

MSc in Quantum Fields and Fundamental Forces

Quantum Field Theory Test

Thursday, 12th January 2012, 10:00 to 12:00

Please answer all three questions.

Each question is worth 20 marks.

Use a separate booklet for each question. Make sure that each booklet carries your name, the course title, and the number of the question attempted.

1. Consider the Lagrangian density for a classical complex scalar field $\phi(x)$ given by

$$\mathcal{L} = \partial_\mu \phi \partial^\mu \phi^* - m^2 \phi \phi^*.$$

(i) Treating ϕ and ϕ^* as independent fields, show that the Euler–Lagrange equations imply that the equations of motion are given by

$$(\partial^2 + m^2)\phi = 0$$

[2 marks]

(ii) Define the momentum density fields π and π^* that are conjugate to ϕ and ϕ^* , respectively, and derive the Hamiltonian density \mathcal{H} and the Hamiltonian H .

[4 marks]

(iii) The energy-momentum density is defined by

$$T^{\mu\nu} = \partial^\mu \phi \partial^\nu \phi^* + \partial^\mu \phi^* \partial^\nu \phi - \eta^{\mu\nu} (\partial_\lambda \phi \partial^\lambda \phi^* - m^2 \phi \phi^*),$$

Using the equations of motion show that $\partial_\mu T^{\mu\nu} = 0$. With what symmetry is this tensor related?

[4 marks]

(iv) Define four corresponding Noether charges P^μ and show that they are time independent. Show that P^0 is the Hamiltonian H . What is the significance of P^i ?

[4 marks]

Consider now the quantum theory of the scalar field ϕ .

(v) Write down the equal time commutation relations satisfied by the Heisenberg operators ϕ and π . Use them to show that

$$[P^0, \phi(x)] = -i\partial^0 \phi(x)$$

(Do *not* use the expansion of ϕ in terms of creation and annihilation operators.)

[6 marks]

[Total 20 marks]

2. The free Dirac field in the Heisenberg picture can be expanded as

$$\begin{aligned}\psi(x) &= \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{s=1}^2 (a_{\mathbf{p}}^s u^s(p) e^{-ip \cdot x} + b_{\mathbf{p}}^{s\dagger} v^s(p) e^{ip \cdot x}) \\ \psi^\dagger(x) &= \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{s=1}^2 (b_{\mathbf{p}}^s v^{s\dagger}(p) e^{-ip \cdot x} + a_{\mathbf{p}}^{s\dagger} u^{s\dagger}(p) e^{ip \cdot x})\end{aligned}$$

where $p^0 = E_{\mathbf{p}}$ and the non-vanishing anti-commutation relations are given by

$$\{a_{\mathbf{p}}^r, a_{\mathbf{q}}^{\dagger s}\} = \{b_{\mathbf{p}}^r, b_{\mathbf{q}}^{\dagger s}\} = (2\pi)^3 \delta^3(\mathbf{p} - \mathbf{q}) \delta^{rs}$$

In addition

$$u^{r\dagger}(p) u^s(p) = 2E_{\mathbf{p}} \delta^{rs}, \quad v^{r\dagger}(p) v^s(p) = 2E_{\mathbf{p}} \delta^{rs}$$

and

$$u^{r\dagger}(p^0, \mathbf{p}) v^s(p^0, -\mathbf{p}) = 0, \quad v^{r\dagger}(p^0, \mathbf{p}) u^s(p^0, -\mathbf{p}) = 0$$

(i) Define the vacuum state, a single fermion state and a single anti-fermion state. [4 marks]

(ii) Show that the time-independent Noether charge defined by

$$Q = \int d^3x \psi^\dagger(x) \psi(x)$$

can be written in the form

$$\begin{aligned}Q &= \int \frac{d^3p}{(2\pi)^3} \sum_s (a_{\mathbf{p}}^{s\dagger} a_{\mathbf{p}}^s + b_{\mathbf{p}}^s b_{\mathbf{p}}^{s\dagger}) \\ &= \int \frac{d^3p}{(2\pi)^3} \sum_s (a_{\mathbf{p}}^{s\dagger} a_{\mathbf{p}}^s - b_{\mathbf{p}}^{s\dagger} b_{\mathbf{p}}^s)\end{aligned}$$

where an infinite c-number is discarded to get to the last line. [10 marks]

(iii) Show that vacuum state, the single fermion state and the single anti-fermion state that you constructed in (i) are eigenstates of Q . What is the physical interpretation of Q ? [6 marks]

[Total 20 marks]

3. Consider the free quantised real scalar field in the Heisenberg picture

$$\phi(x) = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} (a_p e^{-ip \cdot x} + a_p^\dagger e^{ip \cdot x}),$$

where $x^\mu = (t, \mathbf{x})^\mu$ and $p^0 = E_p \equiv \sqrt{|\mathbf{p}|^2 + m^2}$ and

$$\begin{aligned} [a_p, a_q^\dagger] &= (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}), \\ [a_p, a_q] &= 0, \quad [a_p^\dagger, a_q^\dagger] = 0. \end{aligned}$$

(i) Show that

$$\langle 0 | \phi(x) \phi(y) | 0 \rangle = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2E_p} e^{-ip \cdot (x-y)}$$

[3 marks]

(ii) The Feynman propagator is defined as $D_F(x-y) = \langle 0 | T(\phi(x) \phi(y)) | 0 \rangle$. Show that this can be written in the form

$$D_F(x-y) = \lim_{\epsilon \rightarrow 0} \int \frac{d^4 p}{(2\pi)^4} \frac{i}{p^2 - m^2 + i\epsilon} e^{-ip \cdot (x-y)},$$

explaining carefully the precise contour on which the integral is defined.

[8 marks]

(iii) Show that $D_F(x)$ satisfies

$$(\partial^2 + m^2) D_F(x) = -i\delta^4(x)$$

[2 marks]

Now assume that $\phi(x)$ is a quantised field in the interaction picture for ϕ to the fourth theory, with S -matrix given by

$$\mathcal{S} = T \exp \left(-\frac{1}{4!} i\lambda \int d^4 x \phi(x)^4 \right).$$

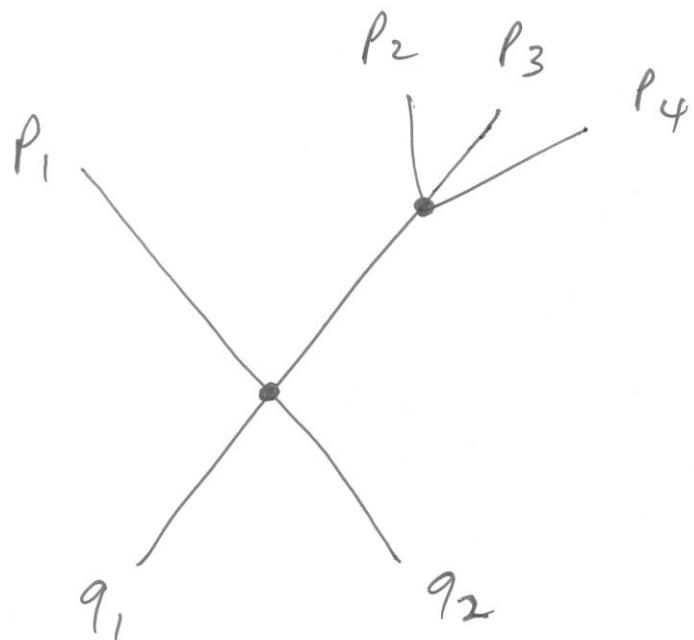
Consider the scattering amplitude $i\mathcal{M}$ for two incoming particles with momentum q_1, q_2 scattering to four outgoing particles with momenta p_1, p_2, p_3 and p_4 defined by

$$\langle p_1, p_2, p_3, p_4 | i\mathcal{T} | q_1, q_2 \rangle = (2\pi)^4 \delta^{(4)}(p_1 + p_2 + p_3 + p_4 - q_1 - q_2) i\mathcal{M}$$

where $\mathcal{S} = \mathbb{1} + i\mathcal{T}$.

Please turn over

(iv) Use the position-space Feynman rules to calculate the contribution of the following Feynman diagram to $i\mathcal{M}$. (You will need to use the expression for D_F given in question 3. (ii) above and carry out some integrations) [4 marks]



(v) Draw the other Feynman diagrams that contribute to $i\mathcal{M}$ at the same order. Evaluate one of these diagrams using the momentum-space Feynman rules. [3 marks]

[Total 20 marks]