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1. Consider the set of matrices

O(p, q) =
{

Λ ∈ GL(p + q,R) : ΛTηΛ = η
}
, where η =

(
−1q 0

0 1p

)
,

and 1n is the n × n identity matrix.

(i) Give the definition of an abstract group and show that O(p, q) forms a group

under matrix multiplication.

For the case of the Lorentz group O(3, 1) define SO(3, 1), O+(3, 1) and

SO+(3, 1) and show that SO(3, 1) is a subgroup of O(3, 1). Which of these

groups are connected manifolds? Identify for each group whether it contains

parity P , time-reversal T and/or inversion PT transformations. [6 marks]

(ii) Consider the six 4× 4 matrices Xab, labelled by a pair of antisymmetric indices

ab where a, b = 0, 1, 2, 3, with components

(Xab)µν = δµa ηbν − δ
µ
bηaν. (1)

Show that they form a basis for so(3, 1) and calculate the structure constants

in this basis. [5 marks]

(iii) The Poincaré group of symmetries xµ 7→ Λµνx
ν + aµ can be written as

ISO(3, 1) =

{
A =

(
Λ a

0 1

)
∈ GL(5,R) : Λ ∈ SO(3, 1)

}
.

Identify the translation subgroup T ⊂ ISO(3, 1) and give a basis of 5 × 5

matrices Ya for the corresponding Lie algebra t ⊂ iso(3, 1). Using the Xab basis

for the so(3, 1) subalgebra calculate the structure constants of iso(3, 1) and

show that t is an ideal. [4 marks]

(iv) Consider the conformal group SO(4, 2), with a basis X̃i j for so(4, 2) of the

form (1) but now as 6 × 6 matrices so the components run over µ, ν =

−1, 0, 1, 2, 3, 4, and with labels also running over i , j = −1, 0, 1, 2, 3, 4.

Show that Xab = X̃ab and Ya = X̃−1a + X̃4a with a, b = 0, 1, 2, 3 generate an

iso(3, 1) ⊂ so(4, 2) subalgebra.

The conformal group also includes a scaling symmetry xµ → λxµ. By consid-

ering the commutators of the generator of this action with the generators of

the Poincaré group acting on xµ, find which matrix X̃i j generates the scaling

symmetry. [5 marks]

[Total 20 marks]
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2. (i) Consider the matrix Lie algebra

g =
{
M ∈ sl(2n,C) : MTΩ + ΩM = 0

}
where Ω =

(
0 1
−1 0

)
and 1 is the n × n identity matrix.

Name any of the real Lie groups that have g as the corresponding complexified

Lie algebra. Writing M ∈ g as

M =

(
A B

C D

)
,

give the conditions on the component n×n matrices A, B, C and D and hence

show that the complex dimension of g is 2n2 + n. [3 marks]

(ii) Consider the set h of matrices M with B = C = 0 and

A = −D =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 .
Show that h forms an Abelian subalgebra of g. Argue that h is maximal, in the

sense that there are no elements in g that commute with all elements of h, yet

are not themselves in h. [3 marks]

(iii) Now focus on the case n = 2. Assuming h ⊂ g forms the Cartan subalgebra,

find the set of roots {αi} of g, identifying an element eαi ∈ g with root αi in

each case. Identify two fundamental roots. [6 marks]

(iv) Using the standard inner product on X ∈ h given by the trace

〈X,X〉 = 1
2

trX2 = λ21 + λ22,

draw the root diagram and identify the long and short roots. Write down the

Cartan matrix and hence the Dynkin diagram for g. [5 marks]

(v) There are two other simple Lie algebras of rank two. Write down the Dynkin

diagrams and Cartan matrices for these other two algebras. Hence draw the

corresponding root diagrams. [3 marks]

[Total 20 marks]

3 Please go to the next page



3. (i) What is meant by a representation ρ of a group G? What is an irreducible

representation?

The dual ρ∗ and conjugate ρ̄ representations are defined by

ρ∗(a) = ρ(a−1)T , ρ̄(a) = [ρ(a)]∗,

for all a ∈ G, where [ρ(a)]∗ is the complex conjugate of the matrix ρ(a). Show

that ρ∗ and ρ̄ are indeed representations.

How is the defining representation ρ(n) of SU(n) defined? Show that in this

case ρ∗(n) ∼ ρ̄(n). [5 marks]

(ii) Let V be the vector space on which ρ(n) acts, so that, given v i ∈ V , we have

v i 7→ v ′i = ρ(a)i jv
j .

Discuss briefly how a given Young tableau encodes an irreducible representation

of SU(n) as the action on a tensor u i1...ip ∈ V ⊗ · · · ⊗ V .

The dual representation ρ∗(n) acts on wi ∈ V ∗. Show that it is equivalent to the

representation acting on tensors u i1...in−1 with (n − 1) antisymmetric indices.

[4 marks]

(iii) Define the adjoint representation for an arbitrary matrix Lie group. Show that

for SU(n) it can be regarded as acting on tensors X i
j ∈ V ⊗ V ∗. How is it

denoted in terms of Young tableaux? [3 marks]

(iv) In the Georgi–Glashow SU(5) Grand Unified Theory the right-handed positron,

anti-neutrino, and down quark are combined as a five-component vector

QR =


e+R
ν̄R
d1R
d2R
d3R

 , where

(
e+R
ν̄R

)
has Y = 1,

d1Rd2R
d3R

 has Y = −2/3,

where Y is the U(1) hypercharge.

Identify how the Standard Model SU(3)×SU(2)×U(1) group embeds in SU(5).

The Higgs field Φ that breaks SU(5) to the standard model gauge group trans-

forms in the adjoint representation. Give the appropriate (diagonal) vev for Φ

that leads to this breaking. [4 marks]

(v) Show that the SU(5) gauge fields decompose into the gauge fields of the stan-

dard model together with 12 new vector bosons. How do these new particles

transform under SU(3)× SU(2)× U(1)? [4 marks]

[Total 20 marks]
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4. (i) Let h be a Cartan subalgebra of a semi-simple Lie algebra g, and let sα(v)

denote the reflection of v ∈ h∗ in the plane orthogonal to the root α, defined

using the invariant inner product 〈 · , · 〉.
Show that for fundamental roots αi (no summation on i)

sαi (αj) = αj − Ai jαi

where Ai j = 2〈αi , αj〉/〈αi , αi〉 is the Cartan matrix. [3 marks]

(ii) Give the Cartan matrix for su(3)C ' sl(3,C) and the relation between the

fundamental weights wi and roots αi . Sketch the root space.

Using the fundamental weights as a basis, so that v = aw1 + bw2 is denoted

v = ( ab ), show that sα1 and sα2 are given by the matrices

sα1 =

(
−1 0

1 1

)
, sα2 =

(
1 1

0 −1

)
.

[4 marks]

(iii) Hence give the matrices corresponding to each element of the Weyl group W

of su(3)C, and write out its multiplication table. Show that it is isomorphic to

S3, the symmetry group of an equilateral triangle. [4 marks]

(iv) Weyl’s character formula for a module Vλ with highest weight λ reads

char Vλ(x1, . . . , xr) =

∑
s∈W (det s) e(s · (λ+ ρ))∑

s∈W (det s) e(s · ρ)
,

where ρ =
∑

i ωi , s · v is the action of the Weyl group element s on the vector

v ∈ h∗, and, if v =
∑

i niωi , then e(v) is the monomial e(x) = xn11 x
n2
2 · · · xnrr .

Show that for su(3)C the character is given by

char Vλ(x1, x2) =
xp+11 xq+12 − 1

xq+11 xp+12

+
xq+11

xp+q+22

− xp+q+21

xq+12

+
xp+12

xp+q+21

− xp+q+22

xp+11

x1x2 − 1
x1x2

+ x1
x22
− x21

x2
+ x2

x21
− x22

x1

,

when λ = pw1 + qw2. [5 marks]

(v) Taking x1 = x2 = 1 in the expression for the character one finds

dim Vλ = 1
2

(p + 1)(q + 1)(p + q + 2).

Identify the class of Young tableaux relevant to representations of su(3)C. By

calculating the dimension of the corresponding representation identify which

Young tableau corresponds to Vλ. [4 marks]

[Total 20 marks]
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