Differential Geometry: Example sheet 4 solutions

3) Qu: Show that if one integrates an exact \(r \)-form \(\omega \) over an \(r \)-cycle \(c \) then \(\int_c \omega = 0 \).

Since \(\omega \) is exact, we may write \(\omega = d\alpha \). Then by Stokes,

\[
\int_c \omega = \int_c d\alpha = \int_{\partial c} \alpha
\]

but since \(c \) is a cycle it has no boundary so \(\partial c = 0 \), and hence,

\[
\int_c \omega = 0
\]

Qu: Consider a compact manifold with no boundary. A theorem states that given a closed \(r \)-form \(\omega \), then if \(\int_c \omega = 0 \) for all possible \(r \)-cycles then \(\omega \) is not just closed but is exact. Use this to show that if for such a manifold all \(r \)-cycles are \(r \)-boundaries, then any closed \(r \)-form must be exact.

If any \(r \)-cycle is an \(r \)-boundary, so that for any cycle \(c \) we may write \(c = \partial v \) for some \(v \), then given a closed \(r \)-form;

\[
\int_c \omega = \int_{\partial v} \omega = \int_v d\omega = 0
\]

where we use Stokes, and then the fact that since \(\omega \) is closed, then \(d\omega = 0 \). Hence we see for any \(r \)-cycle on such a manifold, then a closed form \(\omega \) obeys \(\int_c \omega = 0 \). Using the theorem quoted in the questions, this implies that the closed form \(\omega \) must be exact.

Note that if any closed \(r \)-form is exact then the \(H^r \) is trivial.

Qu: Hence determine the cohomology of \(S^m \) for any \(m \). Give representatives for a basis for the cohomology vector spaces \(H^r \).

Since \(S^m \) is connected we have \(H^0(S^m) = \mathbb{R} \). A representative for a basis for \(H^0 \) is any constant function.
Now, Poincare duality tells us that $H^0 = H^m = \mathbb{R}$. A representative for the non-trivial class of H^m is any m-form ω such that $\int_{S^m} \omega \neq 0$. For example, one can take any volume form.

For a sphere any r-cycle for $r > 0$ and $r < m$ is a r-boundary; any r-cycle is topologically an r-sphere, and is the boundary of an $(r + 1)$-ball. Hence from the discussion above we have $H^r = 0$ are trivial for $0 < r < m$.

2
4) Qu: For a 2-torus $H^1(T^2)$ is of dimension two. Find two inequivalent closed 1-forms on T^2 which are representatives for a basis of $H^1(T^2)$ and perform integrals over appropriate 1-cycles (ones that are not boundaries) to explicitly show they are not exact.

Take our usual circle Altas, and construct T^2 as the product $S^1 \times S^2$. Then on T^2 our product manifold Altas has two angle coordinates (θ_1, θ_2).

Two inequivalent closed 1-forms are $\omega_1 = d\theta_1$ and $\omega_2 = d\theta_2$. (More than one patch is needed for each circle, with the volume 1-forms on each given by $d\theta_i$ locally in terms of local coordinates θ_i.) Note that $\omega_{1,2}$ are volume forms on the two S^1 factors of T^2. They are clearly closed as $d^2 = 0$. Note they are clearly inequivalent; there is no choice of α such that $\omega_1 - \omega_2 = d\alpha$.

To show ω_1 is closed but not exact we integrate over the cycle $c_1 = \{\theta_1 = [0, 2\pi), \theta_2 = \text{const}\}$. Then,

$$\int_{c_1} \omega_1 = \int_0^{2\pi} d\theta_1 = 2\pi \neq 0$$

(4)

and since this does not vanish, then ω_1 cannot be exact. Similarly for ω_2 integrate over $c_2 = \{\theta_2 = [0, 2\pi), \theta_1 = \text{const}\}$.

Thus $d\theta_1$ and $d\theta_2$ are representatives for a basis for $H^1(T^2)$.

3
5) Qu: The Betti numbers of T^3 are $b_r(T^3) = \{1, 3, 3, 1\}$. Give representatives for a basis for the cohomology spaces $H^r(T^3)$. Again choose appropriate r-cycles to integrate these basis forms over to show they are closed but not exact.

Again we think of $T^3 = S^1 \times S^1 \times S^1$ and take a product Atlas with coordinates $(\theta_1, \theta_2, \theta_3)$.

Poincare’s theorem tells us that $H^0(T^3) = \mathbb{R}^{b_0} = \mathbb{R}$. As it is connected, any non-zero constant function is a representative for a basis. Integrating over a 0-cycle which is just a point simply returns the value of the constant function.

We have $H^1(T^3) = \mathbb{R}^{b_1} = \mathbb{R}^3$. Extending the answer to the previous question representatives for a basis are $\omega_{1,2,3} = d\theta_{1,2,3}$. These are closed as $d^2 = 0$.

Taking a cycle $c_1 = \{\theta_1 = [0, 2\pi), \theta_2 = \text{const}, \theta_3 = \text{const}\}$, then,

$$\int_{c_1} \omega_1 = \int_0^{2\pi} d\theta_1 = 2\pi \neq 0$$

so ω_1 is not exact. Take a similar construction for cycles for $\omega_{2,3}$.

We have $H^2(T^3) = \mathbb{R}^{b_2} = \mathbb{R}^3$. Now, representatives for a basis are;

$$\alpha_1 = d\theta_2 \wedge d\theta_3, \alpha_2 = d\theta_3 \wedge d\theta_1, \alpha_3 = d\theta_1 \wedge d\theta_2,$$

(6)

Clearly these are closed since $d^2 = 0$.

Taking a cycle $a_1 = \{\theta_2 = [0, 2\pi), \theta_3 = [0, 2\pi), \theta_1 = \text{const}\}$, then,

$$\int_{a_1} \alpha_1 = \int d\theta_2 \wedge d\theta_3 = \int_0^{2\pi} d\theta_2 \int_0^{2\pi} d\theta_3 = 4\pi^2 \neq 0$$

(7)

so α_1 is not exact. Take a similar construction for cycles for $\alpha_{2,3}$.

Finally $H^3(T^3) = \mathbb{R}^{b_3} = \mathbb{R}$. A representative is the volume form $\omega = d\theta_1 \wedge d\theta_2 \wedge d\theta_3$. Note that $d\omega = 0$ since any top form is closed. Integrating over the 3-cycle which is the entire T^3 gives $(2\pi)^3$ indicating the form is not exact.
6) **Question**: Consider the manifold \(\mathbb{R}^* \times \mathbb{R}^3 = \mathbb{R}^3 - \{0\} \). Take the closed 2-form \(F \in Z^2(\mathbb{R}^3) \);

\[
F = \sin \theta \, d\theta \wedge d\phi
\]
(8)

where \(r, \theta, \phi \) are the usual spherical polar coordinates on \(\mathbb{R}^3 \) - with \(\theta \) the ‘zenith’ and \(\phi \) the ‘azimuth’ angles. Confirm that \(F \) is indeed closed.

Firstly one can compute,

\[
dF = d(\sin \theta \, d\theta \wedge d\phi) = \frac{\partial}{\partial x^\mu} \sin \theta \, dx^\mu \wedge d\theta \wedge d\phi = 0
\]
(9)

since \(d\theta \wedge d\theta = 0 \).

Question: Consider the 2-cycle given by the unit sphere \(r = 1 \). Compute the period (ie. integrate!) \(F \) over that 2-cycle, and hence show that \(F \) is not exact, and that this 2-cycle is not a 2-boundary.

Integrate over the unit \(S^2 \) at origin;

\[
\int_{S^2} F = \int \sin \theta \, d\theta \wedge d\phi = \int_0^{2\pi} d\phi \int_0^\pi d\theta \sin \theta = 2 \cdot (2\pi) = 4\pi \neq 0
\]
(10)

Since the integral of \(F \) over a 2-cycle is non-zero, it cannot be exact.

Question: For the manifold \(\mathbb{R}^3 \) we know \(H^2 \) is trivial - there are no closed 2-forms which are not exact. How can this agree with what you have shown above for the 2-form \(F \) on \(\mathbb{R}^* \times \mathbb{R}^3 \)?

While \(F \) defines a smooth 2-form on \(\mathbb{R}^* \times \mathbb{R}^3 \), it does not on \(\mathbb{R}^3 \) since it is multivalued at the origin. Hence on \(\mathbb{R}^3 \) this \(F \) is not a smooth 2-form, and so doesn’t give an example of a closed but not exact 2-form.