Differential Geometry: Example sheet 3

1) Setup: Consider the flows, $\sigma_X(\lambda)$ and $\sigma_Y(\lambda)$, generated by two vector fields X and Y. Consider starting at a point p, and flowing first by α along X, and then by β along Y, arriving at $p_{XY} = \sigma_Y(\beta) \circ \sigma_X(\alpha) p$. Starting at p and switching the order we arrive at $p_{YX} = \sigma_X(\alpha) \circ \sigma_Y(\beta) p$.

To do: Using a chart containing p, and with coordinates $\{x^\mu\}$, show for infinitesimal α, β that $x^\mu(p_{XY}) - x^\mu(p_{YX}) = \alpha \beta ([X,Y])^\mu$ to leading order in α, β.

What have we learned? We say the flows generated by X,Y ‘commute’ if $p_{XY} = p_{YX}$ for all starting p. The Lie derivative $\mathcal{L}_X Y = [X,Y]$ measures the ‘non-commutability’ of these two flows. We have shown that $[X,Y] = 0$ if and only if the flows commute.

2) Take 2 differential forms $\xi \in \Omega^a$, $\eta \in \Omega^b$. Confirm that
 i) $\xi \wedge \eta = (-1)^{ab} \eta \wedge \xi$,
 ii) $d(\xi \wedge \eta) = (d\xi) \wedge \eta + (-1)^a \xi \wedge (d\eta)$.

3) The exterior derivative elegantly generalizes the operations found in 3-d vector calculus; $\text{grad}(f) = \nabla f$, $\text{div}(\mathbf{v}) = \nabla \cdot \mathbf{v}$ and $\text{curl}(\mathbf{v}) = \nabla \times \mathbf{v}$, where f is a function and \mathbf{v} is a 3-vector. Consider the manifold $\mathcal{M} = \mathbb{R}^3$, and taking a coordinate basis, show:
 i) for $f \in \Omega^0(\mathcal{M})$, the components of $df \in \Omega^1(\mathcal{M})$ are the components of $\text{grad}(f)$.
 ii) for $w \in \Omega^1(\mathcal{M})$ with components given by those of a 3-vector in \mathbb{R}^3 the components of $dw \in \Omega^2(\mathcal{M})$ give the components of the curl of that 3-vector.
 iii) for $w \in \Omega^2(\mathcal{M})$ with components given by those of a 3-vector, $dw \in \Omega^3(\mathcal{M})$ computes div of that 3-vector.

4) For a vector field V and tensor field T of type (q,r), show that for any constant c, the Lie derivative satisfies

$$\mathcal{L}_c V T = c \mathcal{L}_V T$$
5) The **pull-back of a function**. Suppose we have a map \(f : \mathcal{M} \to \mathcal{N} \) and a function on \(\mathcal{N}, \ g \in \mathcal{F}(\mathcal{N}) \),

\[
g : \quad \mathcal{N} \to \mathbb{R} \tag{1}
\]

Then we can **pull-back** the function \(g \) onto a function on \(\mathcal{M} \) by

\[
g \cdot f : \quad \mathcal{M} \to \mathbb{R} \tag{2}
\]

The pull-back of the function \(g \) by \(f \) is sometimes written as \(f^*(g) \), so \(f^*(g) \equiv g \cdot f \), and this is a function on \(\mathcal{M} \).

\(i \) Introduce local coordinates on \(\mathcal{M} \) and \(\mathcal{N} \) and find the form of \(f^*(g) \) as a function of the coordinates on \(\mathcal{M} \).

\(ii \) Suppose \(f : \mathcal{M} \to \mathcal{N} \) is a diffeomorphism. Let \(V \) be a vector field on \(\mathcal{N} \) and \(\omega \) be a cotangent vector field on \(\mathcal{N} \), so that \(\langle \omega, V \rangle \) is a function on \(\mathcal{N} \). Show that the pull-back of this function satisfies

\[
f^*(\langle \omega, V \rangle) = \langle f^*\omega, f^*V \rangle
\]