
QFT New Year Test 2016 Solutions1

27/1/2016

1. In this question we consider a free field theory work in the Heisenberg picture using natural units
(~ = c = 1).

For simplicity the H subscript and hats on operators may be dropped when answering in this
question.

The time evolution of any operator ÔH in the Heisenberg picture is given by

OH(t) = exp{+iĤHt}OH(t = 0) exp{−iĤHt} . (1)

while states are time-invariant in the Heisenberg picture. The operator ĤH is the Hamiltonian in
the Heisenberg picture and it is independent of time.

Note that in answering this question you should be very careful to specify what is a three- or
four-vector and what value the zero-th index of an energy-momentum four-vector might have, that
is do you have some general real values p0 or is p0 = ωp for some four-vector pµ. Is px short for
pµpµ or p.x? Define your notation carefully, use ~p or p rather than the boldface p I often use for
three-vectors Students were very loose in their notation when answering this and lost marks.

(i) A free real scalar field in the Heisenberg picture is given by

φ̂H(t,x) =

∫
d3p

(2π)3

1√
2ωp

(
âpe−iωpt+ip·x + â†peiωpt−ip·x

)
, (2)

with ωp =
∣∣∣√p2 +m2

∣∣∣ ≥ 0 . (3)

The annihilation and creation operators obey their usual commutation relations[
âp, â

†
q

]
= (2π)3δ3(p− q) , [âp, âq] =

[
â†p, â

†
q

]
= 0 . (4)

Since π = φ̇ = ∂tφ classically, we try this on the operator (2) to find the momentum operator
π̂(t,x) conjugate to the field φ̂(t,x) of (2).

π̂(t,x) = −i
∫

d3p

(2π)3

√
ωp

2

(
âpe−iωpt+ip·x − â†peiωpt−ip·x

)
(5)

The equal time commutation relations for a real scalar field operator φ̂ and its conjugate
momentum π̂ are[

φ̂(t,x), π̂(t,y)
]

= i~δ3(x− y) ,
[
φ̂(t,x), φ̂(t,y)

]
= [π̂(t,x), π̂(t,y)] = 0 . (6)

though we work with ~ = 1 in this question.

To show that this real scalar field and its conjugate momentum satisfy the equal time commu-
tation relations at any time2

1LATEX’d January 27, 2016
2The question specifically asked for a commutator that depended on time t. It was not acceptable to show the result for

one time, say t = 0.
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The first field commutation relation is then (setting p0 = ωp, q0 = ωq, and x0 = y0 = t)[
φ̂(t,x), π̂(t,y)

]
=

[∫
d3p

(2π)3

1√
2ωp

(âpe
−ipx + â†pe

+ipx),

∫
d3q

(2π)3
(−i)

√
ωq

2
(âqe

−iqx − â†qe+iqx)

]
(7)

= (−i)
∫

d3p

(2π)3

d3q

(2π)3

√
ωp

4ωq

×
(
−
[
âp, â

†
q

]
e−i(ωp−ωq)t+ip.x−iq.y +

[
â†p, âq

]
e+i(ωp−ωq)t−ip.x+iq.y

)
(8)

where we have used the factor that

[A+B,C +D] = [A,C] + [A,D] + [B,C] + [B,D] (9)

and the fact that two of the commutators are zero by (4). This leaves us with

[φ(t = 0,x), π(t = 0,y)] = (−i)
∫

d3p

(2π)3

d3q

(2π)3

√
ωp

4ωq
(10)

×
(
−(2π)3δ3(p− q)e−i(ωp−ωq)t+ip.x−iq.y

+(2π)3(−δ3(p− q))e+i(ωp−ωq)t−ip.x+iq.y
)

(11)

= i

∫
d3p

(2π)3

1

2

(
eip.(x−y) + e−ip.(x−y)

)
= iδ3(x− y) (12)

This is the desired value from (6).

(ii) The commutator of the free scalar fields φ̂ of (2) at different space-time points x and y is

∆C(x− y) =
[
φ̂(x), π̂(y)

]
=

[∫
d3p

(2π)3

1√
2ωp

(âpe
−ipx + â†pe

+ipx),

∫
d3q

(2π)3

1√
2ωq

(âqe
−iqy + â†qe

+iqy)

]
(13)

where we set p0 = |ωp| and q0 = |ωq|. So we find

∆C(x− y) =

∫
d3p

(2π)3

∫
d3q

(2π)3

1√
4ωpωq

[
(âpe

−ipx + â†pe
+ipx), (âqe

−iqy + â†qe
+iqy)

]
(14)

=

∫
d3p

(2π)3

∫
d3q

(2π)3

1√
4ωpωq

(
e−ipx+iqy

[
âp, â

†
q

]
+ e+ipx−iqy

[
â†p, âq

])
(15)

=

∫
d3p

(2π)3

∫
d3q

(2π)3

1√
4ωpωq

×
(
e−ipx+iqy(2π)3δ3(p− q)− e+ipx−iqy(2π)3δ3(p− q)

)
(16)

So finally we have

⇒ ∆C(x− y) =

∫
d3p

(2π)3

1

2ωp

(
e−ip(x−y) − e+ip(x−y)

)
(17)

as required.

From (17) we have that the commutator of the field at equal times is

∆C(t = 0,x) =
[
φ̂(t,x), π̂(t, 0)

]
= I1 − I2 , (18)

I1 =

∫
d3p

(2π)3

1

2ωp

(
e+ip.x

)
, (19)

I2 =

∫
d3p

(2π)3

1

2ωp

(
e−ip.x

)
, (20)

2



where x is a three-space position and p a three-momentum. Taking the second term I2 we
have three integrals of the form

I2 =

 ∏
i=1,2,3

∫ +∞

−∞

dpi
(2π)

e−ipi.xi

 1

2ωp
. (21)

Changing integration variables to p′i = −pi we have

I2 =

 ∏
i=1,2,3

∫ −∞
+∞

−dp′i
(2π)

e+ip′i.xi

 1

2ωp′
(22)

where we use the fact that ω is only a function of |p| and note there is a change in the range
of integration and a factor of -1 in the integration measure. Those cancel each other to leave
the second term of (18) as

I2 =

 ∏
i=1,2,3

∫ +∞

−∞

dp′i
(2π)

e+ip′i.xi

 1

2ωp′
(23)

which is exactly the same as the first term in (18). The commutator ∆C is the difference
of these two terms giving us zero for the equal time case ∆C(t = 0,x)) = 0. This is indeed
consistent with the ETCR.

(iii) From the expression for the commutator, ∆C of (17), we have that

DA(x) = −θ(−x0) 〈0|[φ(x), φ(0)]|0〉 = −θ(−x0)∆C(x) (24)

= −θ(−x0)

∫
d3p

(2π)3

(
1

2ωp
e−ip·x

∣∣∣∣
p0=ωp

+
1

(−2ωp)
e−ip·x

∣∣∣∣
p0=−ωp

)
(25)

We now need to introduce a p0 integration and rewrite the expression in terms of a contour
integration. Here we shift the poles of the integrand, introducing a small positive infinitesimal ε
into the integrand which is taken to zero (from the positive side) at the end of the calculation.
This is the approach3 used in the lectures and it is common practice to use this notation,
especially in the case of the time-ordered (Feynman) propagator.

Consider

I1(x) =

∫
d4p

(2π)4

i

(p0 − iε)2 − p2 −m2
e−ip·x (26)

= −
∫

d3p

(2π)3

∫ ∞
−∞

dp0

2πi

1

(p0 − ωp − iε)(p0 + ωp − iε)
e−ip·x (27)

where, as usual, ωp =
√
p2 +m2. The p0 integration is along the real axis with poles in the

3A second approach is to make small distortions in the contour away from the real p0 axis near the poles. This is used by
Tong in his derivation of the Feynman propagator (sec.2.7.1 page 38) though Tong reverts to the first and standard notation
later on (see Tong equation (3.37)). Both methods are equivalent in the ε→ 0+ limit.
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integrand as shown here

-w
p
+ie +w

p
+ie

(28)

The dp0 integrand

f(p0,p) =
1

(p0 − ωp − iε)(p0 + ωp − iε)
e−ip·x (29)

has simple poles at
p0 = ±ωp + iε. (30)

Near these poles the integrand looks like f ≈ R±/(p0 ∓ ωp + iε) with residues R± given by

R± = ± 1

2ωp
e−ip·x

∣∣
p0=±ωp+iε

(31)

The idea is that we think of our expression for the advanced propagator in (25) as being of
the form

DA(x) = −θ(−x0)

∫
d3p

(2π)3
(R+ +R−) . (32)

In order for this to match I1(x) of (27) we need to find a closed contour C such that by using
the residue theorem we can deduce that∫

C

dp0

2πi
f(p0,p) = θ(−x0)

(
R+ +R−

)
(33)

If x0 > 0 then e−ip
0x0 → 0 as p0 → −i∞. This means that an integration of this integrand

f round a large semi-circle running around the lower half plane is equal to zero. We can
therefore add this integration of f to our p0 integration along the real axis in I1 without
changing the result for I1. So we produce an expression for I1 which uses a closed contour
for the p0 integration by adding this lower semi-circle. Now no poles are enclosed within this
closed contour so the residue theorem tells us the result is zero

C
+

C
-

-w
p
+ie +w

p
+ie ∫

C

dp0

2πi
f(p0,p) = 0 if x0 > 0 . (34)
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If x0 < 0 then e−ip
0x0 → 0 as p0 → i∞. This means that an integration of this integrand f

round a large semi-circle running around the upper half plane will give zero. We can therefore
add this to our existing p0 integration along the real axis in I1 without changing the result.
So we produce a closed contour by adding the semi-circle above and now the residue theorem
tells us that we pick up contributions from both poles. This gives us

C
+

C
-

-w
p
+ie +w

p
+ie ∫

C

dp0

2πi
f(p0,p) = R+ +R− if x0 < 0 . (35)

Putting the two cases together gives us the desired result∫
C

dp0

2πi
f(p0,p) = θ(−x0)

(
R+ +R−

)
. (36)

2. The full Hamiltonian Ĥ in any picture is split into two parts: Ĥ = Ĥ0 + Ĥint where Ĥ0 is the free
Hamiltonian and Ĥint is the interaction Hamiltonian. The relationship between the Schrödinger
(subscript S) and Interaction pictures (subscript I) for any state ψ and for any operator Ô is given
by

|ψ, t〉I = exp{+iH0,St} |ψ, t〉S , (1)

ÔI(t) = exp{+iH0,St} ÔS exp{−iH0,St} . (2)

(i) The Schrödinger equation,

i
d

dt
|ψ, t〉S = ĤS |ψ, t〉S , (3)

gives the time evolution of Schrödinger picture states as

|ψ, t〉S = exp{−iĤSt} |ψ, t = 0〉S . (4)

We can check (4) by substituting into (3). We may now insert (4) into (1) to find

|ψ, t〉I = exp{+iH0,St} |ψ, t〉S = exp{+iĤ0,St} exp{−iĤSt} |ψ, t = 0〉S . (5)

Here ĤS = Ĥ0,S + Ĥint,S is split of the Hamiltonian into free and interacting parts in the
Schrödinger picture.

Use the relation between Schrödinger and Interaction states (1) to replace the former in the
Schrödinger equation (3) to find

i
d

dt
exp{−iH0,St}|ψ, t〉I = Ĥint,I exp{−iH0,St}|ψ, t〉I . (6)
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Looking at the right hand side shows that

i
d

dt
(exp{−iH0,St}|ψ, t〉I) = i

d

dt
(exp{−iH0,St}) |ψ, t〉I + i exp{−iH0,St}

d

dt
(|ψ, t〉I) (7)

= H0,S exp{−iH0,St}|ψ, t〉I + i exp{−iH0,St}
d

dt
(|ψ, t〉I) (8)

Putting this back into (6) and rearranging gives

i exp{−iH0,St}
d

dt
(|ψ, t〉I) = −H0,S exp{−iH0,St}|ψ, t〉I + Ĥint,I (exp{−iH0,St}|ψ, t〉I) .(9)

=
(
ĤS −H0,S

)
exp{−iH0,St}|ψ, t〉I (10)

Premultiplying by exp{+iH0,St} and using exp{−iH0,St} exp{+iH0,St} (proof not needed here,
but BCH and operators in exponents commute does it) gives

i
d

dt
|ψ, t〉I = exp{+iH0,St}Ĥint,S exp{−iH0,St}|ψ, t〉I (11)

= Ĥint,I(t)|ψ, t〉I (12)

where we use the relationship between Schrödinger and Interaction picture operators (2) to
reach the last line which is what we require.

(ii) To solve this look at an infinitesimal step in time, |ε| � 1, so that (12) becomes

i

ε
(|ψ, t+ ε〉I − |ψ, t〉I) = Ĥint,I(t)|ψ, t〉I (13)

⇒ |ψ, t+ ε〉I = (1− iε)Ĥint,I(t)|ψ, t〉I ≈ exp{−iεĤint,I(t)}|ψ, t〉I (14)

Repeating this we get

|ψ, t+ 2ε〉I ≈ exp{−iεĤint,I(t+ ε)} exp{−iεĤint,I(t)}|ψ, t〉I . (15)

|ψ, t+ nε〉I ≈ exp{−iεĤint,I(t+ (n− 1)ε)} . . . exp{−iεĤint,I(t+ ε)} exp{−iεĤint,I(t)}|ψ, t〉I .(16)

It is important to remember here that the Ĥint,I(t) is not invariant over time so the time

argument of each Ĥint,I(t) must be carefully noted. In addition the Ĥint,I(t) need not commute
at different times so the order of operators must be carefully preserved.

So far the analysis is valid for any infinitesimal time step ε. However now we come to an
important choice missed by many answering this question and not always in the text books.
There are now two choices: (A) ε > 0 and lim ε→ 0+, (B) ε < 0 and lim ε→ 0−.

We were asked for an evolution operator from an early time t1 to a later time t2. This will
explain the condition t2 > t1 highlighted in this question. For that reason we need small
positive steps forward in time, so ε > 0 and we will consider case (A). We will comment on
case (B) at the end.

Choosing case (A) and keeping ε > 0, what we then have is that the operators are time-ordered
where the T time-ordering operator puts operators in the order of their time argument (largest
times to the left). That is

|ψ, t+ nε〉I ≈ T

n−1∏
j=0

exp{−iεĤint,I(t+ jε)}

 |ψ, t〉I . (17)

≈ T

exp{−i
n−1∑
j=0

εĤint,I(t+ jε)}

 |ψ, t〉I . (18)
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Note that we can only replace the product of exponentials of operators by the exponential of
the sum of operators because the operator ordering is fixed by the T operator. That is we

are using the given identity that T
(

exp{Â} exp{B̂}
)

= T
(

exp{Â+ B̂}
)

(we normally get

corrections as given by BCH for such an operation). Now we can take the ε→ 0+ limit

|ψ, t2〉I = T

(
exp{−i

∫ t2

t
dt′ Ĥint,I(t

′)}
)
|ψ, t〉I , where t2 > t1 . (19)

Note the t2 > t1 follows here from the fact that ε is positive.

As this is true for any state, by comparing with

|ψ, t2〉I = Û(t2, t1) |ψ, t1〉I (20)

we see that we have

Û(t2, t1) = T

(
exp{−i

∫ t2

t1

dt′ Ĥint,I(t
′)}
)

if t2 > t1 . (21)

This next part is not needed for this question but is provided for completeness. Now if you
follow case (B) where ε < 0, the logic is exactly the same but we see we are now evolving
backwards in time, we have anti-time ordering denoted by an the operator T̃ which puts the
operators in time order with earliest (latest) times to the left (right). The solution of U is the
same but with anti-time ordering and t2 < t1 required. That means the true full solution for
U is in fact

Û(t2, t1) = θ(t2 − t1)T

(
exp{−i

∫ t2

t1

dt′ Ĥint,I(t
′)}
)

(22)

+θ(t1 − t2)T̃

(
exp{−i

∫ t2

t1

dt′ Ĥint,I(t
′)}
)
. (23)

(iii) Wick’s theorem for a theory with a single real scalar field states that the time ordered product
of such fields is equal to a sum over normal ordered products of the field where fields are
contracted in all possible ways. That is

T
(
φ̂1φ̂2 . . . φ̂n

)
= N

(
φ̂1φ̂2 . . . φ̂n

)
+
∑
(i,j)

N

(
φ̂1φ̂2 . . . φ̂i . . . φ̂j . . . φ̂n

)

+
∑

(i,j),(k,l)

N

(
φ̂1φ̂2 . . . φ̂i . . . φ̂j . . . φ̂k . . . φ̂l . . . φ̂n

)

+
... (24)

Here

• φ̂j = φ̂(xj),

• T(fields) orders field operators according to their time with the latest time on the left,

• N(fields) is normal ordering of fields where, for a given split of fields φ̂i = φ̂+
i + φ̂−i , φ̂+

i

are moved to the right of all φ̂−i ,

• the contraction may be defined by the case of two fields

φ̂1φ̂2 = ∆12 = T(φ̂1φ̂2)−N(φ̂1φ̂2) . (25)
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Many students did not give these definitions when answering the question despite the explicit
wording of the question.

Sometimes students gave the definition in terms of a split into annihilation and creation op-
erators, a common definition used for normal ordering but not the most general. The more
limited definition was not requested here, the discussion was meant to be general. Note that
many texts may talk as if there is only one definition of normal ordering, but such texts are
just misleading.

Likewise several students also gave the definition of the contraction as the Feynman propagator
(the usual i/(p2−m2

i ε) in momentum space) which is not in general correct and did not get full
marks. While the Feynman propagator is often equal to the contraction, it depends on both
the expectation value being considered and on the choice of normal ordering. In this question
at this point, neither was specified. For the purposes of Wicks theorem the fundamental
definition, the only self-consistent definition, is that given here in terms of the two field case
of Wick’s theorem. The content of Wick’s theorem is that all the higher order versions with
N > 2 fields, are be reexpressed in term of the two-field Wick’s theorem result which serves
to define the contraction.

Consider a theory with a single real scalar field of mass m and an interaction Hamiltonian of
the form Ĥint = (λ/4!)

∫
d3x φ̂4. The expression for the two-point Greens function

G(y, z) = 〈0|Tφ̂I(y)φ̂I(z)Ŝ| 0〉 (26)

up to and including first order in λ is

G(y, z) = 〈0|T
(
φ̂(y)φ̂(z)Ŝ

)
| 0〉 (27)

≈ 〈0|T
(
φ̂(y)φ̂(z)

)
| 0〉

−i λ
4!

∫
dt

∫
d3x〈0|T

(
φ̂(y)φ̂(z)φ̂(x)φ̂(x)φ̂(x)φ̂(x)

)
| 0〉+O(λ2) (28)

Here | 0〉 is the vacuum of the free (non-interacting) theory and the S matrix is Ŝ = Û(+∞,−∞)
and we have dropped the I subscript as all quantities are in the Interaction picture.

We now choose normal ordering so that 〈0|N (fields) | 0〉 = 0. This is an essential step but
many students forget to specify this. In fact we did not require anything else in this question.
You did not need to define what split achieves this, nor the value of the contraction ∆ when
we make this choice (the answer is given in terms of ∆). Of course you may know what is
required in this case and you could also specify your choice. What you could not do was not
mention this.

Then the lowest order term comes from Wick’s theorem for two fields, the definition of a
contraction in (25), that is

G0(y, z) = φ̂(x)φ̂(y) = ∆(x− y) . (29)

Taking the vacuum expectation value of this confirms that the propagator is

∆(x− y) = 〈0|T
(
φ̂(y)φ̂(z)

)
| 0〉 . (30)

The O(λ) term is

G1(y, z) = −i λ
4!

∫
dt

∫
d3x〈0|T

(
φ̂(y)φ̂(z)φ̂(x)φ̂(x)φ̂(x)φ̂(x)

)
| 0〉 (31)

= −i λ
4!

∫
dt

∫
d3x

∑
three contractions

(
φ̂(y)φ̂(z)φ̂(x)φ̂(x)φ̂(x)φ̂(x)

)
(32)
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There are two types of term here.

First we can contract φ̂(y) with φ̂(z) which leaves us with three4 ways to contract the φ̂(x)
fields. One example is

φ̂(y)φ̂(z)φ̂(x)φ̂(x)φ̂(x)φ̂(x) . (33)

These all give the same factor and so adding them up we find a total contribution of the form

G1vac(y, z) = −3i
λ

4!

∫
dt

∫
d3x∆(y − z)∆(x− x)∆(x− x) (34)

= −iλ
8

(V T )∆(y − z)[∆(0)]2 (35)

where (V T ) is a space-time volume factor associated with a vacuum diagram contribution.
Note the 8 in the denominator is the symmetry factor of the vacuum subdiagram.

The only alternative is to contract φ̂(y) one of the φ̂(x) terms (four ways to do this), then we
contract φ̂(z) with one of the three remaining φ̂(x) terms (three ways to do this) which leaves
us then with no choice but to contract the last two φ̂(z). One example of this second type of
term is

φ̂(y)φ̂(z)φ̂(x)φ̂(x)φ̂(x)φ̂(x) . (36)

These all give the same factor and all such terms summed up give an overall contribution of

G1se(y, z) = −(4.3)i
λ

4!

∫
dt

∫
d3x∆(y − x)∆(z − x)∆(x− x) (37)

= −iλ
2

∆(0)

∫
d4x ∆(y − x)∆(z − x) (38)

Note the propagators are symmetric so ∆(y−x) = ∆(x−y) etc. Note the 2 in the denominator
is the symmetry factor of the tadpole self-energy diagram.

3. The scalar Yukawa theory for real scalar field φ of mass m and complex scalar field ψ with mass M
has a cubic interaction with real coupling constant g (a measure of the interaction strength) with
Lagrangian density given by

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 + (∂µψ

†)(∂µψ)−M2ψ†ψ − gψ†(x)ψ(x)φ(x) . (1)

In the interaction picture, the field operators take the form

φ(x) =

∫
d3p

(2π)3

1√
2ω(p)

(âpe
−ipx + â†pe

+ipx) , p0 = ω(p) =
∣∣∣√p2 +m2

∣∣∣ , (2)

ψ(x) =

∫
d3p

(2π)3

1√
2Ω(p)

(b̂pe
−ipx + ĉ†pe

ipx) , p0 = Ω(p) =
∣∣∣√p2 +M2

∣∣∣ , (3)

where the annihilation and creation operators obey their usual commutation relations[
âp, â

†
q

]
= (2π)3δ3(p− q) , [âp, âq] =

[
â†p, â

†
q

]
= 0 . (4)

Both the b̂, b̂† pair and the ĉ and ĉ† pair of annihilation and creation operators obey similar
commutation relations to those of the â and â† pair. Different types of annihilation and creation

operator always commute e.g.
[
âp, b̂

†
q

]
= 0.

4Many students and my own first draft of these answers had six here. Think again. Yes symmetry factors are difficult.
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We are considering the the case of ψψ → ψψ scattering with incoming ψ particles of three-momenta
p1 and p2 while the outgoing ψ particles have three-momenta q1 and q2. The matrix element isM
where

M = 〈f |S| i〉 = 〈q1, q2|S| p1, p2〉 =
∞∑
n=0

Mn , M∼ O(gn) . (5)

(i) Substituting in the form (3) for the field ψ, you find that(∫
d3y exp{−ipy}2Ω(p)

)
ψ̂(y)| 0〉 =

∫
d3k√
2Ω(k)

2Ω(p)

∫
d3y e−i(p−k)y (6)

=

∫
d3k√
2Ω(k)

2Ω(p)δ3(p− k) e−i(Ω(p)−Ω(k))tâ†k| 0〉(7)

=
√

2ω(p)|ψ(p)〉 = |ψ(p)〉 (8)

where t = y0. The |ψ(p)〉 state is the one ψ particle state with the appropriate normalisa-

tion for relativistic calculations while |ψ(p)〉 = b̂†k| 0〉 has the standard normalisation usually
encountered when first looking at QHO.

We can repeat the process for the second ψ particle but now we need to introduce labels on
the momenta of incoming particles, p1 and p2.

|ψ(p1), ψ(p2)〉 =
√

2ω(p1)
√

2ω(p2)|ψ(p1), ψ(p2)〉 (9)

=

(∫
d3y1 exp{−ip1y2}2Ω(p1)

)(∫
d3y2 exp{−ip2y2}2Ω(p2)

)
ψ̂(y1)ψ̂(y2)| 0〉(10)

=
∏
i=1,2

(∫
d3yi exp{−ipiyi}2Ω(pi)

)
ψ̂(y1)ψ̂(y2)| 0〉 (11)

Taking the hermitian conjugate will give us the final state in this case, provided we also switch
the labels for momenta and coordinates appropriately. That is we have

〈ψ(q1), ψ(q2)| =
∏
f=1,2

(∫
d3zf exp{+iqfzf}2ω(qf )

)
〈0|ψ̂(z1)ψ̂(z2) (12)

From our expression (5), we then have that the relationship between the matrix element M
and the relevant Green function for this ψψ → ψψ scattering process in Scalar Yukawa theory
is just

M(φ→ ψ̄ψ) =
∏
f=1,2

(∫
d3zf exp{+iqfzf}2ω(qf )

) ∏
i=1,2

(∫
d3yi exp{−ipiyi}2Ω(pi)

)
× G(z1, z2, y1, y2) (13)

G(z1, z2, y1, y2) = 〈0|Tψ(z1)ψ(z2)ψ(y1)ψ(y2)S| 0〉 (14)

where the order you write the operators in the vacuum expectation value is irrelevant as that
is fixed by the time ordering.

(ii) The Feynman rules to calculate the Green functions in coordinate space for the scalar Yukawa
theory of (1) are as follows.

Rule zero is that we draw all topologically distinct graphs (i.e. Feynman diagrams) where edges
(lines) run between pairs of vertices subject to the rules below. Do not forget this rule (many
did when answering this). The others are
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1. Each line is associated with a factor of ∆f (x−y) for a field f of mass mf where ∆f (x−y)
is the relevant Feynman propagator (in momentum space this is ∆(p) = i(p2−m2

f + iε)−1)
and x and y are the coordinates associated with vertices at the end of each line.

(a) For field φ this is a scalar propagator ∆φ(x−y) with mass mf = m and will be denoted
by a dashed line with no arrows as φ is its own anti-particle.

(b) For field ψ this is a scalar propagator ∆ψ(x − y) with mass mf = M and will be
denoted by a solid line with an arrow from a ψ̄ field at a vertex to a ψ field at another
vertex (the alternative convention also works) due to the distinction between ψ and
ψ̄.

2. There is one type of internal vertex associated with a coordinate xi and a factor of
−ig

∫
d4xi . This vertex has three legs: one φ propagator leg, one ψ propagator leg

(arrow in), and one ψ̄ propagator leg (arrow out) to be consistent with convention on
lines.

3. An external vertex just carries one of the coordinates of the Green function (usually
associated with an initial or final state particle in the corresponding matrix element).
Note there is no integration over these coordinates.

4. We divide by the symmetry factor S for the diagram. This is the number of permutations
of internal lines which leave the diagram invariant.

The diagrammatic elements are (diagrams are always good in an answer)

x
i

(15)

(iii) In terms of Feynman diagrams, the lack of O(gn) diagrams contributing to ψψ → ψψ scattering
when n is odd is encoded in the rules we have for joining vertices by propagators. If we had
a diagram at O(gn) it means we have none vertices. That means it has n φ legs. However,
this can not end anywhere but must be paired with another φ leg. If n is odd then there will
always be one leg left unpaired. There are no φ in the initial or final states which could be
linked to this last φ leg. So we can not construct a legal (non-zero) diagram at this order if
we follow the rules for diagrams in this theory.

(iv) For reference there are two Feynman diagrams for G at lowest order in g which contribute to
M0. They are

y
1

y
2

z
1

z
2

y
1

y
2

z
1

z
2

(16)

The Feynman diagrams which contribute to the ψψ → ψψ scattering matrix element M2

at O(g2) are shown in the following equations 17, 18 and 19. Further similar diagrams are
indicated in the accompanying text, are found by permuting the z1 and z2 labels on the
diagrams.

Diagrams representing first non-trivial contribution (O(g2)) in the perturbative expansion for
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the ψψ → ψψ scattering process in scalar Yukawa theory of (1) are shown in equation (17).

y
1

y
2

z
1

z
2

y
1

y
2

z
1

z
2

17a 17b

(17)

For these diagrams (17), the symmetry factors are S = 1, no symmetries under exchange of
internal lines.

In (17), the number of internal edges is I = 2, there are two vertices so V = 2 and there is just
one component so C = 1. Using L = I − V + C we find there are no loop momenta. Visually
this is fairly obvious in the diagrams of (17).

Note that these two diagrams are distinct because you must fix the labels on external lines/vertices.
Here the second is found by permuting the z1 ↔ z2 labels on the first. Most students noted
this example. However many students missed similar permutations on the other diagrams
below.

The diagrams in (18) also contribute at O(g2) to the ψψ → ψψ scattering process in scalar
Yukawa theory of (1) but consist of self-energy contributions to the ψ propagator so do not
change the non-trivial interactions. There are also the same diagrams but with y1 and y2

switched round and with the self-energy contribution on the z2 leg not on the z1 leg. Most
students did not note these extra cases when answering this question. This gives us 8 dis-
tinct diagrams in total of this self-energy type. You can just state the existence of these
permutations, writing them out in full is not needed.

y
2

z
1

z
2

y
1

y
2

z
1

z
2

y
1

18a 18b

(18)

The symmetry factors in the diagrams of (18) are S = 1, no symmetries under exchange
of internal lines. Note that the first diagram, 18a, is a tadpole contribution. Such tadpole
contributions are considered in the question on vacuum expectation values of φ.

Considering the non-trivial connected subdiagram of (18) (the top part with y1 and z1 external
legs) we see the number of internal edges is I = 2, there are two vertices so V = 2 and there
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is just one component in that subdiagram, C = 1. Using L = I − V + C we find there is one
loop momenta. Again this is fairly obvious visually in the diagrams of (18).

These last type of diagrams at O(g2) are

y
1

y
2

z
1

z
2

y
1

y
2

z
1

z
2

19a 19b

(19)

These are not usually included when calculating contributions at O(g2) to the ψψ → ψψ
scattering process in scalar Yukawa theory of (1). The disconnected parts are vacuum diagrams
which capture the difference between the vacuum in free theory (| 0〉) and in the fully interacting
theory5 (|Ω〉). These contributions are cancelled when the normalisation factor (Z = 〈0|S| 0〉)
is included which is used to express the execration value in the vacuum of the full interacting
theory (|Ω〉) in terms of free vacuum expectation values 〈0|T (fields)| 0〉.
There are two further diagrams which are identical except the z1 and z2 are swapped making
a total of 4 distinct diagrams with vacuum contributions. Again no need to write these out in
full but most students did not note this when answering this question.

The vacuum diagrams in (19) have symmetry factors S = 2 coming from the interchange of
the vertices as there are no external legs pinning these down. I had to use Wick’s theorem to
see this.

Each of the vacuum subdiagrams in (19) has two loop momenta since the number of internal
edges is I = 3, there are two vertices so V = 2 and there is just one component in that
subdiagram, C = 1. Using L = I − V + C = 2 we find there are two loop moments, certainly
obvious in the diagram 19a, perhaps less so in 19b.

We have for the first diagram in 17

G(z1, z2, y1, y2) =

−g2

∫
d4x1

∫
d4x2 ∆M (y1 − x1)∆M (x1 − z1)∆m(x1 − x2)∆M (y2 − x2)∆M (x2 − z2)(20)

The symmetry factor is 1 in each case. The second diagram is the same expression except that
z1 (labelled as q1 in the diagram 17b) switched is switched with with z2.

We have for the first diagram with self-energy contributions, shown in 18a, that

G2A(z1, z2, y1, y2) =

−g2

∫
d4x1

∫
d4x2 ∆M (y1 − x1)∆M (x1 − z1)∆m(x1 − x2)∆M (x2 − x2)∆M (y2 − z2)

−g2

∫
d4x1

∫
d4x2 ∆M (y1 − x1)∆m(y2 − x1)∆M (x1 − z2)∆m(x1 − x2)∆M (x2 − x2)(21)

5The vacuum in free theory | 0〉 is the state vacuum annihilated by the free creation operators used in the definition of
the interaction picture fields. This is distinct from the vacuum in the fully interacting theory which we denote by |Ω〉.
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where again the symmetry factor is 1. There is another term where the self-energy contribution
is on the other leg, so basically where we switch the 1 and 2 labels on yi and zf (not on the
x’s) to give a total of two terms. These two terms each have a partner where just y1 (labelled
here as q1) is switched with y2 (labelled here as q2), leaving us with four terms of the same
form but with various permutations of the coordinates (momenta) of the external lines, i.e. of
the final and initial states.

For the second diagram with a self-energy contribution in 18 we have that

G2A(z1, z2, y1, y2) =

−g2

∫
d4x1

∫
d4x2 ∆M (y1 − x1)∆m(x1 − x2)∆M (x1 − x2)∆M (x2 − z1)∆M (y2 − z2)(22)

where again the symmetry factor is 1. There is another term where the self-energy contribution
is on the other leg, so basically where we switch the 1 and 2 labels on yi and zf (not on the
x’s) to give a total of two terms. If we switch just the labels on the two external legs alone,
we get two more contributions. This leaves us with four terms of the same form but with
various permutations of the external leg coordinates, y1, y2, z1 and z2 (likewise with external
momenta if you work in momentum space).

For the diagrams with a vacuum contribution we always pick up the same contribution as given
above for the O(g0), multiplied by a vacuum diagram contribution. The vacuum diagram in
the both cases has a symmetry factor is 2 (see the next question to see how I found that for
19a).
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