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1.

(i)

(if)

(iii)

(iv)

Consider the set of matrices

Write down the defining conditions for a group. Show that H forms a group
under matrix multiplication. [4 marks]

Give the form of the Lie algebra b corresponding to the Lie group H.
Now consider the operators g, p and é = 1, satisfying the Heisenberg commu-

tation relations (with i = 1)

[6.p] =ie.
Show that the Lie algebra generated by the anti-Hermitian operators {iq, ip, i€}
is isomorphic to b. [5 marks]

Consider the set of matrices of the form
=1
X _ —yn
X=) X" where Xe€b.
n=0
Show that the series €X terminates in a finite number of terms and hence

calculate €X explicitly. Show that {eX: X € h} = H. In particular, given
X,Y €, find Z € b such that

eXo¥ — o7
[5 marks]
Consider the set N C H given by
1 0 2mn
N = 01 O neZ
0 0 1
Show that N forms an abelian normal subgroup of H. [3 marks]
We can define the quotient group using the equivalence relation
1 a c
H/N = 01 bl:abceRandc+2nn~cforneZ
0 01

Discuss why the three-dimensional defining representation of H is not a rep-
resentation of H/N. Consider instead the unitary representation U of H on a
Hilbert space H given by

U(g) — elaq+|ﬁp+rye.

Using results from the earlier parts of this question, argue that this is also a
representation of H/N. [3 marks]

[Total 20 marks]
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2.

(i)

(it)

(iii)

(V)

Consider the matrix Lie algebra
T 0 1
g={Mesl(2n,C): MTQ+ QM =0} where Q= 10

and 1 is the n x n identity matrix.
Name any of the real Lie groups that have g as the corresponding complexified

Lie algebra. Writing M € g as
A B
M=(c o)

give the conditions on the component nx n matrices A, B, C and D and hence
show that the complex dimension of g is 2n + n. [3 marks]

Consider the set h of matrices M with B = C = 0 and

A 0 .00
o
0 0 ... X\

Show that § forms an Abelian subalgebra of g. Argue that b is maximal, in the
sense that there are no elements in g that commute with all elements of §, yet
are not themselves in b. [3 marks]

Now focus on the case n = 2. Assuming b C g forms the Cartan subalgebra,
find the set of roots {a;} of g, identifying an element e, € g with root «; in
each case. Identify two fundamental roots, which we will label a7 and as.

[6 marks]

Using the standard inner product on X € b given by the trace
X, X)y=2tr XZ=X+ X+ + X
draw the root diagram and identify the long and short roots. Write down the

Cartan matrix and hence the Dynkin diagram for g. [5 marks]

There are two other simple Lie algebras of rank two. Write down the Dynkin
diagrams and Cartan matrices for these other two algebras. Hence draw the
corresponding root diagrams. [3 marks]

[Total 20 marks]
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3. Consider the first generation of quarks and leptons. Under the SU(2) x U(1) elec-
troweak symmetry the left- and right-chirality states transform as

SU(2) doublets: (%) Y =-1, (UL) Y
e di
SU(2) singlets: er Y =-2 ur Y

i
d

Wl Wik

de Y = -3,

where Y denotes the U(1) charge.

(i)

(it)

(iii)

Show that a general element of SU(2) can be parametrised as
_(x =y 2 2 _
a= (y o ) € SU(2) where x,y € C and |x|* + |y|* = 1.

The standard model doublets transform in the two-dimensional “defining” rep-
resentation p2). What is p(py(a) for a € SU(2) in the form above?  [3 marks]

For a given representation p : G — GL(n, C) one defines the conjugate repre-
sentation p* by

p*(a) = [p(a)]" for all a € G,

where A* is the complex conjugate of the matrix A. Show that p* defines a
representation.

Show that p>(k2) Is isomorphic to p(»). Hence derive how the conjugate quarks
and leptons (e™, D, @ and d) transform under SU(2) x U(1). [4 marks]

Consider the Higgs scalar field SU(2) doublet

ot
o (%
with Y = 1, and assume it gets a vacuum expectation value (vev) with ¢t =0
and ¢° = V/v/2 # 0.
Show that there is a U(1) subgroup of SU(2) x U(1) that leaves the vev of ®

invariant. Find the charges of the quarks and leptons under this symmetry and
comment on its physical meaning. [5 marks]

Show that one can unify the e;, Ur and dr states into a single module trans-
forming as the defining representation of SU(5). In particular, identify how the
Standard Model SU(3) x SU(2) x U(1) group embeds in SU(5).  [4 marks]

Define the adjoint representation of a Lie group. Consider a scalar field ® that
transforms in the adjoint representation of SU(5). Show that one can find
a (diagonal) vev of ® which is invariant under the standard model subgroup
SU(3) x SU(2) x U(1). [4 marks]

[Total 20 marks]
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4,

(i)

(it)

(iii)

(iv)

(v)

For s/(2,C) the fundamental root is @ = 2w where w is the fundamental
weight. Draw the weight lattice and identify the set of weights corresponding
to the module Vj, with highest weight A = nw.

What is the dimension of this representation? \What highest weight X corre-
sponds to the defining module V7 In terms of tensor products of V/, to what
tensors do the other highest-weight modules correspond? [4 marks]

Show that the character of the module V, is given by

1 —n—1
x"M— x
charV, = ——M——

X —x"1

Hence show that
VoW =V,_1 @ Vg

[3 marks]

For s/(3, C) the fundamental roots are a; = 2wy —w, and a, = 2w, — wy where
the fundamental weights w; and w», are of equal length and are separated by
an angle of .

Draw the weight lattice and identify the set of weights corresponding to the
modules V,,, and V,, with highest weights A = wy and A = w, respectively.

In each case show on the weight diagram how the s/(3, C) module decomposes
into s/(2, C) modules for the two s/(2, C) algebras generated by a; and ..
[4 marks]

Using the characters of V,,, and V,,, argue that

VW]_ ® VW1 — \/2W1 @ VWQ

VW1 ® VWQ = Vwi4+ws @ \/O
Draw the weight diagrams for \,,, and V,,, 1., and indicate the degeneracies
of the weight spaces. [5 marks]

Draw the weight diagram for V,,,,. Assuming that all the weight spaces have
degeneracy one, show that under the s/(2,C) algebra generated by a; it de-
composes as

Vi, =V & Vo1 @ @& V1 & W

Hence calculate the dimension of V,,,. In terms of tensor products of V,,, to
what tensor does V,,,, correspond? [4 marks]

[Total 20 marks]
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