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1. (i) Consider the set of matrices

H =


1 a c

0 1 b

0 0 1

 : a, b, c ∈ R

 .
Write down the defining conditions for a group. Show that H forms a group

under matrix multiplication. [4 marks]

(ii) Give the form of the Lie algebra h corresponding to the Lie group H.

Now consider the operators q̂, p̂ and ê = 1, satisfying the Heisenberg commu-

tation relations (with ~ = 1) [
q̂, p̂
]

= iê.

Show that the Lie algebra generated by the anti-Hermitian operators {iq̂, ip̂, iê}
is isomorphic to h. [5 marks]

(iii) Consider the set of matrices of the form

eX =

∞∑
n=0

1

n!
Xn where X ∈ h.

Show that the series eX terminates in a finite number of terms and hence

calculate eX explicitly. Show that
{

eX : X ∈ h
}

= H. In particular, given

X, Y ∈ h, find Z ∈ h such that

eXeY = eZ.

[5 marks]

(iv) Consider the set N ⊂ H given by

N =


1 0 2πn

0 1 0

0 0 1

 : n ∈ Z

 .
Show that N forms an abelian normal subgroup of H. [3 marks]

(v) We can define the quotient group using the equivalence relation

H/N =


1 a c

0 1 b

0 0 1

 : a, b, c ∈ R and c + 2πn ∼ c for n ∈ Z

 .
Discuss why the three-dimensional defining representation of H is not a rep-

resentation of H/N. Consider instead the unitary representation U of H on a

Hilbert space H given by

U(g) = eiαq̂+iβp̂+iγê.

Using results from the earlier parts of this question, argue that this is also a

representation of H/N. [3 marks]

[Total 20 marks]
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2. (i) Consider the matrix Lie algebra

g =
{
M ∈ sl(2n,C) : MTΩ + ΩM = 0

}
where Ω =

(
0 1
−1 0

)
and 1 is the n × n identity matrix.

Name any of the real Lie groups that have g as the corresponding complexified

Lie algebra. Writing M ∈ g as

M =

(
A B

C D

)
,

give the conditions on the component n×n matrices A, B, C and D and hence

show that the complex dimension of g is 2n2 + n. [3 marks]

(ii) Consider the set h of matrices M with B = C = 0 and

A = −D =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 .
Show that h forms an Abelian subalgebra of g. Argue that h is maximal, in the

sense that there are no elements in g that commute with all elements of h, yet

are not themselves in h. [3 marks]

(iii) Now focus on the case n = 2. Assuming h ⊂ g forms the Cartan subalgebra,

find the set of roots {αi} of g, identifying an element eαi ∈ g with root αi in

each case. Identify two fundamental roots, which we will label α1 and α2.

[6 marks]

(iv) Using the standard inner product on X ∈ h given by the trace

〈X,X〉 = 1
2

trX2 = λ21 + λ22 + · · ·+ λ2n

draw the root diagram and identify the long and short roots. Write down the

Cartan matrix and hence the Dynkin diagram for g. [5 marks]

(v) There are two other simple Lie algebras of rank two. Write down the Dynkin

diagrams and Cartan matrices for these other two algebras. Hence draw the

corresponding root diagrams. [3 marks]

[Total 20 marks]

3 Please go to the next page



3. Consider the first generation of quarks and leptons. Under the SU(2)× U(1) elec-

troweak symmetry the left- and right-chirality states transform as

SU(2) doublets:

(
νL
e−L

)
Y = −1,

(
uL
dL

)
Y = 1

3
,

SU(2) singlets: e−R Y = −2, uR Y = 4
3
, dR Y = −2

3
,

where Y denotes the U(1) charge.

(i) Show that a general element of SU(2) can be parametrised as

a =

(
x −y ∗
y x∗

)
∈ SU(2) where x, y ∈ C and |x |2 + |y |2 = 1.

The standard model doublets transform in the two-dimensional “defining” rep-

resentation ρ(2). What is ρ(2)(a) for a ∈ SU(2) in the form above? [3 marks]

(ii) For a given representation ρ : G → GL(n,C) one defines the conjugate repre-

sentation ρ∗ by

ρ∗(a) = [ρ(a)]∗ for all a ∈ G,

where A∗ is the complex conjugate of the matrix A. Show that ρ∗ defines a

representation.

Show that ρ∗(2) is isomorphic to ρ(2). Hence derive how the conjugate quarks

and leptons (e+, ν̄, ū and d̄) transform under SU(2)× U(1). [4 marks]

(iii) Consider the Higgs scalar field SU(2) doublet

Φ =

(
φ+

φ0

)
with Y = 1, and assume it gets a vacuum expectation value (vev) with φ+ = 0

and φ0 = V/
√

2 6= 0.

Show that there is a U(1) subgroup of SU(2)× U(1) that leaves the vev of Φ

invariant. Find the charges of the quarks and leptons under this symmetry and

comment on its physical meaning. [5 marks]

(iv) Show that one can unify the e+R , ν̄R and dR states into a single module trans-

forming as the defining representation of SU(5). In particular, identify how the

Standard Model SU(3)× SU(2)× U(1) group embeds in SU(5). [4 marks]

(v) Define the adjoint representation of a Lie group. Consider a scalar field Φ̃ that

transforms in the adjoint representation of SU(5). Show that one can find

a (diagonal) vev of Φ̃ which is invariant under the standard model subgroup

SU(3)× SU(2)× U(1). [4 marks]

[Total 20 marks]
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4. (i) For sl(2,C) the fundamental root is α = 2w where w is the fundamental

weight. Draw the weight lattice and identify the set of weights corresponding

to the module Vn with highest weight λ = nw .

What is the dimension of this representation? What highest weight λ corre-

sponds to the defining module V ? In terms of tensor products of V , to what

tensors do the other highest-weight modules correspond? [4 marks]

(ii) Show that the character of the module Vn is given by

char Vn =
xn+1 − x−n−1

x − x−1 .

Hence show that

Vn ⊗ V1 = Vn−1 ⊕ Vn+1.

[3 marks]

(iii) For sl(3,C) the fundamental roots are α1 = 2w1−w2 and α2 = 2w2−w1 where

the fundamental weights w1 and w2 are of equal length and are separated by

an angle of 1
3
π.

Draw the weight lattice and identify the set of weights corresponding to the

modules Vw1 and Vw2 with highest weights λ = w1 and λ = w2 respectively.

In each case show on the weight diagram how the sl(3,C) module decomposes

into sl(2,C) modules for the two sl(2,C) algebras generated by α1 and α2.

[4 marks]

(iv) Using the characters of Vw1 and Vw2 argue that

Vw1 ⊗ Vw1 = V2w1 ⊕ Vw2
Vw1 ⊗ Vw2 = Vw1+w2 ⊕ V0.

Draw the weight diagrams for V2w1 and Vw1+w2 and indicate the degeneracies

of the weight spaces. [5 marks]

(v) Draw the weight diagram for Vnw1. Assuming that all the weight spaces have

degeneracy one, show that under the sl(2,C) algebra generated by α1 it de-

composes as

Vnw1 = Vn ⊕ Vn−1 ⊕ · · · ⊕ V1 ⊕ V0.

Hence calculate the dimension of Vnw1. In terms of tensor products of Vw1 to

what tensor does Vnw1 correspond? [4 marks]

[Total 20 marks]
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