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1. Consider the set of matrices

O(p,q) ={ANe GL(p+ q,R) : ATnA =n}, where n= (_Olq f) ,
p

and 1, is the n x n identity matrix.

(i)

(it)

(iii)

Give the definition of an abstract group and show that O(p, g) forms a group
under matrix multiplication.

For the case of the Lorentz group O(3,1) define SO(3,1), O*(3,1) and
SO*(3,1) and show that SO(3,1) is a subgroup of O(3,1). Which of these
groups are connected manifolds? Identify for each group whether it contains
parity P, time-reversal T and/or inversion PT transformations. [6 marks]

Consider the six 4 x 4 matrices X,p, labelled by a pair of antisymmetric indices
ab where a,b =0, 1, 2, 3, with components

(Xab)uu = 55771):/ - 6gnau- (1)

Show that they form a basis for s0(3, 1) and calculate the structure constants
in this basis. [5 marks]

The Poincaré group of symmetries x* — A¥, x” + a* can be written as

ISO(3,1) = {A = (#ﬁ) € GL(5,R) : A € SO(3, 1)} .

Identify the translation subgroup T C /SO(3,1) and give a basis of 5 x 5
matrices Y, for the corresponding Lie algebra t C iso(3,1). Using the X, basis
for the s0(3,1) subalgebra calculate the structure constants of iso(3,1) and
show that t is an ideal. [4 marks]

Consider the conformal group SO(4,2), with a basis X;; for s0(4,2) of the
form (1) but now as 6 x 6 matrices so the components run over u,v =
—1,0,1,2,3,4, and with labels also running over 1, = —1,0,1, 2,3, 4.

Show that X, = )~<ab and Y, = )~<_13 + )~<4a with a, b = 0, 1, 2, 3 generate an
i50(3,1) C s0(4,2) subalgebra.

The conformal group also includes a scaling symmetry x* — Ax*. By consid-
ering the commutators of the generator of this action with the generators of
the Poincaré group acting on x*, find which matrix )~<,-J- generates the scaling
symmetry. [5 marks]

[Total 20 marks]
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2.

(i)

(it)

(iii)

(iv)

Consider the matrix Lie algebra
- 0 1
g={Mesl(2n,C): MTQ+QM =0} where Q= 10

and 1 is the n x n identity matrix.
Name any of the real Lie groups that have g as the corresponding complexified

Lie algebra. Writing M € g as
A B
M=(c o)

give the conditions on the component nx n matrices A, B, C and D and hence
show that the complex dimension of g is 2n + n. [3 marks]

Consider the set h of matrices M with B = C = 0 and

A 0 .00
o
0 0 ... X\

Show that § forms an Abelian subalgebra of g. Argue that b is maximal, in the
sense that there are no elements in g that commute with all elements of §, yet
are not themselves in b. [3 marks]

Now focus on the case n = 2. Assuming b C g forms the Cartan subalgebra,
find the set of roots {a;} of g, identifying an element e, € g with root «; in
each case. Identify two fundamental roots. [6 marks]

Using the standard inner product on X € b given by the trace
(X, X) = 3tr X? = X3+ 23,
draw the root diagram and identify the long and short roots. Write down the

Cartan matrix and hence the Dynkin diagram for g. [5 marks]

There are two other simple Lie algebras of rank two. Write down the Dynkin
diagrams and Cartan matrices for these other two algebras. Hence draw the
corresponding root diagrams. [3 marks]

[Total 20 marks]
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3.

(i)

(it)

What is meant by a representation p of a group G? What is an irreducible
representation?

The dual p* and conjugate p representations are defined by

pr(a)=p(ah)", p(a) = [p(a)]",

for all a € G, where [p(a)]* is the complex conjugate of the matrix p(a). Show
that p* and p are indeed representations.

How is the defining representation p(, of SU(n) defined? Show that in this
case p(,) ~ P(n)- [5 marks]

Let V' be the vector space on which p(,) acts, so that, given v/ € V, we have
Vi v = pla) v

Discuss briefly how a given Young tableau encodes an irreducible representation
of SU(n) as the action on a tensor U * eV ® - - @ V.
The dual representation pz‘n) acts on w; € V*. Show that it is equivalent to the

representation acting on tensors v~ with (n — 1) antisymmetric indices.
[4 marks]

Define the adjoint representation for an arbitrary matrix Lie group. Show that
for SU(n) it can be regarded as acting on tensors X'; € V ® V*. How is it
denoted in terms of Young tableaux? [3 marks]

In the Georgi—Glashow SU(5) Grand Unified Theory the right-handed positron,
anti-neutrino, and down quark are combined as a five-component vector

ot
Vr ot dg
Qr=|dt |, where (_R> hasY =1, d3 | has Y = —2/3,
q2 Vr d3
R R
d?

where Y is the U(1) hypercharge.
Identify how the Standard Model SU(3)xSU(2)xU(1) group embeds in SU(5).

The Higgs field ® that breaks SU(5) to the standard model gauge group trans-
forms in the adjoint representation. Give the appropriate (diagonal) vev for ®
that leads to this breaking. [4 marks]

Show that the SU(5) gauge fields decompose into the gauge fields of the stan-
dard model together with 12 new vector bosons. How do these new particles
transform under SU(3) x SU(2) x U(1)? [4 marks]

[Total 20 marks]
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4,

(i)

(it)

(iii)

(iv)

(v)

Let h be a Cartan subalgebra of a semi-simple Lie algebra g, and let s4(v)
denote the reflection of v € h* in the plane orthogonal to the root o, defined
using the invariant inner product (-, -).

Show that for fundamental roots a; (no summation on /)
S, () = 0 — Ajjj

where A;; = 2(a;, ) /{aj, a;) is the Cartan matrix. [3 marks]
Give the Cartan matrix for su(3)c =~ sl(3,C) and the relation between the
fundamental weights w; and roots «;. Sketch the root space.

Using the fundamental weights as a basis, so that v = aw; + bw, is denoted
v = (), show that sy, and s,, are given by the matrices

~1 0 11
50‘1:<1 1>' 5"‘2:<o —1)'
[4 marks]

Hence give the matrices corresponding to each element of the Weyl group W
of su(3)c, and write out its multiplication table. Show that it is isomorphic to
S3, the symmetry group of an equilateral triangle. [4 marks]

Weyl's character formula for a module V4 with highest weight X reads

_ Dosewldets)e(s- (A +p))
 Yewldets)e(s-p)

where p =) . wj, s- v is the action of the Weyl group element s on the vector
v € b*, and, if v =), njw;, then e(v) is the monomial e(x) = x"x3% - - - x/".

Show that for su(3)c the character is given by

p+1_g+1 1 X{Hl X{7+q+2 X5+1 Xp+a+2
X1 X — T T PTar2 T + S pFI
_ > 2 1 1
char W (x1, %) = - -
X — 4% -2 2
2750 T e "X x
when X = pw; + gws. [5 marks]

Taking x; = x> = 1 in the expression for the character one finds
dimVa=3(p+1)(g+1)(p+q+2).

Identify the class of Young tableaux relevant to representations of su(3)c. By
calculating the dimension of the corresponding representation identify which
Young tableau corresponds to V4. [4 marks]

[Total 20 marks]
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