

Quantum Electrodynamics Test

Monday, 11th January 2010

Please answer all three questions.

All questions are worth 20 marks.

Use a separate booklet for each question. Make sure that each booklet carries your name, the course title, and the number of the question attempted.

1. Consider a free real scalar field $\phi(x)$ with conjugate momentum density $\pi(x) = \dot{\phi}(x)$. Define the operator

$$a_p = \int d^3x \frac{e^{-ip \cdot x}}{\sqrt{2E_p}} [E_p \phi(0, \mathbf{x}) + i\pi(0, \mathbf{x})],$$

where $E_p = \sqrt{|\mathbf{p}|^2 + m^2}$.

- (i) The equal-time commutation relations (ETCRs) state that

$$[\phi(t, \mathbf{x}), \pi(t, \mathbf{y})] = i\delta^{(3)}(\mathbf{x} - \mathbf{y}).$$

Are the fields $\phi(x)$ and $\pi(x)$ in the Schrödinger or Heisenberg picture? Why is this picture more natural in a relativistic theory?

What are the ETCRs for $[\phi(t, \mathbf{x}), \phi(t, \mathbf{y})]$ and $[\pi(t, \mathbf{x}), \pi(t, \mathbf{y})]$? [4 marks]

- (ii) Write down the expression for a_p^\dagger in terms of $\phi(0, \mathbf{x})$ and $\pi(0, \mathbf{x})$. Using the ETCRs show that

$$[a_p, a_q^\dagger] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}),$$

$$[a_p, a_q] = 0, \quad [a_p^\dagger, a_q^\dagger] = 0.$$

[6 marks]

- (iii) Given

$$\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} (a_p e^{-ip \cdot x} + a_p^\dagger e^{ip \cdot x}),$$

where $p^0 = E_p$, use the results from part ii to show that at unequal times

$$[\phi(x), \phi(y)] = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} (e^{-ip \cdot (x-y)} - e^{ip \cdot (x-y)}).$$

What properties must this commutator have if the field theory is to respect microcausality? [5 marks]

- (iv) You are given that $\delta(x^2 - a^2) = (1/2a) [\delta(x - a) - \delta(x + a)]$. Show that the expression for $[\phi(x), \phi(y)]$ given in part iii can be rewritten as

$$[\phi(x), \phi(y)] = \int \frac{d^4p}{(2\pi)^3} \delta(p^2 - m^2) e^{-ip \cdot (x-y)},$$

where $d^4p = d^3p dp^0$. Comment on the Lorentz transformation properties of this expression, and give a brief argument that the ETCRs take the same form in all inertial frames.

What is the significance of this result?

[5 marks]

[Total 20 marks]

2. This question is about the free classical Dirac field $\psi(x)$. The Lagrangian is given by

$$\mathcal{L} = i\bar{\psi}\gamma^\mu\partial_\mu\psi - m\bar{\psi}\psi,$$

where the gamma matrices γ^μ satisfy $\{\gamma^\mu, \gamma^\nu\} = 2\eta^{\mu\nu}\mathbb{1}$ and $\bar{\psi} = \psi^\dagger\gamma^0$.

- (i) The field $\psi(x)$ is a spinor. How many components does it have? After quantization what is the spin of the corresponding single-particle states?

Treating $\psi(x)$ and $\bar{\psi}(x)$ as independent fields, show that the Euler–Lagrange equation for $\bar{\psi}(x)$ is the Dirac equation

$$i\gamma^\mu\partial_\mu\psi - m\psi = 0.$$

[4 marks]

- (ii) Using $(\gamma^\mu)^\dagger = \gamma^0\gamma^\mu\gamma^0$ show that if $\psi(x)$ satisfies the Dirac equation then

$$i\partial_\mu\bar{\psi}(x)\gamma^\mu + m\bar{\psi}(x) = 0.$$

Hence show that the current $j^\mu = \bar{\psi}\gamma^\mu\psi$ is conserved if ψ satisfies the Dirac equation. [4 marks]

- (iii) Show that the complex conjugate of \mathcal{L} is given by

$$\mathcal{L}^* = \mathcal{L} - i\partial_\mu(\bar{\psi}\gamma^\mu\psi).$$

Consider the real Lagrangian

$$\mathcal{L}' = \frac{1}{2}i[\bar{\psi}\gamma^\mu(\partial_\mu\psi) - (\partial_\mu\bar{\psi})\gamma^\mu\psi] - m\bar{\psi}\psi.$$

Treating $\psi(x)$ and $\bar{\psi}(x)$ as independent fields, show that the corresponding Euler–Lagrange equation for $\bar{\psi}(x)$ is again the Dirac equation. [5 marks]

- (iv) Defining the matrix $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, show that $\{\gamma_5, \gamma_\mu\} = 0$. Show that the “axial vector” current $j_5^\mu = \bar{\psi}\gamma^\mu\gamma_5\psi$ satisfies

$$\partial_\mu j_5^\mu = 2im\bar{\psi}\gamma_5\psi.$$

What does this result imply about the symmetries of the Dirac equation when $m = 0$?

Identify the corresponding infinitesimal transformation of ψ and demonstrate directly whether or not \mathcal{L} is invariant under this transformation. [7 marks]

[Total 20 marks]

3. This question is about Feynman diagrams in “phi-fourth” theory. Recall that in the interaction picture the \mathcal{S} -matrix is given by

$$\mathcal{S} = T \exp \left(i \int d^4x : \mathcal{L}_{\text{int}}(x) : \right).$$

- (i) Explain how \mathcal{S} can be described as a perturbation expansion and write down the first three terms in the expansion.

The scattering amplitude $i\mathcal{M}$ is usually defined to be

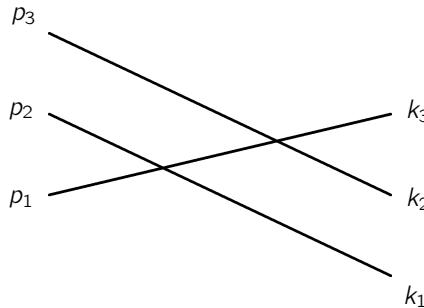
$$\langle \text{out} | i\mathcal{T} | \text{in} \rangle = (2\pi)^4 \delta^{(4)}(p_{\text{out}} - p_{\text{in}}) i\mathcal{M}$$

where $\mathcal{S} = \mathbb{1} + i\mathcal{T}$. Why is the $\mathbb{1}$ contribution not included? What are p_{out} and p_{in} and what is the physical meaning of the δ -function? [4 marks]

- (ii) Consider the scattering of three incoming ϕ particles with momenta k_1 , k_2 and k_3 to three outgoing ϕ particles with momenta p_1 , p_2 and p_3 .

Define the $|\text{in}\rangle$ and $|\text{out}\rangle$ states for this process.

Use the position-space Feynman rules to calculate the contribution of the following Feynman diagram to $\langle \text{out} | i\mathcal{T} | \text{in} \rangle$ in terms of the propagator $D_F(x - y)$.



Given

$$D_F(x - y) = i \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip \cdot (x-y)}}{p^2 - m^2 + i\epsilon}$$

write this contribution as a function only of momenta.

Show that this agrees with the contribution to $i\mathcal{M}$ calculated using the momentum-space rules. [7 marks]

- (iii) Draw a second Feynman diagram that has no loops, is not related to the diagram in part ii by a permutation of the p_i momenta or of the k_i momenta, and contributes to $i\mathcal{M}$ at the same order in λ .

Evaluate this diagram using the momentum-space Feynman rules. [3 marks]

Now consider the scattering of two incoming ϕ particles with momenta q_1 and q_2 to two outgoing ϕ particles with momenta p_1 and p_2 .

Taking the non-relativistic limit and comparing with the Born approximation gives

$$i\mathcal{M}(q_1, q_2, p_1, p_2) = -i\frac{1}{2} [\tilde{V}(\mathbf{p}_1 - \mathbf{q}_1) + \tilde{V}(\mathbf{p}_1 - \mathbf{q}_2)],$$

where $\tilde{V}(\mathbf{q})$ is the Fourier transform of the classical potential $V(\mathbf{x})$ between the two particles.

- (iv) Use the momentum-space Feynman rules to identify $\tilde{V}(\mathbf{k})$ and hence calculate the form of $V(\mathbf{x})$ at order λ .

Draw a Feynman diagram that gives corrections to $i\mathcal{M}$ (and hence potentially to $V(\mathbf{x})$) at order λ^2 . [6 marks]

[Total 20 marks]