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SECTION A: Particle Symmetries

1. This problem is about the Poincaré group in two dimensions.

(i) By considering light-cone coordinates x± = 1
2(x

0
± x1), show that the metric

ds2 = �(dx0)2 + (dx1)2 is invariant under the transformation

x± 7! e±�x± + a±,

where �, a+, a� 2 R. [3 marks]

(ii) Consider matrices and vectors of the form
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Give the definition of an abstract group and show that P forms a group under
matrix multiplication. Show that elements of P act on v by transforming x±

as in question (i). [3 marks]

(iii) Give the Lie algebra p corresponding to the Lie group P . Choose a suitable basis
and give the structure constants defining p. Hence show that the translation
subalgebra is an ideal. [3 marks]

(iv) Let eX be the matrix exponential. Show explicitly that

�
eX : X 2 p

 
= P.

Does such a relation always hold for any Lie group G with Lie algebra g?
[4 marks]

(v) Following Wigner, one can construct a unitary representation S(�, a+, a�) of
P on a Hilbert space H with basis vectors |p+, p�i 2 H such that

S(�, a+, a�)|p+, p�i = e�ie
�p+a��ie��p�a+

|e�p+, e��p�i,

where p± = p0± p1. Show that S(�, a+, a�) satisfies the conditions necessary
for it to be a representation. [3 marks]

(vi) Show that this representation is reducible and find all the irreducible subspaces.
How are theses subspaces interpreted physically? Show that they can be as-
sociated to spaces of solutions of the two-dimensional Klein–Gordon equation.
What happens when the mass is zero?

What is the little group for states in the di↵erent irreducible subspaces and
what does this imply physically? [4 marks]

[Total 20 marks]
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