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Solutions 6: Scalar Yukawa Theory

In the interaction picture, the field operators in the scalar Yukawa theory, for real scalar field φ of mass

m and complex scalar field ψ with mass M , take the form

φ(x) =

∫
d3p

(2π)3

1√
2ωp

(ap e
−ipx + a†p e

+ipx) , p0 = ωp ≥ 0 . (1)

ψ(x) =

∫
d3p

(2π)3

1√
2Ωp

(bp e
−ipx + c†p e

ipx) , p0 = Ωp ≥ 0 . (2)

where the dispersion relations are

ωp = +
∣∣∣√p2 +m2

∣∣∣ ≥ 0 , (3)

Ωp = +
∣∣∣√p2 +M2

∣∣∣ ≥ 0 . (4)

and the annihilation and creation operators obey their usual commutation relations[
ap, a

†
q

]
= (2π)3δ3(p− q) , [ap, aq] =

[
a†p, a

†
q

]
= 0 . (5)

The b and c annihilation and creation operators obey similar commutation relations while the different

types of annihilation and creation operator always commute e.g.
[
ap, b

†
q

]
= 0. The fact that different

types of annihilation and creation operators commute corresponds to the idea that they represent distinct

types of particle or modes (different degrees of freedom)1.

1. Vacuum Diagrams in Scalar Yukawa Theory

Let Z = 〈0|S| 0〉 =
∑

n Zn where Zn is the order O(gn) term.

(i) At O(g0) the normalisation of the free vacuum is just Z0 = 〈0|1| 0〉 = 1.

There are no O(g1) terms, Z1 = 0.

There are two vacuum Feynman diagrams contributing to the normalisation of the free vacuum

Z = 〈0|S| 0〉 at O(g2):-

6a 6b

(6)

(ii) As noted above Z0 = 1 and Z1 = 0.

Diagram 6a gives us

Z2a =
1

2
(−ig)

∫
d4x1 (−ig)

∫
d4x2∆M (x1 − x1)∆M (x2 − x2)∆m(x1 − x2) (7)

1Thus when particles and anti-particles can be distinguished, as in the complex scalar field ψ (or electrons/positrons)

then we must have a different type of operator for particles and antiparticles. Conversely when particles and antiparticles

are indistinguishable (as in the real scalar field φ or a photon). For electrons and photons, their spin means they have

additional modes so in fact we need four distinct annihilation and creation operators for spin up/down electrons/positrons,

while photons need two for the two transverse modes of propagation.
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where the order of the arguments in the propagators doesn’t matter as ∆F (x− y) = ∆F (y − x).

Z2a =
−g2

2

∫
d4x1

( ∫
d4x2∆M (0)∆M (0)∆m(x1 − x2)

)
(8)

=
−g2

2

(∫
d4x1

)
∆M (0)∆M (0)

( ∫
d4x∆m(x)

)
(9)

=
−g2

2
Ω∆M (0)∆M (0)

∫
d4x∆m(x) . (10)

To get from (7) to (10) you first note that ∆M (x1− x1) = ∆M (0) which is a constant, and likewise

for the ∆M (x2 − x2). Next change variables for the inner integral of (7) from x2 to x = x1 − x2.

The inner integral is now over x but the integrand is independent of x1 allowing you can do the

outer integral over x1. Since there is no x1 dependence left in the integrand, the integral over x1

just gives the space-time volume factor Ω =
∫
d4x1 (formally infinite).

In the same way we see that diagram 6b gives us

Z2b =
1

2
(−ig)

∫
d4x1 (−ig)

∫
d4x2∆M (x1 − x2)∆M (x2 − x1)∆m(x1 − x2) (11)

=
−g2

2

∫
d4x1

(
d4x∆M (x)∆M (x)∆m(x)

)
(12)

=
−g2

2
Ω

(∫
d4x∆M (x)∆M (x)∆m(x)

)
. (13)

(iii) If you are happy with the coordinate space rules and the results in you can arrive at in (10)

and (13) then to get to the momentum space answer you just substitute the Fourier transform

∆(x) = (2π)−4
∫
d4k exp(±ikx)∆(k).

Alternatively you can use the momentum space rules directly. For instance for diagram 6a we get

Z2a =
1

2

∫
d4k1∆M (k1)

∫
d4k3∆m(k3)

∫
d4k2∆M (k2)

×(−ig)δ4(k1 − k1 + k3) (−ig)δ4(k2 − k2 − k3) (14)

The delta function of momenta at each vertex does not fix the momentum flowing round the loop

as we have δ4(k1 − k1 + k3) = δ4(k3). So then

Z2a =
−g2

2

(∫
d4k1∆M (k1)

) (∫
d4k2∆M (k2)

) ∫
d4k3∆m(k3) δ4(k3) δ4(k3) (15)

=
−g2

2

(∫
d4k∆M (k)

)2

∆m(k3 = 0) δ4(k3 = 0) (16)

=
−g2

2

(∫
d4k∆M (k)

)2 i

−m2
Ω (17)

The delta functions from the vertices only depend on the momentum k3 flowing down the middle

propagator but we get two of these δ(k3). One kills the integral associated with the middle edge,∫
d4k3. The second delta function gives the Ω factor as

δ4(q = 0) = lim
q→0

∫
d4x eiqx =

∫
d4x = Ω (18)

if you allow me to be a little loose with regulation of this infinite quantities.
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So to summarise the first diagram 6a gives us

Z2a = Ω
−g2

2

(∫
d4k∆M (k)

)2 i

−m2
(19)

This diverges for large k (high energy or ‘ultraviolet’ limit) as (
∫
d4k k−2)2 ∼ Λ4 where Λ → ∞ is

some high energy cutoff scale.

In the same way diagram 6b gives us

Z2b = Ω
−g2

2

(∫
d4k1d

4k2 ∆M (k1)∆M (k2)∆m(k1 − k2)

)
. (20)

Counting the dimensions of the integration measures (O(k8)) and comparing against the denomi-

nators (O(k6)) we see this term only diverges as Λ2.

2. Vacuum Expectation Value for φ in Scalar Yukawa Theory

The vacuum expectation value or vev of the field φ is the 1-point Green function

v = G(x) = 〈0|Tφ̂(x)S| 0〉 . (21)

Note that because of space-time translation invariance we know that the vev will be the same wherever

in space and time we measure it. That is G(x) must be independent of the coordinate x. That is why

the vev is usually denoted by a constant v with no space time arguments.

In this question we are looking at the perturbative expansion so we define v = 〈0|Tφ̂(x)S| 0〉 =
∑

n vn
where vn is the term with all gn contributions.

(i) We have at lowest order S = 1 and so v0 = 〈0|φ(x)| 0〉 = 0. You find this by inserting the usual free

field expression for the interaction picture field φ we have two terms, one with a single annihilation

operator and the other with a single creation operator. These operators will be annihilate the bra

vacuum and the ket vacuum respectively, leaving zero overall.

There is one Feynman diagram describing the O(g1) contribution to the φ vev v, that is it is the

simplest tadpole diagram

(22)

There are no order O(g2) diagrams.

To find the order O(g3) diagrams, one way to proceed is to adorn the O(g1) tadpole with vacuum

or self-energy insertions. This gives

(a) Two diagrams where the tadpole of (22) is accompanied by one of the two vacuum diagrams

of (6a) and (6b).

(b) A diagram where on the φ line we have a φ field self-energy insertion, i.e. we replace the single

φ propagator by

(23)
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(c) A diagram where on the ψ line in the loop we have one of the two ψ field self-energy insertions,

i.e. the ψ line now looks like one of the following:-

24a 24b

(24)

Did you draw these out fully? In fact the approach suggested above gives two not three distinct

O(g3) diagrams. The diagram from (b), when inserted in the lowest order diagram (22), gives the

same O(g3) diagram as inserting the first diagram of Eqn. 23 (the tadpole self-energy contribution

to a ψ propagator) into the lowest order diagram for v, (22). This shows that playing with diagrams

is far from trivial even though its better than doing Wick’s theorem2.

The real answer at O(g3) is that there are just two distinct one-component φ tadpole diagrams

contributing to v = 〈0|Tφ̂(x)S| 0〉, along with the two diagrams describe in (a) above with two

components. You just sum over these two distinct graphs when calculating v = 〈0|Tφ̂(x)S| 0〉. If

you arrive at the same graph in two different ways, great. Include the diagram just once and the

symmetry factor takes care of any double counting. The real problem is if you miss a diagram.

(ii) The O(g) contribution to the vev (vacuum expectation value) in coordinate space is

v1 =

∫
d4x (−ig)∆m(y − x)∆M (x− x) (25)

= (−ig)

(∫
d4x ∆m(x)

)
∆M (x = 0) (26)

(iii) The momentum calculation in the previous part will be calculating the Fourier transform of the

1-point Green function v = G(x), we can exploit the space-time translation invariance, the fact the

vev is a constant, to see that the momentum space diagrams must give us something of the form

G(p) =

∫
d4x e−ipxG(x) =

∫
d4x e−ipx v = (2π)4δ4(p)v . (27)

Like all Green functions in momentum space, G(p1, . . . , pn), for our G(p) there will be an overall

momentum-conserving delta function coming from space-time translation invariance (in fact one

per component), so we already expected on those grounds that G(p) is of the form

G(p) = (2π)4δ4(p)G̃(p) . (28)

Here G̃ is just defined from this expression and must be the vev v. You can see this overall delta

function in our results below for the perturbative expansion in momentum space3.

2If you know about three-point 1PI diagrams and how they represent higher order corrections to the ordinary vertex,

you could also have tried replacing the ordinary vertex in the O(g1) diagram with such 3-point 1PI diagrams. That though

gives you the same diagram as when the second diagram in Eqn. 23 is inserted into the lowest order diagram (22).
3There is a subtle point that just because there is a symmetry in the theory as a whole, that does not mean you see

this symmetry in each individual diagram, or even in the sum of all diagrams at the same order in the perturbation series.

So here it is a good question to ask if G1(p), the first order contribution to the 1-point Green function. In fact space-time

symmetry is true order by order. As a general point, any useful expansion, in any theory not just QFT, should respect all

symmetries, something you can exploit to produce the Schwinger-Dyson equations of QFT.
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In momentum space, using the Feynman rules we should find that the O(g) contribution is4

v1(p) =

∫
d4x e−ipxv1 = (2π)4δ4(p)v1 = (−ig)∆m(p = 0)

∫
d4k∆M (k)(2π)4δ4(p+ k − k)(29)

= (−ig)∆m(p = 0)(2π)4δ4(p)

∫
d4k∆M (k) (30)

= − g

m2
(2π)4δ4(p)

(∫
d4k∆M (k)

)
(31)

Note first that there is a single overall energy momentum conserving delta function. Next note

that the integral clearly diverges as the square of some high energy scale Λ. That is we can with

a little bit of work show that
∫ Λ

dK K3/K2 ∼ Λ2 for large momenta region of the integral. Using

the space-time invariance properties of the first line (29) shows that

v1 = − g

m2

(∫
d4k∆M (k)

)
. (32)

Note on Vacuum Expectation Values

QFT is almost always done under the assumption that the vev of a field is zero. For this reason tadpole

diagrams are rarely calculated explicitly and so they are often not included in discussions. Put another

way, we almost always choose to work with a field η(x) defined such that η(x) = φ(x)− 〈0|Tφ(x)S| 0〉 so

that the (vacuum) expectation value of η(x) is by definition zero. This corresponds to our assumptions

that âk| 0〉 = 0 and that there are no terms linear in fields in the classical Lagrangian. This is at the centre

of discussions in the Unifcation course about symmetry breaking, superconductivity and superfluidity,

and the Higgs mechanism.

3. Symmetry factors in Scalar Yukawa Theory

A B C

Figure 1: Diagrams representing contributions to three different quantities in scalar Yukawa theory of

(38).

(i) (A) Diagram A in figure 1 is a vacuum diagram — it has no external legs. It represents the

difference between the free vacuum and the full vacuum in the presence of interactions.

(B) The tadpole diagram, B of 1, has one external leg. It represents a contribution to v =

〈0|φ(x)| 0〉 — the vev (vacuum expectation value) of the field φ. This has been assumed to

be zero in this course as a quick calculation will show. However when we have symmetry

breaking (i.e. when we are in a supefconducting/superfluid phase) this vev will be non-zero.

4The Green function in coordinate space is G(x) = 〈0|φ(x)| 0〉 = v here as by translation symmetry you can deduce this

is a constant. To first order in g we denote this as simply the constant v1. In momentum space the corresponding Green

function to first order in g is denoted G(p) = v1(p).
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In perturbation theory, we would generally work with redefined fields to ensure all the fields

have zero expectation value i.e. we are looking at “small” fluctuations around the true lowest

energy state. This would be encoded by finding that a different state other than | 0〉 (or |Ω〉
if interactions are included) represents the true vacuum.

(C) Diagram C of 1 represents quantum corrections to the propagator for the real φ field — it

contains a self-energy insertion. It will tell us if the effective mass changes with energy scale.

That is if we are working at energy scales P then we will find that the φ propagator is roughly

of the form i/(P 2 − (M(P 2))2) but that the effective mass M(P ) depends on P with only at

the physical mass scale is this mass parameter exactly equal to the physical mass, i.e. we define

the physical mass to be M(P 2 = m2
phys) = m2

phys. This M(P 2) is called the “running mass”

and reflects the fact that quantum fluctuations, the interactions with virtual particles, changes

the propagation of energy and momentum in a complicated way but one we can calculate.

(ii) The other vacuum diagram at O(g2) is A2

A2 (33)

(iii) The symmetry factors for the diagrams in figure 1 are most easily found by simple counting of the

contractions. You can try using the various descriptions of a rule given in books but I always find

these confusing.

(A) The vacuum diagram in figure 1 has a symmetry factor of 2.

Each of the two tadpoles5 can not be changed as the two legs are different (one with arrow in,

one with arrow out). However we can switch the two vertices around. However I can never

see this without doing the Wick expansion.

The other O(g2) vacuum diagram, A2 of (33), has a the same symmetry factor as again,

switching the two vertices changes nothing.

This diagram comes from contributions of the form

V2 =
(−ig)2

2!

∫
d4x1d

4x2 〈0|T
(
φ1ψ

†
1ψ1φ2ψ

†
2ψ2

)
| 0〉 (34)

where φi = φ(xi) etc. For our purposes we need only track the numerical factors such as the

2! in the denominator coming from the expansion of the exponential in the S matrix to second

order. This is also why we may as well work in terms of the coordinate space representation

not the momentum representation though the latter we would use for the actual calculation.

The first diagram, A of figure 1, comes from the case where we contract each ψ†i with the ψi
of the same coordinate, giving us a factor of ∆M (x = 0). There is only one way to do this.

Likewise the last contraction always has to be between φ1 and φ2 giving ∆m(x1 − x2) and

there is only one way to do this. Thus we have no other numerical terms. Normally we would

not include the 1/n! factor coming from the expansion of the S matrix, the factor 1/2! here,

5In diagram A in figure 1, each ψ propagator loop is part of a subdiagram with a single leg coming out, i.e. each can be

considered to be a tadpole subdiagram.
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when calculating Feynman diagrams. here there is nothing to cancel it so we must supplement

our usual contributions with a 1/2 so the symmetry factor is S = 2 in this case.

The second vacuum diagram, A2 of (33), comes from the case where we contract each ψ†i with

the ψ of the opposite coordinate but again there is still only one way to do this. There is again

no choice for the contraction between φ1 and φ2. Thus we again have no other numerical terms

so only the factor of 2! in the denominator is left so the symmetry factor is again S = 2 in this

case.

(B) The tadpole diagram of figure 1 has a symmetry factor of 1. This diagram comes from the

contribution at O(g1) to the vev (vacuum expectation value) of φ, v(x0) = 〈0|φ(x0)| 0〉, of the

form

v1 =
(−ig)

1!

∫
d4x1 〈0|T

(
φ0φ1ψ

†
1ψ1

)
| 0〉 (35)

where φi = φ(xi) etc. There is only one way to contract the φ fields with each other) and only

one way to contract the ψ†a with the ψ1 so there are no numerical factors here.

(C) The diagram with a self-energy insertion shown in diagram (C) has a symmetry factor of 1.

This diagram comes from the contribution at O(g2) to the full propagator of φ, v(x0) =

〈0|φ(x0)φ(x3)| 0〉, of the form

Π2(x0 − x3) =
(−ig)2

2!

∫
d4x1d

4x2 〈0|T
(
φ0φ1ψ

†
1ψ1φ2ψ

†
2ψ2φ3

)
| 0〉 (36)

where φi = φ(xi) etc. To get this diagram the φ0 can be contracted with a φ from either of

the internal vertices, i.e. with φ1 or φ2. This gives a factor of 2, the usual permutation of the

internal vertices which generally cancels the 1/n! factor coming from the expansion of the S

matrix. Note the φ0φ3 contraction means we have a disconnected vacuum diagram and that

is not C. So wlog we chose one of these two options, say that we have φ0φ1 and φ2φ3.

There are two options for the ψ contractions. If we contract each ψ†i with the ψi of the same

coordinate, we get a different diagram. That is we get a pair of disconnected vev contributions,

each part of the form shown in figure B. Again that is a different diagram from the one we

have.

So we only need consider the contraction between each ψ†i with the ψ of the opposite coordinate.

There is only one way to do this, so no more numerical factors are produced.

Note that if you are trying to find the symmetry factors by finding the number of permutations

of internal lines which leave the diagram invariant, then you have to realise that the internal

line in diagram C are not identical as the arrows are in opposite directions. Arrows can make

a difference. If we had a diagram with no lines on the internal propagators (so we have some

sort of (g/2)φηη interaction where both φ and η are real fields) then the symmetry factor

would be two not one.

(iv) The function under the integrals must be a function of (x1−x2) by Lorentz invariance. Indeed here

is is simply ∆m(x1 − x2). We can do the x2 integral first and change variables to x′ = x2 − x1 to

see the result in independent of the last x1 integration. Thus that generates a space-time volume

factor of V T .

A similar argument works for the tadpoles. We can change the x1 integration variable to be

x′ = x1 − x0 and then the result is clearly independent of x0.
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4. ψ2 Scattering in Scalar Yukawa Theory

We are considering the the case of ψψ → ψψ scattering with incoming ψ particles of three-momenta p1

and p2 while the outgoing ψ particles have three-momenta q1 and q2. The matrix element is M where

M = 〈f |S| i〉 = 〈q1, q2|S| p1, p2〉 =
∞∑
n=0

Mn , M∼ O(gn) . (37)

(i) Interaction Hamiltonian for this theory is

Hint = g

∫
d3x ψ†(x)ψ(x)φ(x) (38)

where the coupling constant g is real and a measure of the interaction strength. The Lagrangian

is just of the general form L = Πφ̇ − H so as the interaction term has no derivatives it simply

appears as a −Hint term in the Lagrangian. The moving to the density just removes the
∫
d3x so

the quadratic terms will be the usual ones for real φ and complex ψ fields (note the different factors

of 1/2) with a −gψ†(x)ψ(x)φ(x) from the non-linear, cubic, interaction term. So the scalar Yukawa

theory has the Lagrangian density

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 + (∂µψ

†)(∂µψ)−M2ψ†ψ − gψ†(x)ψ(x)φ(x) (39)

(ii) Here we are considering

M = 〈f |S| i〉 = 〈q1, q2|S| p1, p2〉 = A〈0|b(q1)b(q2)Sb†(p1)b†(p2)| 0〉 (40)

ignoring, for now, possible corrections to the vacuum coming from interactions (this will be con-

sidered later in the course). The factor A = (16Ω(p1)Ω(p2)Ω(q1)Ω(q2))1/2 comes from the normal-

isation of operators and states used here. To lowest order in g we have S = 1 so that we want to

consider

A−1.M0 = 〈0|b(q1)b(q2)b†(p1)b†(p2)| 0〉 (41)

= 〈0|b(q1)
(
b†(p1)b(q2) + δ3(p1 − q2)

)
b†(p2)| 0〉 (42)

= 〈0|b(q1)b†(p1)b(q2)b†(p2)| 0〉+ δ3(p1 − q2)〈0|b(q1)b†(p2)| 0〉 (43)

= 〈0|
(
b†(p1)b(q1) + δ3(p1 − q1)

)
b(q2)b†(p2)| 0〉

+δ3(p1 − q2)〈0|
(
b†(p2)b(q1) + δ3(p2 − q1)

)
| 0〉 (44)

= δ3(p1 − q1)〈0|b(q2)b†(p2)| 0〉+ δ3(p1 − q2)〈0|b(q1)b†(p2)| 0〉 (45)

= δ3(p1 − q1)δ3(p2 − q2) + δ3(p1 − q2)δ3(p2 − q1) (46)

(iii) If we haveMn for n is odd then we will have an odd number of φ terms coming from (Hint)
n. From

Wick’s theorem we know that the only non-zero terms will be ones where all fields are contracted

with another, terms with a normal ordered factor present are zero. The only contractions involving

φ which are non-zero are contractions between two φ fields so we need an even number of φ fields

to get a non-zero results. There are no φ terms in the initial and final states, so they must all come

from the S matrix. So odd orders in n have odd numbers of φ factors and so must be zero.

In terms of diagrams for every power of g we get another vertex. These vertices have only one φ

leg coming out. There are no external φ legs as the initial and final states are only built from ψ

fields. So an odd number of vertices, n odd, means that we can not connect our φ edges in pairs as

needed.
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(iv) Substituting in the form (2) for the field ψ, you find that(∫
d3y exp{−ipy}2Ω(p)

)
ψ̂(y)| 0〉 =

∫
d3k√
2Ω(k)

2Ω(p)

∫
d3y e−i(p−k)y (47)

=

∫
d3k√
2Ω(k)

2Ω(p)δ3(p− k) e−i(Ω(p)−Ω(k))tb̂†k| 0〉 (48)

=
√

2Ω(p)b̂†k| 0〉 =
√

2Ω(p)|ψ(p)〉 = |ψ(p)〉 (49)

where t = y0. The |ψ(p)〉 state is the one ψ particle state with the appropriate normalisation for

relativistic calculations while |ψ(p)〉 = b̂†k| 0〉 has the standard normalisation usually encountered

when first looking at QHO.

We can repeat the process for the second ψ particle but now we need to introduce labels on the

momenta of incoming particles, p1 and p2.

|ψ(p1), ψ(p2)〉 =
√

2ω(p1)
√

2ω(p2)|ψ(p1), ψ(p2)〉 (50)

=

(∫
d3y1 exp{−ip1y2}2Ω(p1)

)(∫
d3y2 exp{−ip2y2}2Ω(p2)

)
ψ̂(y1)ψ̂(y2)| 0〉(51)

=
∏
i=1,2

(∫
d3yi exp{−ipiyi}2Ω(pi)

)
ψ̂(y1)ψ̂(y2)| 0〉 (52)

Taking the hermitian conjugate will give us the final state in this case, provided we also switch the

labels for momenta and coordinates appropriately. That is we have

〈ψ(q1), ψ(q2)| =
∏
f=1,2

(∫
d3zf exp{+iqfzf}2ω(qf )

)
〈0|ψ̂(z1)ψ̂(z2) (53)

From our expression (37), we then have that the relationship between the matrix element M and

the relevant Green function for this ψψ → ψψ scattering process in Scalar Yukawa theory is just

M(φ→ ψ̄ψ) =
∏
f=1,2

(∫
d3zf exp{+iqfzf}2ω(qf )

) ∏
i=1,2

(∫
d3yi exp{−ipiyi}2Ω(pi)

)
× G(z1, z2, y1, y2) (54)

G(z1, z2, y1, y2) = 〈0|Tψ(z1)ψ(z2)ψ(y1)ψ(y2)S| 0〉 (55)

where the order you write the operators in the vacuum expectation value is irrelevant as that is

fixed by the time ordering.

(v) The two Feynman diagrams for G which contribute to M0 are (no vertices in either)

y
1

y
2

z
1

z
2

y
1

y
2

z
1

z
2

(56)

(vi) In terms of Feynman diagrams, the lack of O(g1) diagrams contributing to ψψ → ψψ scattering

is encoded in the rules we have for joining vertices by propagators. If we had a diagram at O(g1)
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it means we have one vertex. That means it has one φ leg. However, this can not end anywhere.

There are no other vertices allowed at this order so it can not end at another vertex. There are

no φ in the initial or final states which could be linked to this propagator. We can not construct a

legal diagram at this order if we follow the rules for diagrams in this theory.

(vii) The Feynman diagrams which contribute to the ψψ → ψψ scattering matrix element M2 at O(g2)

are shown in the following equations 57, 58 and 59. Further similar diagrams are indicated in the

accompanying text.

Diagrams representing first non-trivial contribution (O(g2)) in the perturbative expansion for the

ψψ → ψψ scattering process in scalar Yukawa theory of (39) are shown in equation (57).

y
1

y
2

z
1

z
2

y
1

y
2

z
1

z
2

57a 57b

(57)

For these diagrams (57), the symmetry factors are S = 1, no symmetries under exchange of internal

lines. Remember that the arrows on the lines make a difference when assessing if exchanging internal

lines leaves the diagram invariant.

To find the number of loops in diagrams (57)a and (57)b, using this formula is overkill as indeed

it is for most examples we have in this course. You can see, literally, there are no loops in either

(57)a or (57)b.

If you want to practice using the formula then in both diagrams of (57), the number of internal

edges is I = 1, there are two vertices so V = 2, and each has just one component so C = 1. Using

L = I − V + C we find there are no loop momenta confirming our visual identification.

The diagrams in (58) also contribute at O(g2) to the ψψ → ψψ scattering process in scalar Yukawa

theory of (39) but consist of self-energy contributions to the ψ propagator so do not change the

non-trivial interactions. There are also the same diagrams but with q1 and q2 switched round and

with the self-energy contribution on the p2 leg not on the p1 leg. This gives us 8 distinct diagrams
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in total of this self-energy type.

y
2

z
1

z
2

y
1

y
2

z
1

z
2

y
1

58a 58b

(58)

The symmetry factors in the diagrams of (58) are S = 1, no symmetries under exchange of internal

lines. Note that the first diagram, 58a, is a tadpole contribution. Such tadpole contributions are

considered in the question on vacuum expectation values of φ.

To find the number of loops is trivial here by observation; the diagrams of (58) each have one loop,

L = 1. However, if you want to use the formula, then consider each component of each diagram

separately. So start with the non-trivial component of (58) (the top part with y1 and z1 external

legs). There we see the number of internal edges is I = 2, there are two vertices so V = 2 and there

is just one component in that subdiagram, C = 1. Using L = I − V + C we find there is one loop

momenta.

It is important to not two things here. First the contribution to the formula L = I − V + C from

each separate component is linear, so we can apply this formula to each component separately and

it is easier to do so. Second this formula L = I−V +C fails when applied to the diagram of a single

line, at least given the rules stated in this course6. For a single line we have one component and no

internals lines or vertices yet clearly no loop momenta. This is why best to focus on the vacuum

subdiagram which, like any diagram with at least one internal vertex, follows the L = I − V + C

rule. Better still, just spot the loops by inspection or at least as a common sense check.

6It is possible to change the way we count the elements of a diagram but the only problem with our framework is for

this simple example. I prefer to just treat this case, where an external line is not connected to an internal vertex, as an

exception.
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These last type of diagrams at O(g2) are

y
1

y
2

z
1

z
2

y
1

y
2

z
1

z
2

59a 59b

(59)

These are not usually included when calculating contributions at O(g2) to the ψψ → ψψ scattering

process in scalar Yukawa theory of (39). The disconnected parts are vacuum diagrams which capture

the difference between the vacuum in free theory (| 0〉) and in the fully interacting theory (|Ω〉).
These contributions are cancelled when the normalisation factor (Z = 〈0|S| 0〉) is included which is

used to express the execration value in the vacuum of the full interacting theory (|Ω〉) in terms of

free vacuum expectation values 〈0|T (fields)| 0〉. There are two further diagrams which are identical

except the q1 and q2 are swapped making a total of 4 distinct diagrams with vacuum contributions.

The vacuum diagrams in (59) have symmetry factors S = 2 coming from the interchange of the

vertices as there are no external legs pinning these down. I had to use Wick’s theorem to see this.

As before, the linearity of the L = I−V +C = 2 formula means we can just focus on the non-trivial

vacuum components, ignoring the single line components which are again the only exceptions to

this rule. Each of the vacuum subdiagrams in (59) has two loop momenta since the number of

internal edges is I = 3, there are two vertices so V = 2 and there is just one component in that

subdiagram, C = 1. Using L = I − V + C = 2 we find there are two loop moments, certainly

obvious in the diagram 59a, perhaps less so in 59b.

I would again note that using this formula is overcomplicated for 59a as I would contend there are

two very obvious loops in the diagram. I would concede that without some experience is harder

to know that there are two independent loops in the vacuum subdiagram of 59b so knowingthe

formula might help here but this example is about as difficult as we are likely to get in this course.

(viii) We have for the first diagram in 57

G(z1, z2, y1, y2) =

−g2

∫
d4x1

∫
d4x2 ∆M (y1 − x1)∆M (x1 − z1)∆m(x1 − x2)∆M (y2 − x2)∆M (x2 − z2) (60)

The symmetry factor is 1 in each case. The second diagram is the same expression except that z1

(labelled as q1 in the diagram 57b) switched is switched with with z2.

We have for the first diagram with self-energy contributions, shown in 58a, that

G2A(z1, z2, y1, y2) =

−g2

∫
d4x1

∫
d4x2 ∆M (y1 − x1)∆M (x1 − z1)∆m(x1 − x2)∆M (x2 − x2)∆M (y2 − z2) (61)
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where again the symmetry factor is 1. There is another term where the self-energy contribution

is on the other leg, so basically where we switch the 1 and 2 labels on yi and zf (not on the x’s)

to give a total of two terms. These two terms each have a partner where just y1 is switched with

y2, leaving us with four terms of the same form but with various permutations of the coordinates

(momenta) of the external lines, i.e. of the final and initial states.

For the second diagram with a self-energy contribution in 58 we have that

G2A(z1, z2, y1, y2) =

−g2

∫
d4x1

∫
d4x2 ∆M (y1 − x1)∆m(x1 − x2)∆M (x1 − x2)∆M (x2 − z1)∆M (y2 − z2) (62)

where again the symmetry factor is 1. There is another term where the self-energy contribution is

on the other leg, so basically where we switch the 1 and 2 labels on yi and zf (not on the x’s) to

give a total of two terms. If we switch just the labels on the two external legs alone, we get two

more contributions. This leaves us with four terms of the same form but with various permutations

of the external leg coordinates, y1, y2, z1 and z2 (likewise with external momenta if you work in

momentum space).

For the diagrams with a vacuum contribution we always pick up the same contribution as given

above for the O(g0), multiplied by a vacuum diagram contribution. The vacuum contributions are

written out in equations (7) and (11) below. The vacuum diagram in the both cases has a symmetry

factor is 2 (see the next question to see how I found that for 59a).

(ix) The type of diagram is mentioned in the text above for each case. The tadpole contributions are

considered in the question on vacuum expectation values of φ. The question on vacuum diagrams

gives more detail on those diagrams.

(x) The diagrams are exactly the same.

However the diagrams now represent a different expression for a different object. The expression

is now written in terms of momentum dependent propagators ∆M (p) and ∆m(p). This expression

is a contribution in the perturbative expansion of G(p1, p2, q1, q2) — the Fourier transform of the

coordinate space Green function G(z1, z2, y1, y2). In the earlier parts of this question using the

same diagrams but applying the coordinate space Feynman rules we were finding perturbative

contributions to this coordinate space Green function G(z1, z2, y1, y2).

Another way to see this is to take the contributions to the coordinate Green function G(z1, z2, y1, y2)

represented by the expression given by the coordinate space Feynman rules for the same dia-

grams. Now take the Fourier transform of that expression which gives us G(p1, p2, q1, q2) but

written in terms of coordinate space propagators ∆(x). If you then substitute for these coordinate

propagators using their expression in terms of a Fourier transform of a momentum propagator,

∆(x) =
∫
δ4k∆(k), you will find you can do all the coordinate integrations associated with the

vertices. What you will end up with is just the same answer as we got using momentum space rules

directly on the same set of Feynman diagrams.
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5. φ→ ψψ̄ Decay in Scalar Yukawa Theory

Consider the decay of a φ particle of Mass m into a ψ-ψ̄ pair (each of mass M) in the scalar Yukawa

theory with interactions defined by (38).

(i) The matrix element we wish to have is

M(φ→ ψ̄ψ) = 〈ψ(q1), ψ̄(q2)|S|φ(p)〉 (63)

〈ψ(q1), ψ̄(q2)| = 〈0|b̂(q1)ĉ(q2)
√

4Ω(q1)Ω(q2) (64)

|φ(p)〉 =
√

2ω(p)â†(p)| 0〉 (65)

where â(p) = âp etc is used to make the subscripts on the momentum arguments clear.

(ii) Substituting in the form (1) for the field φ, you find that(∫
d3y exp{−ipy}2ω(p)

)
φ̂(y)| 0〉 =

∫
d3k√
2ω(k)

2ω(p)

∫
d3y e−i(p−k)y (66)

=

∫
d3k√
2ω(k)

2ω(p)δ3(p− k) e−i(ω(p)−ω(k))tâ†k| 0〉 (67)

=
√

2ω(p)|φ(p)〉 = |φ(p)〉 (68)

where t = y0. The | p〉 state is the one φ particle state with the appropriate normalisation for

relativistic calculations while |φ(p)〉 = â†k| 0〉 has the standard normalisation usually encountered

when first looking at QHO.

Taking the hermitian conjugate shows us that (switching to the convention in the lectures of using

z and q for final state coordinates and momentum, write this out to check if you want)

〈0|φ̂(z)

(∫
d3z exp{+iqz}2ω(q)

)
= 〈φ(q)|. (69)

Changing to the complex field case will work exactly the same way so we deduce (or write it out

to check this) that

〈0|ψ̂(z)

(∫
d3z exp{+iqz}2ω(q)

)
= 〈ψ(q)|. (70)

〈0|ψ̂†(z)
(∫

d3z exp{+iqz}2ω(q)

)
= 〈ψ̄(q)|. (71)

Since the two particles in the final state are distinct there is no problem applying the each of the

one-particle ψ and ψ† examples together (all the relevant operators commute). From our expression

(65), we then have that the relationship between the matrix element M and the relevant Green

function for this φ→ ψψ̄ decay process in Scalar Yukawa theory is just

M(φ→ ψ̄ψ) =

(∫
d3z1 exp{+iq1z1}2ω(q1)

)(∫
d3z2 exp{+iq2z2}2ω(q2)

)
(∫

d3y exp{−ipy}2ω(p)

)
G(z1, z2, y) (72)

G(z1, z2, y) = 〈0|Tψ(z1)ψ†(z2)φ(y)S| 0〉 (73)

where the order you write the operators in the vacuum expectation value is irrelevant as that is

fixed by the time ordering.
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E F

G

H I

A B

C D

Figure 2: The Feynman diagrams for the full Green function describing the decay φ → φψ̄ in Scalar

Yukawa theory showing all contributions up to O(g3).
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(iii) The Feynman diagrams for the full Green function which correspond to contributions to M up to

O(g3) for the decay of the φ particle.

The symmetry factor and the number of loop momenta for each diagram is as follows

Diagram Symmetry factor Loop momenta Type

S L

A 1 0 Γ1

B 1 1 Γ3

C 1 1 Σψ

D 1 1 Σψ

E 1 1 Σψ and tadpole

F 1 1 Σψ and tadpole

G 1 1 Σφ

H 2 2 Vacuum

I 2 2 Vacuum

Other More diagrams

with tadpoles

(74)

(iv) The type of each diagram is given in (74).

The contributions labelled Γn are three-point 1PI diagram of order O(gn). These are the core

contributions which really capture the QFT effects of the interaction and they describe how quantum

fluctuations alter the effective strength of the interaction7. A 1PI diagram not be cut into two parts

by cutting any one internal line. This is not true for the remaining diagrams and the effects described

by the remaining diagrams will all be absorbed into other quantities once you have learnt the tricks

to deal with such corrections.

The contributions labelled vacuum have vacuum diagrams, that is parts of the whole diagram are

disconnected from the external legs. These disconnected parts represent the virtual fluctuations in

the vacuum of a fully interacting theory. They are eliminated when we use the vacuum of the full

interacting theory (|Ω〉) not the free vacuum state, | 0〉, we are currently using.

The contributions labelled Σφ come from self-energy corrections to the φ field propagator, while

the Σψ is a ψ field self-energy correction. By cutting these diagrams in the right place you would

have two parts, one the core diagram (A) representing the decay process, and the second would be

a contribution to a two-point Green function so represent corrections to the free field propagators.

Such propagator corrections can be summed up and absorbed into the effective mass and propagator

(wavefunction) normalisation so again these are not really addressing the decay process directly.

Any diagram with a tadpole has a part connected to the rest of the diagram by a single edge (here

a φ field propagator). By themselves these tadpole diagrams give the vev (vacuum expectation

value) of the φ field, that is 〈0|Tφ(x)S| 0〉. In this QFT course we are implicitly assuming such vev

are zero for all fields e.g. the vev depends on the normal ordered product of a single field which

we are assuming is zero8. You can then deduce that diagrams with tadpoles will sum with other

7The proper way to tackle this issue is to use a renormalisation group approach which which be encountered in more

advanced discussions.
8To be more precise the relation that âk| 0〉 = 0 assumes that | 0〉 is the free non-interacting vacuum we want. In fact as

problem sheet 1 indicated there are other (infinitely many) possible free vacua. It turns out that when we have symmetry

breaking (see the Unification course), we need to work with a different free vacuum. We need to rearrange our fields if we are
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tadpole diagrams to give zero because the vev is zero. If we have a problem where the dynamics of

the theory produce a non-zero vev for a scalar field, then we have symmetry breaking (the Higgs

mechanism) which requires further work outside this course.

In fact there are more tadpole diagrams in the general Green function. For instance the incoming

decaying φ line can connect to one of these tadpoles. This would represent a φ particle being

absorbed by the vacuum. The ψ and ψ̄ lines can then connect to each other. This is just an O(g)

diagram so you can then throw in self-energy or vacuum corrections to get many more O(g3) terms

built on this type of O(g) diagram. There are several reasons I ignored this type without thinking

but formally it will appear in an expression for the Green function. First the tadpoles are zero

as 〈0|φ(x)| 0〉 = 0. Secondly the way the ψ propagator matches the final state particles in this

case already means this diagram can not contribute to the matrix element for φ decay, though it

is formally present in the generic Green function. Finally these will be disconnected diagrams and

these can always be reinterpreted as corrections to other quantities. Just as the vacuum diagram

contributions can be dropped by demanding that we work with the full interacting vacuum, any

disconnected diagram will represent “trivial” corrections to other aspects, here the ψ propagator

or the φ vacuum expectation value.

(v) You may work in terms of coordinates or in terms of momenta. The shape of the diagrams for

Green functions are the same in both cases. To get from the coordinate diagrams given above,

a representation of G(z1, z2, y1, y2), just replace the labels on the external legs, so yi → pi and

zf → pf in the conventions used here.

to work with Wick’s theorem in the way we have done in this course. What we need is to make sure the vacuum expectation

value of odd numbers of fields is zero. That implies we must work with fields with a zero vev. So the first step is to work

with a new scalar field η(x) = φ(x) − 〈0|Tφ(x)S| 0〉 so that 〈0|Tη(x)S| 0〉 = 0 by definition. We can then use the work of

this course without further problems.


