Lecture 26

Particle Symmetries

Roots → positive roots, simple roots \(\alpha_i \). Fundamental weights

\[A_{ij} = 2 \langle \alpha_i, \alpha_j \rangle, \quad 2 \langle \lambda, \alpha_j \rangle = \delta_{ij} \quad \lambda = (\lambda^{\alpha_i})_{ij} \alpha_i \] → give rise to basic rep of group [8]

The highest weight of irrep

\[\lambda = \sum_{i=1}^{K} n_i \lambda_i \quad \text{if} \quad \lambda = \lambda_i \quad \text{each of its basic irrep} \]

[see later][8]

\[\text{dim } \left[0, \ldots, 0, 1, 0, \ldots, 0 \right] = (n+1)^K \quad \text{K-th rank antisymmetric representation of } SU(n+1) \]

\[\binom{n+1}{k} = \binom{n+1}{n+1-k} \]

Set \(N = n+1 \)

\[\text{dim } \left[v_1, \ldots, v_{N-1}, v_N \right] = \text{dim } \left[v_{N-1}, \ldots, v_1 \right] \]

Example

\[A_2 = D_3 = SU(4), SO(6) \]

\[\text{dim } \left[v_1, v_2, v_3 \right] = \text{dim } \left[v_3, v_2, v_1 \right] \]

\[\text{dim } \left[1, 0, 0 \right] = 4 = \text{dim } \left[0, 0, 1 \right] \quad \text{dim } \left[0, 1, 0 \right] = 6 \]

\[[v_1, v_2, v_3] \text{ is in the tensor product of Sym}^{v_2} [1, 0, 0] \oplus \text{Sym}^{v_2} (\Lambda^2 [1, 0, 0]) \oplus \text{Sym}^{v_2} (\Lambda^3 [1, 0, 0]) \]

[when take K-th asym product move 1 along rows of \([0, 0, 0] \)]

For a representation of \(SU(N) \) of Dynkin labels \[[v_1, \ldots, v_{N-1}, v_N] \]

the complex conj rep is \[[v_{N-1}, \ldots, v_1] \]

\[\left(\begin{array}{cccc}
 m_1 & m_2 & m_3 & m_4 \\
 m_5 & m_6 & m_7 & m_8 \\
 m_9 & m_{10} & m_{11} & m_{12}
\end{array} \right) \quad \text{complex conjugate} \]

For \(SU(4) \)

\[\left(\begin{array}{c}
 \square \\
 \square \\
\end{array} \right)^c = \left(\begin{array}{c}
 \square \\
\end{array} \right) \]

\[\left(\begin{array}{c}
 \square \\
\end{array} \right)^c = \left(\begin{array}{c}
 \square \\
\end{array} \right) \]

[Originally \(m_1, m_2, \ldots \) changed to \(m_3, m_4, \ldots \)]
All irreps \([0, n, 0]\) are real, symmetric traceless with rank tensors of \(SO(6)\).

\[
\begin{pmatrix}
 & \vdots \\
2,1 & \vdots \\
 & \vdots \\
4-1,4-2 & \vdots \\
(3,2) & \vdots \\
\end{pmatrix}
\]

i.e., \([1,1,0] \cong [0,1,1]\)

For \(SU(6)\), \([0,0,n,0,0]\) is real.

\([n_2, n_3, \ldots n_3, n_2, n_1]\) in general.

The \([\beta] \cong [\gamma]\) true for any group, now apply to \(B_n\).

\(B_n\) \([0, \ldots, 0, 1, 0, \ldots, 0]\)

\[\text{dim } [0, \ldots, 0, 1] = 2^n\] spinor of \(SO(2n+1)\)

Examples:

\(\text{B}_1 = \text{C}_1 = \text{A}_2 \cong SU(2)\) \(2^1 = 2\) fund. rep.

\[\det (A_{B_n}) = 2\] \(SO(3)\) \(Sp(1)\)

2 types of irreps \([n_2, \ldots, n_n]\): if \(n_n\) is even bosonic
odd fermionic

Tensor product of

bosonic \(\times\) bosonic gives bosonic
ferm \(\times\) ferm gives fermionic

\([\text{stay in bosonic lattice}]\)

\([\text{stay in fermionic lattice}]\)

\([\text{move from ferm to bos}]\)

\([\text{because of properties of determinant}]\)

\([\text{fundamental]}\)

\([\text{true root}]\)

\(A_1: \lambda = \frac{1}{2} \alpha\)

\(D_2 = A_1 \times A_1\)

\(\alpha \lambda\)

\(\lambda\)

\(\alpha\)

\(\lambda\)

[Area 4 times as large for \(D_2\) as area picked out by roots]
A representation that appears in physics

\[[1, 0, \ldots, 0, 1] \]

\[\text{vector} \sim \text{spinor} \]

\[\begin{align*}
B_2 & : [0, 1] \quad 4, \text{pseudo-real} \\
B_3 & : [0, 0, 1] \quad 8, \text{real} \\
E_8 & : [0, 0, 0, 1] \quad 16, \text{real}
\end{align*} \]

Cf.

\[A_{2n+1} \]

\[A_5 \cong SU(6) \]

\[\chi_{[1,0,0,0,0]} = \frac{Y_1 + Y_2 + Y_3 + Y_4 + Y_5 + \frac{1}{Y_1}}{Y_1} \]

Set the fugacities of \(C_3 \) to be \(Z_i \)

\[Z_1 = Y_1 = Y_5 \]
\[Z_2 = Y_2 = Y_4 \]
\[Z_3 = Y_3 \]

\[\chi_{[1,0,0]}_{C_3} = \frac{Z_1 + Z_2 + Z_3 + \frac{1}{Z_2}}{Z_1} \quad \text{pseudo-real} \]

\[[0, \ldots, 0, 1, 0, \ldots, 0] \quad \text{traceless K-th rank antisymmetric rep of Sp(n)} \]

[How know traceless?]

Recall for SO(n) 2 vectors \(V_i, W_i \quad i = 1, \ldots, n \)

\[V_i W_j + V_j W_i \quad \text{second rank symmetric} \]

\[V_i W_i \] is a singlet
\textbf{Note 1: Relation Between Determinant and Area (general formulation)}

In 2D, area of a parallelogram spanned by
\[\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} \]
\[\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} \]
is given by
\[\| \mathbf{a} \times \mathbf{b} \| = \det \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \]

[see traceless by analogy]
Physics: A_μ, $\mu = 0 \ldots 3$ so we are in $SO(4)$

e.g. $D_2 = A_1 \times A_1$

4-D rep: $[3,0]$, $[0,3]$ or $[1,1]$, or $[1,0] + [0,1]$

spin $\frac{3}{2}$ rep For the vector rep we want

one $SU(2)$

do not want this

2 spinors, which do not work properly as well

For the $F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$

∂_μ trans. in $[1,1]$ (i.e. as a vector A_μ)

$F_{\mu \nu} \rightarrow -\Lambda^2 [1,1]$ anti-sym product of two vectors

$\dim \Lambda^2 [1,1] = 4 \choose 2 = 6$

Compute $\Lambda^2 [1,1]$ in irrep with PE_F

or $f(x_1, x_2) = (x_1 + x_1^{-1})(x_2 + x_2^{-1}) = \chi_{[1,1]}(x_1, x_2)$

then $\frac{1}{2} f^2(x_1, x_2) - \frac{1}{2} f(x_1^2, x_2^2) = (2,0)(0,2)(0,0)(0,0)(0,-2)(-2,0)$

from $(1,1)(1,-1)(-1,1)(-1,-1)$

Highest weight: $[2,0]$ so $\Lambda^2(1,1) = [2,0] + [0,2]$ (sym in the exchange of $[\cdots, \cdots]$)

So $F_{\mu \nu}$ is reducible

It's a reducible rep of $SO(4)$: the adjoint rep of $SO(4)$

Can then be written

$F_{\mu \nu} = F_{\mu \nu}^+ + F_{\mu \nu}^-$ which transforms without mixing

Using $\varepsilon_{\mu \nu \rho \sigma} F^\rho \sigma \equiv \tilde{F}_{\mu \nu}$, we can write $F_{\mu \nu}^{\pm} \equiv \frac{1}{2} (F_{\mu \nu} \pm \tilde{F}_{\mu \nu})$

and the $F_{\mu \nu} = F_{\mu \nu}^+ + F_{\mu \nu}^-$

Does this work?

$\varepsilon_{\mu \nu \rho \sigma} F_{\mu \nu}^+ = \varepsilon_{\mu \nu \rho \sigma} (\frac{1}{2} F_{\mu \nu} + \frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} F^{\alpha \beta}) = \frac{1}{2} \tilde{F}_{\rho \sigma} + \frac{\sqrt{2}}{2} \varepsilon_{\rho \sigma} F^{\alpha \beta}$

$= F_{\rho \sigma}^+ \uparrow$ shows that
i.e. F^μ has an eigenvalue +1 under E_{μ}^ν as well as F_{μ}^ν.

We can identify these self-dual and anti-self-dual tensors F^μ and F_{μ}^ν as the elements transforming in $[2,0]$ and $[0,2]$.

The middle dimensional antisym tensor:

$$\frac{2n}{2} = n$$

SO($2n$): the n-th rank antisym rep of SO($2n$) is reducible into SD and ASD tensors.

Self dual $\Leftrightarrow F^+ = 0$, antiself dual $\Leftrightarrow F^- = 0$

$$D_\alpha: \quad \bigcirc\cdots\bigcirc$$

SO($2n$): basic rep are $[0, \ldots, 1, \ldots, 0]$ $

\uparrow_{kth}$

For $k=n-1$ or n: spinor rep of SO($2n$), dim 2^{n-1} distinguished by calling spinor and spinor (!)

Dirac spinor (on SO(4)) is reducible in $[1,0] + [0,1]$ (because massless part)

called two Weyl spinors, the L and R ones

(though Dirac spinor is L-R sym)

Let $A_{D_n} = 4$ so set the last two indices to be n_{n-1}, n_n being even or odd (each)

giving $[n_1 \ldots n_{n-1}, n_n] \otimes [m_1 \ldots m_{n-1}, m_n] = [\ldots n_{n-1} + m_{n-1}, n_n + m_n]$

Selection rules:

$$[\ldots \text{odd}, \text{odd}] \otimes [\ldots \text{odd}, \text{odd}] = [\ldots \text{even}, \text{even}]$$

odd, even \quad odd, odd \quad even, odd

\vdots \quad \vdots
Decomposition of exceptional groups \(E_i \) \((i=6,7,8)\)

\[\text{dim } [1,0\ldots 0]_{E_6} = 27 = \text{dim } [0\ldots 0,1]_{E_6} \]

\[\text{dim } \text{Adj } (E_6) = 78 \]

\[\text{dim } [0,1,0\ldots 0] = 912 \]

\(E_7 \): \(\text{dim } \text{Fundamental } E_7 = 56 \) pseudoreal; \(\text{dim } \text{Adj } E_7 = 133 \)

\(E_8 \): \(\text{dim } \text{Adj } E_8 = 248 \)

Recall: every dot in Dynkin diagram is simple root and fundamental weight (one \(\alpha_i \) corresponds to one \(\Lambda_j \))

\[\Lambda_i = (A^{-1})_{ij} \alpha_j \quad \text{with} \quad A_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_j, \alpha_j)} \]

[i.e. the roots allow us to form the Cartan matrix]

\[2(\Lambda_i, \alpha_j) = S_{ij} \]

\# every rep is represented by a highest weight \(\Lambda \) decomposition in \(\Lambda_i \):

\[\Lambda = \sum_n n_i \Lambda_i \]

GUT:

\[\text{SU}(5) \supset \text{SU}(3) \times \text{SU}(2) \times U(1) \]

\[\text{SO}(10) \]

\[\text{E}_6 \]

\(\text{How to couple a scalar field to a gauge field?} \quad \text{(Use covariant derivative)} \)

\[D_{\mu} \phi = \partial_{\mu} \phi + i g A_{\mu} \phi \]

\(\phi \) is a vector space; \(A_{\mu} \) transforming it gives the interaction, i.e. the action of \(A_{\mu} \) on \(\phi \), and the mass of fields
Indeed, consider Dynkin diagram for E_6

```
 o---o---o---o
```

taking a subset

```
 o---o   o = D_5 = SO(10)
```

then

```
 o---o---o   o = A_4 = SU(5)
```

but need to understand how to extend the mechanisms: branching

Branching Rules

$SU(3) \supset SU(2) \times U(1)$

```
SU(3) \supset SU(2) \times U(1)
```

Suppose we have a group $SU(3)$ and we want a subgroup decomposition $SU(2) \times U(1)$

```
\begin{bmatrix}
2 \times 2 & 1 \times 2 \\
2 \times 1 & 1 \times 1
\end{bmatrix}
```

in $SU(3)$ rep

decomposed into $SU(2)$ different rep

or 3x3 matrix:

```
\begin{bmatrix}
2 \times 2 & 1 \times 2 \\
2 \times 1 & 1 \times 1
\end{bmatrix}
```

Hence $3 \rightarrow 2 + 1$

but charged under the other gp: $2 \uparrow 1 + 1 \downarrow$

2nd rank sym of $SU(3) = 6 \rightarrow ?$

Use the Fugacities:

$$\chi_{[1,0]}(Y_1, Y_2) = Y_1 + Y_2 + \frac{1}{Y_1} Y_2 = \chi_3$$

$$3 = \cdot \cdot \cdot = \text{doublet} \quad \text{with different charges} \quad \begin{cases}
\chi_3 = q^4 \chi_2 + q^{-2} \chi_1 \\
3 = 2 \uparrow 1 + 1 \downarrow
\end{cases}$$

Note: $SU(2)$ fugacity = X, $U(1)$ fugacity = q; \begin{align*}
3 = q^4 \chi_2 + q^{-2} \chi_1 \\
3 = q^{\frac{1}{2} \chi + X} + \frac{1}{q^2}
\end{align*}

set $SU(2)$ fugacity to X

* $U(1)$ --"-- \(= -q \)
Lecture 28

Particle Symmetries

\[
giving: \quad \frac{Y_1}{Y_2} = q_X, \quad \frac{Y_2}{X} = q, \quad 1 = \frac{1}{Y_2} \frac{q}{q_X} = (q_X \cdot q)^{-1} = (q^2)^{-1} \quad \text{ok}
\]

Fugacity map:

\[
Y_1 = q_X, \quad Y_2 = q^2
\]

For the branching rules

not choosing:

\[
X \quad \text{and} \quad \frac{1}{X} \quad \text{symmetry} \quad \text{for SU}(2) \quad \text{properties} \quad (q_X \Rightarrow q_X)
\]

product of terms with \(X\) or \(\frac{1}{X}\) = terms without it \(\Rightarrow\) \(\frac{1}{q_X^2}\)

Fugacity map not unique: 3 possible maps:

1. \(Y_1 = q_X, \quad Y_2 = q^2\)
2. \(Y_1 = q_X, \quad Y_2 = \frac{X}{q}\)
3. \(Y_1 = \frac{q}{X}, \quad Y_2 = q^2\)

For \(6\):

\[
\begin{array}{c}
\ldots \ldots \quad \text{triplet} \\
\ldots \quad \text{doublet} \\
\cdot \quad \text{singlet}
\end{array}
\]

\[
\chi_{[2,0]} = \frac{Y_1^2}{Y_2} + \frac{Y_2^2}{Y_1} + \frac{1}{Y_1} + \frac{Y_2}{Y_2} + \frac{1}{Y_2}
\]

Dynkin labels for \(E_6\)

with the first map: \((Y_1 = q_X, \quad Y_2 = q^2)\)

\[
\chi_{[2,0]} = q^2 X^2 + q^4 + \frac{1}{q^2 X^2} + \frac{q^2 + q^4}{q} + \frac{q^4 + 1}{q^2}
\]

\[
= q^2 (X^2 + 1 + \frac{1}{X^2}) + 1 \frac{X + 1}{q} + \frac{1}{q^4}
\]

i.e.

\[
\chi_{[2,0]} = q^2 \chi_{[2]} + q^{-1} \chi_{[1]} + q^{-4} \chi_{[0]}
\]

\[
\Rightarrow \quad 6 = 3_2 + 2_{-1} + 1_{-4}
\]
Once you have chosen a map there are 2 ways of implementing this map (in this case).

For X_n there are n ways of choosing this map.
Lecture 29

Braching rules

\[SU(3) = SU(2) \times U(1) \]

recap of lecture 28

Fugacity map

\[\begin{align*}
3 & \rightarrow 2_1 + 1_{-2} \\
5 & \rightarrow (3,1) + (1,2) \\
& \text{triplet of} \\
& \text{SU(3)} = \\
& \text{singlet under} \\
& \text{SU(2)} \\
& \text{doublet under SU(2)} \\
& \text{singlet under SU(3)} \\
& \text{2-d} \\
& \text{3-d}
\end{align*} \]

[Used to be popular For SM represetations]

\[\gamma \text{(singlet SU(3)}} \\
\text{doublet SU(2)} \]

[Cartan gens - trace zero]

[singlet carries U(1) charges - arbitrary normalization - only care e- charge some integer # times some value ⇒ deal w lattice for non-Abelian groups, though this is Abelian]

Character \[\chi_{(1,0,0,0)}^{SU(5)} = \chi_{(1,0,0,0)}^{SU(3)} \chi_{(0,0,0,0)}^{SU(2)} \chi_{(1,0,0,0)}^{SU(2)} \chi_{(0,0,0,0)}^{SU(2)} \chi_{(0,0,0,0)}^{SU(2)} \]

\[[1,0,0,0] \]

\[\frac{Y_1}{Y_2} + \frac{Z_1}{Z_2} + \frac{1}{Z_2} \]

\[\begin{align*}
& \text{SU(3) fugacities } Z_1, Z_2 \\
& \text{SU(2)} \quad \bigtimes \quad \gamma
\end{align*} \]

Pick a fugacity rep:

\[Y_4 = q^3, Y_3 = 0 \]

[Fundamental]

[Fundamental]

[Character]

Check:

\[\begin{align*}
[Y_4 : SU(5) - \text{Fundamental}] \\
[Y_3 : SU(5) - \text{Fundamental}] \\
[Z_2 : SU(3) - \text{Fundamental}] \\
[3 - 3rd rank anti-sym rep SU(5)] \\
\Rightarrow 3 \times \text{charge} \quad U(1) \text{ charge]
\end{align*} \]
\[
5 \rightarrow (3,1)_2 + (1,2)_3 \quad \text{(because } \overline{1} = 2)\]

[cf \(Y_4 \)-possible to decompose to SU(2) rep, i.e. \(X_Y = Y_4 \) as above \(\Rightarrow \) coherent]

[can tell how SU(5) decompose to reps of SU(3)]

[4d lattice SU(5)-different ways to choose sublattices also choose fugacities + natural basis, \(Y_1 \) correspond to fund. weight etc. decomp doesn't depend on fugacity maps]

10 \(\rightarrow \) \([0,1,0,0] \), \(SU(5) = (Y_2 + Y_3 Y_4 Y_5 + Y_4 Y_2 + Y_5 Y_2 Y_3 Y_4) \)

[2\(nd \) rank comm. rep \(SU(5) \)]

[\(1 \quad \nabla \quad \nabla \) \& comm. simple -add squares on the sym]

[10 monomials]

\[\begin{align*}
\frac{Y_2}{Y_3} + \frac{Y_3 Y_4}{Y_3} + \frac{Y_4 Y_2 Y_3}{Y_3} + \frac{Y_5 Y_2 Y_3}{Y_3} \\
\sqrt{q} \frac{Z_2}{Z^2} + \sqrt{q} \frac{Z_3}{Z^2} (\text{by taking AS terms of product } \chi_{[1,0,0,0]} \chi_{[3,0,0,2]})
\end{align*}\]

\[\frac{Y_2}{Y_3} \quad \frac{Y_3 Y_4}{Y_3} \quad \frac{Y_4 Y_2 Y_3}{Y_3} \quad \frac{Y_5 Y_2 Y_3}{Y_3} \]

\[\text{dim} = 3 + (3 \times 2) + 1 = 10\]

10 \(\rightarrow \) \((3,1)_2 + (3,2)_1 + (1,1)_6 \)

[just by writing down 1st term]

\[\left(\frac{1 \times Z_1}{q} \right) \text{ [this gives the } (3,2)_1 \text{ term]}\]

Interpretation:

\((3,2)_1 : \text{Fit naturally with LH quarks}\]

\((\overline{3},1)_4 : \quad \overline{\text{n---n---n---n---RH quarks}}\]

\((1,1)_6 : \text{take to predict massive particle not yet found} \quad \text{[or RH electron-singlet under both]}\]

[adjoint \(SU(5) \) contains adjoint \(SU(3) \) and \(SU(2) \)]

[leptons-singlet under \(SU(2) \) and doublet under \(SU(2) \)]

We have:

\[
\begin{align*}
U(N) & \supset U(n_2) \times U(n_2) \\
SO(N) & \supset SO(n_2) \times SO(n_2) \\
Sp(N) & \supset Sp(n_1) \times Sp(n_2)
\end{align*}
\]

[RANK: \(\frac{N-1}{2} \) \(n_2 = \frac{N-1}{2} \) \(1 \)]

\[
SU(N) \supset S(U(n_2) \times U(n_2)) \supset SU(n_1) \times SU(n_2) \times U(1)
\]

[Removing Cartan element prop to id (non-zero trace) on both sides]

Note: \(\text{can go to larger groups: } SO(10) \supset SU(5) \) see eq (6) \(E_6 \supset SO(10) \) above

\[\text{traceless: } \begin{align*}
3 \text{ weights with } q^4 = 12 \\
3 \times 2 \quad -1 \quad -1 \quad -1 \quad -q^4 = -1 \Rightarrow -6 \\
1 \quad -1 \quad -1 \quad -q^4 = -6 \Rightarrow -6
\end{align*}\]

[\(n \)-dim real vector space]

\[\text{[natural embedding]} \quad U \text{-complex vector space} \]

\[\text{SO} \text{-real vector space} \]

\[\text{Sp} \text{-2n dim real vector space} \]

[removing traceless subgroup in Cartan algebra]
G ⊆ H

[How find such subgroup?]

\[
SO(8) \supset SO(4) \times SO(4) = SU(2)^4
\]

rank: 4

4 + 1

[rule: given G, what are all possible subgroups?

e.g. can I embed E_6 inside E_7?]

\[
E_7 \supset E_6 \times SU(2) \leftarrow [\text{correct?}] \ [\text{No}]
\]

\[
E_7 \supset E_6 \times U(1)
\]

\[
E_7 \supset SO(12) \times SU(2)
\]

Consider the Dynkin diagram:

\[
\begin{array}{c}
\text{E}_6: o \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \equiv \equiv
\end{array}
\]

[rank]

[preserved in this decomposition]
Branching Rules:

\[G \supset H \quad \text{and write} \quad R_G = \sum_i R_{H,i} \quad \text{with fugacity maps} \]

We have:

\[U(N) \supset \prod_i U(n_i), \quad \text{with} \quad \sum_i n_i = N \]

\[SU(N) \supset U(1)^{K-1} \prod_{i=1}^K SU(n_i), \quad \text{idem} \]

\[SO(N) \supset \prod_i SO(n_i), \quad \text{idem} \]

\[Sp(N) \supset \prod_i Sp(n_i), \quad \text{idem} \]

Dynkin method: to compute the decomposition (for classical and exceptional groups) use extended Dynkin diagram (for affine Lie algebra):

add one node that has a scalar product with the node of the adjoint rep

Examples

B\(_n\):

\[\begin{array}{c}
\text{adj rep} \\
\text{(because dim adj = n+2)}
\end{array} \]

\[\Rightarrow \quad \hat{B}_n: \]

extended diagram (has \(n+1\) nodes)

D\(_n\):

\[\begin{array}{c}
\text{2nd rank AS} \\
\text{again is the adj}
\end{array} \]

\[\Rightarrow \quad \hat{D}_n: \]

\[\hat{A}_n: \]

\[\Rightarrow \hat{C}_n: \]

\sim \text{adj} = [2, 0, \ldots, 0]

1.
because for $\text{SO}(n)$, $\text{adj} \equiv 2^{\text{nd}}$ rank AS

for $\text{Sp}(n)$, $\text{adj} \equiv 2^{\text{nd}}$ rank Sym

and because it is $[2, 0, \ldots, 0]$, we will put 2 lines from the node corresponding to $[1, 0, \ldots, 0]$

Exceptionals

E_6:

```
  adj
```

E_7:

```
  adj
```

E_8:

```
  adj
```

G_2:

```
  adj
```

F_4:

```
  adj
```

Prescription: remove a node from the extended Dynkin diag \hat{G}

the remaining diag is a subgp of the original gp G

Example

\hat{D}_n gives by removing a node somewhere along the line

```
  o----o . o----o
  K nodes    n-K nodes
```

$\Rightarrow \text{D}_n \supset \text{D}_K \times \text{D}_{n-K}$

i.e. $\text{SO}(2n) \supset \text{SO}(2K) \times \text{SO}(2n-2K)$
Specific cases:

\[D_n \supset \text{SO}(2n-4) \times \text{SU}(2) \times \text{SU}(2) \quad \text{SO}(4) \]

Note that this method is not complete and useful mainly for exceptional cases.

- \(\hat{B}_n \) gives choice of \(\text{A}_n \) only \(\Rightarrow \) useless

- \(\hat{G}_2 \) gives \(\text{G}_2 \) the trivial answer

\[\text{A}_1 \times \text{A}_1 = \text{SU}(2) \times \text{SU}(2) \quad \text{(via o-o)} \]

\[\text{A}_2 = \text{SU}(3) \quad \text{(via o-o)} \]

So \(\text{SU}(2) \times \text{SU}(2) \subset \text{G}_2 \), \(\text{SU}(3) \subset \text{G}_2 \) (or \(\text{SO}(4) \))

- \(\hat{F}_4 \) gives \(\text{F}_4 \)

\[\text{A}_1 \times C_3 \equiv \text{SU}(2) \times \text{Sp}(1) \]

\[\text{A}_2 \times \text{A}_2 \equiv \text{SU}(3) \times \text{SU}(3) \]

\[\text{A}_3 \times \text{A}_1 \equiv \text{SU}(4) \times \text{SU}(2) \]

\[\text{B}_4 \equiv \text{SO}(9) \]

\(\hat{E}_8 \) (also called \(\text{E}_7 \)) gives \(\text{E}_8 \)

\[\text{A}_1 \times \text{E}_7 \]

\[\text{A}_2 \times \text{E}_6 \]

\[\text{A}_3 \times \text{D}_5 \equiv \text{SU}(4) \times \text{SO}(10) \equiv \text{SO}(6) \times \text{SO}(10) \]

\[\text{A}_4 \times \text{A}_4 = \text{SU}(5) \times \text{SU}(5) \quad \text{(because \(\text{A}_3 = \text{D}_5 \))} \]

\[\text{A}_1 \times \text{A}_1 \times \text{A}_5 \]

\[\text{A}_1 \times \text{A}_7 \]

\[\text{D}_8 \equiv \text{SO}(16) \]

\[\text{A}_8 \equiv \text{SU}(9) \]

So \(\text{A}_3 \times \text{D}_5 \) is not maximal (can embed it in another subgp)
\[E_8 \supset SU(5) \times SU(5) \]

\[248 \rightarrow \underbrace{(24,1) + (1,24)} + (5,\bar{5}) + (\bar{5},5) \]

not enough

\[\text{(fundamental + adj)} + (\quad) \]

still not enough

or \[+ (5,10) + (10,\bar{5}) \]

\[+ (5,10) + (\bar{5},10) \]

OK?

\[E_6 \text{ gives } E_6 \]

\[A_1 \times A_5 \quad \text{so } A_1 \times A_2 \times A_5 \text{ in } E_8 \]

\[A_2 \times A_2 \times A_2 \quad \text{not maximal because} \quad (A_1 \times A_5) \times A_2 \subset A_2 \times E_6 \subset E_8 \]

(and again the same)

For real rep of \(G \) of dim \(n \), we can embed it in \(SO(n) \)

\[G \supset SO(n) \]

\[n \leftarrow n \]

Example

\[SU(n) \subset SO(n^2 - 1) \quad \text{from the dim of the adj} \]

\[\text{adj} \leftarrow (n^2 - 1) \text{rep} \quad \text{to the rep of } SO(\text{dim adj}) \]

[Notes copied from board p.6->end here]
\[E_6 : \]
\[E_7 : \]
\[E_8 : \]
\[F_4 : \]
\[G_2 : \]
\[A_n : \]
\[B_n : \]

remove a node from the extended Dynkin diagram \(\hat{G} \), the remaining diagram is a subgroup of \(G \).

\[D_n : \]
\[D_n \supset D_k \times D_{n-k} \]
\[\text{SO}(2n) \supset \text{SO}(2k) \times \text{SO}(2n-2k) \]

\[B_n : \]
\[\text{SO}(2n+1) \supset \text{SO}(2k) \times \text{SO}(2n-2k+1) \]

\[G_2 \supset G_2 \]
\[\text{SO}(2n+1) \supset \text{SO}(2n) \]
\[\text{SU}(2) \times \text{SU}(2) \supset G_2 \]
\[\text{SU}(3) \subset G_2 \]
\[A_1 \times A_1 \]
\[A_2 \]
Branching Rules

\[F_4, A_2 \times C_3, A_2 \times A_2, A_3 \times A_2 \rightarrow B_4 \]

\[E_6 \rightarrow E_7 \]

\[\text{SO}(6) \rightarrow \text{SU}(4) \times \text{SO}(6) \]

\[E_6, A_1 \times E_7, A_2 \times E_6, A_3 \times D_5, A_4 \times A_4 \]

\[A_1 \times A_5, A_1 \times A_7, D_6, A_8 \rightarrow \text{not maximal} \]

\[\text{SO}(16) \subset E_8 \]

\[A_1 \times A_2 \times A_5 \subset A_2 \times E_6 \subset E_8 \]

Dynkin

\[E_8 \Rightarrow \text{SU}(5) \times \text{SU}(5) \]

\[248 \rightarrow (24, 1) + (1, 24) + (5, 10) + (10, 5) + (5, 10) + (5, 10) \]

\[E_6 \rightarrow \text{not maximal} \]

\[\Lambda = \sum n_i \Lambda_i \]

\[\{ n_i \} \]

\[E_6, A_1 \times A_5, A_2 \times A_2 \times A_2 \]

\[\text{SU}(3)^3 \subset E_6 \]

For a real representation of a group \(G \) of dimension \(n \):

\[G \subset \text{SO}(n) \]

Example:

\[\text{SU}(n) \subset \text{SO}(n^2 - 1) \]

\[n \leftarrow n \]

\[\text{adj} \leftarrow n^2 - 1 \]