,u-n“n) (12)

Vdl

where the upper plus sign arises when we have Riemannian geometry and the lower minus sign

arises when we have Lorentzian geometry. A useful fact is that

P fhpVpt 1oV _ N sH1-Hp
€ nr nEP1~~~Ppr+1--~Vn - ip'(n p)691~--Pp (13)

H1--Bp — Sp1 Hp —
where 0p, ) = 6[/)1 ... 5pp]. We also have Ve, = 0.

Hodge dual: With a metric and hence a volume form, given a p-form A, we can define an

(n — p)-form *A, the Hodge dual, via'
1

Ay = gy A (14)
One can show that
#(xA) = £(-1)PP) 4 (15)
and also
(ed % A)py oy = i(_l)p(nip)vyAmmup_w (16)

'Some other people define Ay, i, ,, = 2€w1..vpp1.pn_p A7 which leads to some different signs in places.



If we denote 1 as the trivial O-form (function) which is just 1 everywhere we have 1 = e.
Integration: We first define the integral of an n-form A over an n-dimensional manifold

M. We can write A = %Ammu"dm“l A ANdatr = Ay pdzt A+ Adz™ and we define

/ A= /dxl...dx"AL,,n = /d"a:Almn (17)
M

where the right hand side is usual integration. One can show that this is a coordinate indepen-
dent definition. Note that this definition did not require a metric.
Suppose now we have a metric and hence a volume form e. We can then define the volume

of M to be Vol(M) = [,, € (which might be infinite). We can also use ¢ to define the integral

| =] o= [@avials (18)

and the latter expression should be familiar.

of a function f on M:

Stokes Theorem: Let M be an oriented n-dimensional manifold with boundary dM then

for an (n — 1)-dimensional form A we have

/dA: A (19)
M oM

Notice that this theorem does not require a metric.
Gauss Law or Divergence Theorem: Let M be an n-dimensional manifold with bound-

ary OM, metric g,,, and volume form e. Let V' be a one-form, then A = %V is an (n — 1)-form

/MdA:/aMA:/aM*V (20)

We now want to reexpress the left and right hand sides. From (16) we have

and Stokes Theorem says

xd*V = +(—1)""H(V*V,)1
= +dxV =+(-1)""1(V'V,) * (1)
= d*V = (=1)""HV'V,)e (21)

where 1 is the trivial O-form (function) which is 1 everywhere and as noted above %1 = e. The
left hand side of (20) is thus

/dA—(—l)”l/ d"z\/|g|V ,,VH (22)
M M

We now consider the right hand side of (20). We first assume that OM is specified by an
outward pointing normal vector n#, with n? = n#n” 9ur = F1 depending on whether the normal
is time-like or spacelike. The induced metric on OM is then given by h,, = g, £ n,n, (note
that h,,n” = 0). This induced metric h can be used to define a volume (n — 1)-form, € on OM.

We then calculate

1
B 1)!%...un71”Vudw“ A Adatn



v 1A L pn—1
€ pitepim_y Vodxtt N N dat

(nVVV)Eal...an,ldl'al Ao Adxtrt

(n—1)!
= ()" (n"V)e (23)

where z% are coordinates on M. To get from the second to the third line is a bit fiddly: one
can use coordinates so that the boundary is defined by 2! = 0, the normal n as a one-form (i.e
nu = guwn”) is proportional to dz' and the coordinates on M are 2 = (2%,...,2™). We can

)

now use this in the right hand side of (20) and combining with (22) we finally have the result

/dnm\/|g]VuV“:/ d"La\/|h|n*V, (24)
M oM

which you have been using in some form in your studies for a while.



