
Black Holes - Jerome Gauntlett

Notes on differential forms

Let M be an n-dimensional manifold. A p-form is a tensor of type (0, p) that is totally anti-

symmetric:

Aµ1...µp = A[µ1...µp] (1)

A 0-form is simply a function and a 1-form is a co-vector. We must have p ≤ n.

Wedge product: Consider a p-form, A, and a q-form, B. We define the (p+q) form A∧B
via

(A ∧B)µ1...µpν1...νq =
(p+ q)!

p!q!
A[µ1...µpBν1...νq ] (2)

We immediately have

A ∧B = (−1)pqB ∧A (3)

and a corollary is A ∧A = 0 if p is odd.

In a given set of coordinates we can consider a basis for one-forms dxµ. Using the wedge

product we can obtain a basis for p-forms and we can write

A =
1

p!
Aµ1...µpdx

µ1 ∧ · · · ∧ dxµp (4)

Exterior derivative: This is a derivative operation that takes a p-form, A, to a p+1 form,

dA whose components are

(dA)ν1...νp+1 = (p+ 1)∂[ν1Aν2...νp+1] (5)

The factor (p + 1) corresponds to the fact that we can think of d as the operation dxρ ∧ ∂ρ in

the sense:

dA =
1

p!
∂ρAµ1...µpdx

ρ ∧ dxµ1 ∧ · · · ∧ dxµp

=
1

p!
∂[ρAµ1...µp]dx

ρ ∧ dxµ1 ∧ · · · ∧ dxµp

=
1

(p+ 1)!

(
(p+ 1)∂[ν1Aν2...µp+1]

)
dxν1 ∧ dxν2 ∧ · · · ∧ dxνp+1 (6)

If A is a p-form and B is a q-form we have the Leibniz rule:

d(A ∧B) = (dA) ∧B + (−1)pA ∧ (dB) (7)

We also have the important property that

d2 = 0 (8)

We say a form A is “closed” if dA = 0. We say a form is “exact” if A = dB. Clearly an

exact form is closed from (8), but the converse is NOT true in general (and leads to study of

cohomology).
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We have not yet assumed that we have a metric defined on M . Let us now do so, with

components gµν . This gives a unique Levi-Civita covariant derivative ∇. It is useful to note

that we can write

(dA)ν1...νp+1 = (p+ 1)∇[ν1Aν2...νp+1] (9)

Volume n-form: The metric allows us to define a volume n-form, ε, via

ε =
√
|g|dx1 ∧ · · · ∧ dxn

=
1

n!

√
|g|ε(µ1, . . . , µn)dxµ1 ∧ · · · ∧ dxµn , (10)

and thus

εµ1...µn =
√
|g|ε(µ1, . . . , µn) , (11)

where ε(µ1, . . . , µn) is the object (not the components of a tensor!) which equals +1 if (µ1, . . . , µn)

is an even permutation of (1, 2, . . . , n), equals −1 if (µ1, . . . , µn) is an odd permutation of

(1, 2, . . . , n) and equals zero if any index is repeated. Note that this definition is coordinate

independent because the transformation of
√
|g| and dxµ1 ∧ · · · ∧ dxµn compensate each other.

We can raise indices using the metric to get

εµ1...µn = gµ1ν1 . . . gµnνnεν1...νn

= gµ1ν1 . . . gµnνn
√
|g|ε(ν1, . . . , νn)

= det(g)−1ε(µ1, . . . , µn)
√
|g|

= ± 1√
|g|
ε(µ1, . . . , µn) (12)

where the upper plus sign arises when we have Riemannian geometry and the lower minus sign

arises when we have Lorentzian geometry. A useful fact is that

εµ1...µpνp+1...νnερ1...ρpνp+1...νn = ±p!(n− p)δµ1...µpρ1...ρp (13)

where δ
µ1...µp
ρ1...ρp ≡ δ

µ1
[ρ1
. . . δ

µp
ρp]

. We also have ∇ρεµ1...µn = 0.

Hodge dual: With a metric and hence a volume form, given a p-form A, we can define an

(n− p)-form ∗A, the Hodge dual, via1

∗Aµ1...µn−p =
1

p!
εµ1...µn−pν1...νpA

ν1...νp (14)

One can show that

∗(∗A) = ±(−1)p(n−p)A (15)

and also

(∗d ∗A)µ1...µp−1 = ±(−1)p(n−p)∇νAµ1...µp−1ν (16)

1Some other people define Aµ1...µn−p = 1
p!
εν1...νpµ1...µn−pA

ν1...νp which leads to some different signs in places.
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If we denote 1 as the trivial 0-form (function) which is just 1 everywhere we have ∗1 = ε.

Integration: We first define the integral of an n-form A over an n-dimensional manifold

M . We can write A = 1
n!Aµ1...µndx

µ1 ∧ · · · ∧ dxµn = A1...ndx
1 ∧ · · · ∧ dxn and we define∫

M
A ≡

∫
dx1 . . . dxnA1...n =

∫
dnxA1...n (17)

where the right hand side is usual integration. One can show that this is a coordinate indepen-

dent definition. Note that this definition did not require a metric.

Suppose now we have a metric and hence a volume form ε. We can then define the volume

of M to be V ol(M) =
∫
M ε (which might be infinite). We can also use ε to define the integral

of a function f on M : ∫
M
f ≡

∫
M
fε =

∫
dnx

√
|g|f (18)

and the latter expression should be familiar.

Stokes Theorem: Let M be an oriented n-dimensional manifold with boundary ∂M then

for an (n− 1)-dimensional form A we have∫
M
dA =

∫
∂M

A (19)

Notice that this theorem does not require a metric.

Gauss Law or Divergence Theorem: Let M be an n-dimensional manifold with bound-

ary ∂M , metric gµν and volume form ε. Let V be a one-form, then A = ∗V is an (n− 1)-form

and Stokes Theorem says ∫
M
dA =

∫
∂M

A =

∫
∂M
∗V (20)

We now want to reexpress the left and right hand sides. From (16) we have

∗d ∗ V = ±(−1)n−1(∇µVµ)1

⇒ ±d ∗ V = ±(−1)n−1(∇µVµ) ∗ (1)

⇒ d ∗ V = (−1)n−1(∇µVµ)ε (21)

where 1 is the trivial 0-form (function) which is 1 everywhere and as noted above ∗1 = ε. The

left hand side of (20) is thus ∫
M
dA = (−1)n−1

∫
M
dnx

√
|g|∇µV µ (22)

We now consider the right hand side of (20). We first assume that ∂M is specified by an

outward pointing normal vector nµ, with n2 = nµnνgµν = ∓1 depending on whether the normal

is time-like or spacelike. The induced metric on ∂M is then given by hµν = gµν ± nµnν (note

that hµνn
ν = 0). This induced metric h can be used to define a volume (n− 1)-form, ε̄ on ∂M .

We then calculate

∗V =
1

(n− 1)!
εµ1...µn−1

νVνdx
µ1 ∧ · · · ∧ dxµn−1
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= (−1)n−1 1

(n− 1)!
ενµ1...µn−1Vνdx

µ1 ∧ · · · ∧ dxµn−1

= (−1)n−1 1

(n− 1)!
(nνVν)ε̄a1...an−1dx

a1 ∧ · · · ∧ dxan−1

= (−1)n−1(nνVν)ε̄ (23)

where xa are coordinates on ∂M . To get from the second to the third line is a bit fiddly: one

can use coordinates so that the boundary is defined by x1 = 0, the normal n as a one-form (i.e

nµ = gµνn
ν) is proportional to dx1 and the coordinates on ∂M are xa = (x2, . . . , xn). We can

now use this in the right hand side of (20) and combining with (22) we finally have the result∫
M
dnx

√
|g|∇µV µ =

∫
∂M

dn−1x
√
|h|nµVµ (24)

which you have been using in some form in your studies for a while.
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