1. (a) Consider the group of symmetries of an equilateral triangle but now including
reflections. This is known as S_3, the symmetric group of order 3. It has 6
elements: the three in \mathbb{Z}_3 plus three reflections. Write out the multiplication
table. Is P_3 abelian? What are its subgroups?

(b) Consider the set \mathbb{Z} of positive and negative integers. Does this form a group
under (a) addition, (b) multiplication?

(c) Show that the set of matrices

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R}, a > 0 \right\}$$

forms a group under matrix multiplication. Is it abelian, finite? Can you
identify some of its subgroups?

(d) Show that $O(n)$ and $SO(n)$ form groups. Show that if $M \in O(n)$ then $\det M =
\pm 1$ and hence $\dim_{\mathbb{R}} SO(n) = \dim_{\mathbb{R}} O(n)$. Consider $O(2)$. Write down explicit
expressions for $M \in O(2)$ for $\det M = 1$ and $\det M = -1$. Show that the
latter matrices correspond to reflections.

2. (a) We have the definition that given two groups G and H the product group
$G \times H$ is the set of pairs of element $G \times H = \{(a, \alpha) : a \in G, \alpha \in H\}$ with the
product

$$(a, \alpha)(b, \beta) = (ab, \alpha\beta)$$

Show that the product group $G \times H$ satisfies the conditions required of a group.

(b) Show that every subgroup of an abelian group is normal.

(c) Let a be an element of G and $H \subset G$ be a subgroup. One defines the left and
right cosets as the sets of elements

$$aH = \{ah : h \in H\}, \quad Ha = \{ha : h \in H\},$$

Show that if H is normal then $aH = Ha$ for all $a \in G$. One defines the product
of two subsets $S, T \subset G$ by

$$ST = \{st : s \in S \text{ and } t \in T\}$$

Show that if H is normal then the set of left cosets $\{aH\}$ forms a group under
this product. (This group is called the quotient group G/H.)

3. Consider the finite groups of order n, that is, with n elements. The list different
groups of order n is

- $n = 2$ \(\mathbb{Z}_2 \)
- $n = 3$ \(\mathbb{Z}_3 \)
- $n = 4$ \(\mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2 \)
- $n = 5$ \(\mathbb{Z}_5 \)
- $n = 6$ \(\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3, S_3 \)
- $n = 7$ \(\mathbb{Z}_7 \)
- $n = 8$ \(\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \text{Dih}_4, \text{Dic}_2 \)

(a) Show that \(\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \). More generally show that \(\mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq} \) if only if \(p \) and \(q \) are coprime.

(b) The dihedral group \(\text{Dih}_n \) is the full symmetry group of a regular \(n \)-sided polygon (rotations and reflections). Show that \(\text{Dih}_4 \) has \(\mathbb{Z}_4 \) and \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) as subgroups.

(c) The dicyclic group \(\text{Dic}_2 \) is the group formed by the set of quaternions

\[\{ \pm 1, \pm i, \pm j, \pm k \} \]

under multiplication. Show that it has \(\mathbb{Z}_4 \) and \(\mathbb{Z}_2 \) as subgroups and that both these subgroups are normal.

(d) Calculate the left cosets for the \(\mathbb{Z}_2 \) subgroup of \(\text{Dic}_2 \). Form the quotient group \(\text{Dic}_2/\mathbb{Z}_2 \) and show that it is isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \). Do the same for the \(\mathbb{Z}_4 \) subgroup and show that \(\text{Dic}_2/\mathbb{Z}_4 \cong \mathbb{Z}_2 \). (This is a general property of the dicyclic groups: they all have a normal \(\mathbb{Z}_{2n} \) subgroup such that \(\text{Dic}_n/\mathbb{Z}_{2n} \cong \mathbb{Z}_2 \). Hence the term “dicyclic”.)

4. Consider the matrix group

\[G = \left\{ \begin{pmatrix} e^{it} & 0 \\ 0 & e^{iat} \end{pmatrix} : t \in \mathbb{R} \right\} \]

where \(a \) is irrational. Find a sequence of real numbers \(t_n \) such that the corresponding matrices converge to minus the identity matrix \(-I_2\). Hence prove that \(G \) is not a matrix Lie group.