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1. Note: in this question we do not use natural units so c and ~ are not equal to one.
Consider a ring of N identical balls, all of mass m. In equilibrium, balls lie equally

spread around the ring with a distance a between nearest neighbours. The Hamil-

tonian operator for the normal modes may be written as

Ĥ =
∑
k

[
1

2m
P̂−k P̂k +

mω2k
2

Û−k Ûk

]
. (1)

Wavenumbers are labelled k , p, q etc. Sums over wavenumbers, such as
∑

k , are

taken over all allowed wavenumbers and are symmetric (that is if a value k is present

in the sum then the value −k is also in the sum). You need not consider the

k = 0 mode explicitly. For a normal mode of wave number k , Ûk is the hermitian

position operator for that mode (with units of length), and P̂k is the hermitian

momentum operator (with units of momentum). The dispersion relation is ωk =

|
√

4ω2 sin2(ka/2) + Ω2| where ω and Ω are both fixed characteristic frequencies.

The operators Ûk and P̂k satisfy

Û†k = Û−k , P̂ †k = P̂−k , [Ûp, P̂q] = i~δp,−q , [Ûp, Ûq] = 0 , [P̂p, P̂q] = 0 . (2)

(i) Show that `k = (~/mωk)1/2 has units of length.

Annihilation operators may be defined as

âk =

√
mωk
2~

(
Ûk +

i

mωk
P̂k

)
. (3)

What are the units of the annihilation operator?

Prove that this annihilation operator and its hermitian conjugate satisfy the

commutation relations [âp, â
†
q] = δp,q, [âp, âq] = 0 and [â†p, â

†
q] = 0.

[10 marks]

(ii) Show that the Hamiltonian Ĥ of (1) may be rewritten as

Ĥ =
1

2

∑
k

~ωk
(
â†k âk + âk â

†
k

)
. (4)

Hint: you may start from (4) and work towards (1). [10 marks]

(iii) The Hamiltonian for a single scalar relativistic field φ̂ in one spatial dimension

with conjugate momentum operator Π̂ is

Ĥ =
1

2

∫
dx

(Π̂(t, x)
)2

+ c2

(
∂φ̂(t, x)

∂x

)2
+
M2c4

~2
(φ̂(t, x))2

 . (5)

By writing φ̂(t, x) = (2π)−1
∫
dk e ikx φ̂(t, k), show how to match the φ̂ terms

with the Û terms of (1) in the limit a→ 0. You may ignore the Π̂ and P̂ terms.

As part of your answer you must express c and M from (5) in terms of a, ω

and Ω of (1) such that the dimensions are compatible. [10 marks]

[Total 30 marks]
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2. Consider a single real scalar field operator φ̂(x) in a non-interacting theory. We will

work in the Heisenberg picture (which is equal here to the Interaction picture) so

φ̂(x) is given in (17) of the “Useful Definitions” section at the end of this exam

paper.

(i) Show that the commutation relation [φ̂(x), φ̂(y)] at arbitrary spacetime points

x and y may be written as

[φ̂(x), φ̂(y)] =

∫
d3p

(2π)3
1

2ω(p)

(
e−ip(x−y) − e+ip(x−y)

)
. (6)

The conjugate momentum field π̂(x) may be defined as π̂(x) = ∂φ̂(x)/∂t

where t is the time coordinate of the four-vector xµ. By applying time deriva-

tives directly to the expression (6) for [φ̂(x), φ̂(y)], or otherwise, find similar

expressions for

(a) [φ̂(x), π̂(y)],

(b) [π̂(x), π̂(y)],

in terms of integrals over a three-momentum p involving x , y and ω(p).

[12 marks]

(ii) State the Equal Time Commutation Relations for the field φ̂ and its conjugate

momentum π̂.

Show that the real field φ̂ and its conjugate momentum π̂ satisfy the Equal

Time Commutation Relations using the expressions derived in part (i).

[6 marks]

(iii) The retarded propagator, ∆R(x), for a free real scalar field of mass m may be

written as

∆R(x) =

∫
d4p

(2π)4
e−ip0t+ip·x

i

(p0 + i ε)2 − p2 −m2 , (7)

where ε is a positive infinitesimal real number. By performing the p0 integration,

express this in terms of Heaviside functions of time, such as θ(x0), and an

integral over a three-momentum p involving x and ω(p).

Hence find a relationship between the retarded propagator ∆R(x) and one of

the three commutators found in part (i) of this question. [12 marks]

[Total 30 marks]
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3. A real scalar field operator φ̂(x) is split into two arbitrary parts,

φ̂(x) = φ̂+(x) + φ̂−(x) . (8)

(i) Define normal ordering in terms of the arbitrary split of this field.

Define time ordering.

Define a contraction ∆(x − y) = φ̂(x)φ̂(y).

State Wick’s theorem. [10 marks]

(ii) In the following φ̂(i) ≡ φ̂(xi).

Assume that
[
φ̂(j)+, φ̂(i)+

]
=
[
φ̂(j)−, φ̂(i)−

]
= 0. This ensures that the con-

traction, all normal-ordered products and all time-ordered products are invariant

under interchange of fields, i.e.

φ̂(1)φ̂(2) = φ̂(2)φ̂(1) (9)

T
(
φ̂(1)φ̂(2) . . . φ̂(n)

)
= T

(
φ̂(a1)φ̂(a2) . . . φ̂(an)

)
(10)

N
(
φ̂(1)φ̂(2) . . . φ̂(n)

)
= N

(
φ̂(a1)φ̂(a2) . . . φ̂(an)

)
(11)

where (a1, a2, . . . , an) is any permutation of (1, 2, . . . , n).

You may also assume that equations (10) and (11) are also true if some (or

all) of the fields are replaced by just one part of the split field, for instance if

we replace φ(1) by φ̂+(1) and φ(2) by φ̂−(2).

You may assume that the contractions are always a c-number, i.e. they will

commute with any operators.

A useful identity is that for a set of n-operators, Âi (i = 1, 2, . . . , n), we have

that

[Â1 , Â2 . . . Âm] =

m∑
i=2

Â2 . . . Âi−1[Â1, Âi ]Âi+1 . . . Âm . (12)

Hence, prove Wick’s theorem for the single real scalar field φ̂.

[20 marks]

[Total 30 marks]
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4. The scalar Yukawa theory has a real scalar field φ of mass m and a complex scalar

field ψ with mass M with a cubic interaction proportional to a real coupling constant

g, giving a Lagrangian density of the form

L =
1

2
(∂µφ)(∂µφ)−

1

2
m2φ2 + (∂µψ

†)(∂µψ)−M2ψ†ψ − gψ†ψφ . (13)

The field operators in the interaction picture are given in equations (17) for φ̂ and

(19) for ψ̂ in the “Useful Definitions” section at the end of this exam paper.

(i) Define the Feynman rules for calculating the Green functions in coordinate

space of the scalar Yukawa theory of (13). [10 marks]

(ii) Write down the Feynman diagrams which contribute to terms proportional to

g and g2 in the perturbation expansion of Z = 〈0|S| 0〉 where S is the S-matrix

for this theory.

Hence show that Z = 1 +g2V1+g2V2+O(g3) where g2V1 and g2V2 correspond

to two different diagrams.

Give explicit expressions for V1 and V2 in terms of appropriate propagators. You

need not evaluate any integrations in your expression. [8 marks]

(iii) Write down all the Feynman diagrams which contribute terms up to and includ-

ing g2 in the perturbation expansion of Π0(z − y) = 〈0|T
(
φ̂(z)φ̂(y)S

)
| 0〉.

Hence show that

Π0(z − y) = ∆(z − y) + g2D1(z − y) + g2D2(z − y)

+g2∆(z − y)V1 + g2∆(z − y)V2 +O(g3) (14)

where you should identify each of the five terms with a different diagram.

Identify ∆(z − y) in terms of one of the propagators of this theory.

Give explicit expressions for D1(z − y) and D2(z − y) in terms of appropriate

propagators. You need not evaluate any integrations in your expression.

[8 marks]

(iv) Expand Πc(z − y) as a series in g up to and including g2 where

Πc(z − y) =
1

Z
Π0(z − y) . (15)

Your answer should be given in terms of V1, V2, D1, D2, and ∆.

What diagrams contribute to Πc(z − y) in general? Illustrate your answer using

your O(g2) result for Πc(z − y). [4 marks]

[Total 30 marks]
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Useful Definitions

Units

Unless otherwise specified, natural units are used so ~ = c = 1.

Metric

The metric is diagonal with g00 = +1 and g i i = −1 for i = 1, 2, 3.

Annihilation and Creation Operators

The annihilation and creation operators obey the following commutation relations[
âp, â

†
q

]
= (2π)3δ3(p − q) , [âp, âq] =

[
â†p, â

†
q

]
= 0 . (16)

The vacuum state | 0〉 is destroyed by any annihilation operator, that is âp| 0〉 = 0 for all

p.

Fields

In the following expressions px ≡ pµxµ = p0t − p.x where pµ = (p0, p), xµ = (t, x) and

p.x is the usual three-vector scalar product.

In the interaction picture, a real field φ̂(x) of mass m has the form

φ̂(x) =

∫
d3p

(2π)3
1√

2ω(p)
(âpe

−ipx + â†pe
+ipx) , (17)

where p0 = ω(p) =
∣∣∣√p2 +m2

∣∣∣ . (18)

A complex field ψ̂(x) of mass M in the interaction picture has the form

ψ̂(x) =

∫
d3p

(2π)3
1√

2Ω(p)
(b̂pe

−ipx + ĉ†pe
ipx) , (19)

where p0 = Ω(p) =
∣∣∣√p2 +M2

∣∣∣ . (20)

Both the b̂p, b̂
†
p pairs and the ĉp, ĉ

†
p pairs of annihilation and creation operators obey similar

commutation relations to those of (16) for the âp, â
†
p pairs. Different types of annihilation

and creation operator always commute e.g.
[
âp, b̂

†
q

]
= 0.
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