QFT PS6 Solutions: Scalar Yukawa Theory (3/1/19) 1
Solutions 6: Scalar Yukawa Theory

In the interaction picture, the field operators in the scalar Yukawa theory, for real scalar field ¢ of mass
m and complex scalar field ¥ with mass M, take the form

d3p 1 —ipx T +ipz
@) = WTW(GPS +ap e ™), po=wp =0. (1)
P
dp 1 —ipz ipx
vl = /wmwpe P o), =0y >0, e

where the dispersion relations are
wp = +|VPP M 20, (3)
O = + |V =0 (4)

and the annihilation and creation operators obey their usual commutation relations

{ap,a:rl} = (2m)30%(p — q), lap, aq] = [QL, ag} =0. (5)

The b and ¢ annihilation and creation operators obey similar commutation relations while the different
types of annihilation and creation operator always commute e.g. [ap, bH = 0. The fact that different
types of annihilation and creation operators commute corresponds to the idea that they represent distinct
types of particle or modes (different degrees of freedom)?.

1. Vacuum Diagrams in Scalar Yukawa Theory

Let Z = (0]S|0) = )",  Z, where Z,, is the order O(g") term.

(i) At O(g°) the normalisation of the free vacuum is just Zy = (0[1]0) = 1.
There are no O(g') terms, Z; = 0.

There are two vacuum Feynman diagrams contributing to the normalisation of the free vacuum

Z = {0]S]0) at O(g?):-
o0
6

a 6b

(ii) As noted above Zp =1 and Z; = 0.

Diagram 6a gives us

Ty = %(—ig) / day (—ig) / A2 Anr (21 — 21)Ang (2 — 29) A (21 — T2) (7)

!Thus when particles and anti-particles can be distinguished, as in the complex scalar field 1 (or electrons/positrons)
then we must have a different type of operator for particles and antiparticles. Conversely when particles and antiparticles
are indistinguishable (as in the real scalar field ¢ or a photon). For electrons and photons, their spin means they have
additional modes so in fact we need four distinct annihilation and creation operators for spin up/down electrons/positrons,
while photons need two for the two transverse modes of propagation.
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(iii)

where the order of the arguments in the propagators doesn’t matter as Ap(x —y) = Ap(y — x).

Zoq = _292/d4x1 </d4x2AM(O)AM(O)Am(x1 —.Tg)) (8)
= ‘292 < / d4x1> Apr(0)Ax(0) < / d4xAm(x)> (9)
— A 0)Au0) [zt (10)

To get from (7) to (10) you first note that Ays(z1 —x1) = Apr(0) which is a constant, and likewise
for the Aps(xe — x2). Next change variables for the inner integral of (7) from x9 to x = x1 — 2.
The inner integral is now over x but the integrand is independent of x; allowing you can do the
outer integral over x;. Since there is no x1 dependence left in the integrand, the integral over z;
just gives the space-time volume factor Q = [ d*z; (formally infinite).

In the same way we see that diagram 6b gives us

Zu = 5(-ig) / d'zy (~ig) / d w2 Ay (ey — 22) Ay (w2 — 21) A (w1 —w2) (1)
)

- 7 / a1 (@' e Ay () Ay (2) A () (12)
2

- 799 ( / d4xAM(x)AM(x)Am(x)). (13)

If you are happy with the coordinate space rules and the results in you can arrive at in (10)
and (13) then to get to the momentum space answer you just substitute the Fourier transform
A(z) = (2m)~* [ d*k exp(Fikz)A(k).
Alternatively you can use the momentum space rules directly. For instance for diagram 6a we get
1
Zoy = 2/d4k1AM(k1) /d4k‘3Am(/~c3) /d‘lk‘gAM(kQ)
X (—ig)8* (k1 — k1 + k3) (—ig)6* (k2 — k2 — k3) (14)

The delta function of momenta at each vertex does not fix the momentum flowing round the loop
as we have 6*(k; — k1 + k3) = 6%(k3). So then

Zoq = _92</d4k1AM(k1)) (/d4k2AM(k2)) /d4k3Am(k3) §4(k3) 6%(k3)  (15)

2
_ _292 (/ d4kAM(k:))2 A (ks = 0) (k3 = 0) (16)
_ _292 (/ d4kAM(k:))2 m— (17)

The delta functions from the vertices only depend on the momentum k3 flowing down the middle
propagator but we get two of these §(ks3). One kills the integral associated with the middle edge,
[ d*ks. The second delta function gives the Q factor as

54 (g =0)=lim [ d'z %" = /d4m =Q (18)

q—0

if you allow me to be a little loose with regulation of this infinite quantities.
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So to summarise the first diagram 6a gives us

Zoy = 9_292 </d4k:AM(k)>2 ! (19)

—m?2

This diverges for large k (high energy or ‘ultraviolet’ limit) as ([ d*kk™2)? ~ A% where A — oo is
some high energy cutoff scale.

In the same way diagram 6b gives us
2
Zy = 0% ( / Bt @ Ang(t) g (ko) Ay — k2)> . (20)

Counting the dimensions of the integration measures (O(k®)) and comparing against the denomi-
nators (O(k®)) we see this term only diverges as A2.

2. Vacuum Expectation Value for ¢ in Scalar Yukawa Theory

The vacuum expectation value or vev of the field ¢ is the 1-point Green function
v=G(z) = (0|T)(x)S]0). (21)

Note that because of space-time translation invariance we know that the vev will be the same wherever
in space and time we measure it. That is G(x) must be independent of the coordinate x. That is why
the vev is usually denoted by a constant v with no space time arguments.

In this question we are looking at the perturbative expansion so we define v = (0|T¢(z)S|0) = Y onn
where v, is the term with all g" contributions.

(i) We have at lowest order S = 1 and so vg = (0]|¢(z)|0) = 0. You find this by inserting the usual free
field expression for the interaction picture field ¢ we have two terms, one with a single annihilation
operator and the other with a single creation operator. These operators will be annihilate the bra
vacuum and the ket vacuum respectively, leaving zero overall.

There is one Feynman diagram describing the O(g') contribution to the ¢ vev v, that is it is the
simplest tadpole diagram

' (22)
There are no order O(g?) diagrams.
To find the order O(g3) diagrams, one way to proceed is to adorn the O(g!) tadpole with vacuum

or self-energy insertions. This gives

(a) Two diagrams where the tadpole of (22) is accompanied by one of the two vacuum diagrams
of (6a) and (6b).

(b) A diagram where on the ¢ line we have a ¢ field self-energy insertion, i.e. we replace the single
¢ propagator by
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(iii)

(c) A diagram where on the v line in the loop we have one of the two 1) field self-energy insertions,
i.e. the 9 line now looks like one of the following:-

I . . au*

24a 24b

Did you draw these out fully? In fact the approach suggested above gives two not three distinct
O(g®) diagrams. The diagram from (b), when inserted in the lowest order diagram (22), gives the
same O(g?) diagram as inserting the first diagram of Eqn. 23 (the tadpole self-energy contribution
to a 1 propagator) into the lowest order diagram for v, (22). This shows that playing with diagrams

is far from trivial even though its better than doing Wick’s theorem?.

The real answer at O(g?) is that there are just two distinct one-component ¢ tadpole diagrams
contributing to v = (0|T$(x)S|0), along with the two diagrams describe in (a) above with two
components. You just sum over these two distinct graphs when calculating v = (0|T(x)S|0). If
you arrive at the same graph in two different ways, great. Include the diagram just once and the
symmetry factor takes care of any double counting. The real problem is if you miss a diagram.

The O(g) contribution to the vev (vacuum expectation value) in coordinate space is
v = /d4§c (—ig)Am(y — x)Ap(x — ) (25)
= (~ig) ( [ Am(x)> Ani(z = 0) (26)

The momentum calculation in the previous part will be calculating the Fourier transform of the
1-point Green function v = G(x), we can exploit the space-time translation invariance, the fact the
vev is a constant, to see that the momentum space diagrams must give us something of the form

G(p) = /d4x e P Q(x) = /d4$ e~y = (2m) 45t (p)v. (27)

Like all Green functions in momentum space, G(p1,...,pn), for our G(p) there will be an overall
momentum-conserving delta function coming from space-time translation invariance (in fact one
per component), so we already expected on those grounds that G(p) is of the form

G(p) = (2m)*0" ()G (p) - (28)

Here G is just defined from this expression and must be the vev v. You can see this overall delta

function in our results below for the perturbative expansion in momentum space?.

2If you know about three-point 1PI diagrams and how they represent higher order corrections to the ordinary vertex,

you could also have tried replacing the ordinary vertex in the O(g*) diagram with such 3-point 1PI diagrams. That though

gives you the same diagram as when the second diagram in Eqn. 23 is inserted into the lowest order diagram (22).
3There is a subtle point that just because there is a symmetry in the theory as a whole, that does not mean you see

this symmetry in each individual diagram, or even in the sum of all diagrams at the same order in the perturbation series.

So here it is a good question to ask if G1(p), the first order contribution to the 1-point Green function. In fact space-time

symmetry is true order by order. As a general point, any useful expansion, in any theory not just QFT, should respect all

symmetries, something you can exploit to produce the Schwinger-Dyson equations of QFT.
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In momentum space, using the Feynman rules we should find that the O(g) contribution is*

v (p) = / d'ze Py = (2m)* 04 (p)or = (—ig)Am(p=0) / a'kAp (k) (2m) 6t (p + k — k)(29)

= (—ig)An(p = 0)(2m)'5' (p) / kA (k) (30)

- (27r )45t (p (/d‘%AM )) (31)

Note first that there is a single overall energy momentum conserving delta function. Next note
that the integral clearly diverges as the square of some high energy scale A. That is we can with
a little bit of work show that [ N AK K3 /K? ~ A? for large momenta region of the integral. Using
the space-time invariance properties of the first line (29) shows that

v = —% ( / d4kAM(k)> . (32)

Note on Vacuum Expectation Values

QFT is almost always done under the assumption that the vev of a field is zero. For this reason tadpole
diagrams are rarely calculated explicitly and so they are often not included in discussions. Put another
way, we almost always choose to work with a field n(z) defined such that n(x) = ¢(x) — (0|T¢(z)S|0) so
that the (vacuum) expectation value of 7(x) is by definition zero. This corresponds to our assumptions
that ag|0) = 0 and that there are no terms linear in fields in the classical Lagrangian. This is at the centre
of discussions in the Unifcation course about symmetry breaking, superconductivity and superfluidity,
and the Higgs mechanism.

3. Symmetry factors in Scalar Yukawa Theory

Figure 1: Diagrams representing contributions to three different quantities in scalar Yukawa theory of
(38).

(i) (A) Diagram A in figure 1 is a vacuum diagram — it has no external legs. It represents the
difference between the free vacuum and the full vacuum in the presence of interactions.

(B) The tadpole diagram, B of 1, has one external leg. It represents a contribution to v =
(0|¢(z)| 0) — the vev (vacuum expectation value) of the field ¢. This has been assumed to
be zero in this course as a quick calculation will show. However when we have symmetry
breaking (i.e. when we are in a supefconducting/superfluid phase) this vev will be non-zero.

“The Green function in coordinate space is G(z) = (0|¢(x)| 0) = v here as by translation symmetry you can deduce this
is a constant. To first order in g we denote this as simply the constant v;. In momentum space the corresponding Green
function to first order in g is denoted G(p) = v1(p).
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In perturbation theory, we would generally work with redefined fields to ensure all the fields
have zero expectation value i.e. we are looking at “small” fluctuations around the true lowest
energy state. This would be encoded by finding that a different state other than |0) (or |2)
if interactions are included) represents the true vacuum.

(C) Diagram C of 1 represents quantum corrections to the propagator for the real ¢ field — it
contains a self-energy insertion. It will tell us if the effective mass changes with energy scale.
That is if we are working at energy scales P then we will find that the ¢ propagator is roughly
of the form i/(P? — (M (P?))?) but that the effective mass M (P) depends on P with only at
the physical mass scale is this mass parameter exactly equal to the physical mass, i.e. we define
the physical mass to be M(P? = mghys) = mghys. This M (P?) is called the “running mass”
and reflects the fact that quantum fluctuations, the interactions with virtual particles, changes
the propagation of energy and momentum in a complicated way but one we can calculate.

(ii) The other vacuum diagram at O(g?) is A2

A2 (33)

(iii) The symmetry factors for the diagrams in figure 1 are most easily found by simple counting of the
contractions. You can try using the various descriptions of a rule given in books but I always find
these confusing.

(A) The vacuum diagram in figure 1 has a symmetry factor of 2.

Each of the two tadpoles® can not be changed as the two legs are different (one with arrow in,
one with arrow out). However we can switch the two vertices around. However I can never
see this without doing the Wick expansion.

The other O(g?) vacuum diagram, A2 of (33), has a the same symmetry factor as again,
switching the two vertices changes nothing.

This diagram comes from contributions of the form

(_

Vs

F )2

where ¢; = ¢(x;) etc. For our purposes we need only track the numerical factors such as the
2! in the denominator coming from the expansion of the exponential in the S matrix to second
order. This is also why we may as well work in terms of the coordinate space representation
not the momentum representation though the latter we would use for the actual calculation.

The first diagram, A of figure 1, comes from the case where we contract each 1/}3 with the 1;
of the same coordinate, giving us a factor of Ap;(z = 0). There is only one way to do this.
Likewise the last contraction always has to be between ¢1 and ¢o giving A,,(z1 — x2) and
there is only one way to do this. Thus we have no other numerical terms. Normally we would
not include the 1/n! factor coming from the expansion of the S matrix, the factor 1/2! here,

°In diagram A in figure 1, each 1) propagator loop is part of a subdiagram with a single leg coming out, i.e. each can be
considered to be a tadpole subdiagram.
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(B)

(©)

when calculating Feynman diagrams. here there is nothing to cancel it so we must supplement
our usual contributions with a 1/2 so the symmetry factor is S = 2 in this case.

The second vacuum diagram, A2 of (33), comes from the case where we contract each 1/13 with
the v of the opposite coordinate but again there is still only one way to do this. There is again
no choice for the contraction between ¢; and ¢o. Thus we again have no other numerical terms
so only the factor of 2! in the denominator is left so the symmetry factor is again S = 2 in this
case.

The tadpole diagram of figure 1 has a symmetry factor of 1. This diagram comes from the

contribution at O(g') to the vev (vacuum expectation value) of ¢, v(xg) = (0|¢(z0)|0), of the

form

(—ig)
1!

[ e QI (0oulin) ) (35)

where ¢; = ¢(x;) etc. There is only one way to contract the ¢ fields with each other) and only
one way to contract the W; with the 11 so there are no numerical factors here.

The diagram with a self-energy insertion shown in diagram (C) has a symmetry factor of 1.

This diagram comes from the contribution at O(g?) to the full propagator of ¢, v(zg) =
(0]¢(20)b(x3)|0), of the form
o B o (=ig)? [ i t
200 —a3) = 7 [ dardaz (0T ( Godrdb1d1d2ayads | | 0) (36)
where ¢; = ¢(x;) etc. To get this diagram the ¢g can be contracted with a ¢ from either of
the internal vertices, i.e. with ¢1 or ¢9. This gives a factor of 2, the usual permutation of the
internal vertices which generally cancels the 1/n! factor coming from the expansion of the S

matrix. Note the ¢g¢s contraction means we have a disconnected vacuum diagram and that
— —

is not C. So wlog we chose one of these two options, say that we have ¢gp1 and pags.

There are two options for the v contractions. If we contract each 1/13 with the 1; of the same
coordinate, we get a different diagram. That is we get a pair of disconnected vev contributions,
each part of the form shown in figure B. Again that is a different diagram from the one we
have.

So we only need consider the contraction between each @bj with the 9 of the opposite coordinate.
There is only one way to do this, so no more numerical factors are produced.

Note that if you are trying to find the symmetry factors by finding the number of permutations
of internal lines which leave the diagram invariant, then you have to realise that the internal
line in diagram C are not identical as the arrows are in opposite directions. Arrows can make
a difference. If we had a diagram with no lines on the internal propagators (so we have some
sort of (g/2)¢nn interaction where both ¢ and 7 are real fields) then the symmetry factor
would be two not one.

(iv) The function under the integrals must be a function of (x; — z2) by Lorentz invariance. Indeed here

is is simply A,,(x1 — x2). We can do the x5 integral first and change variables to 2/ = xo — 1 to

see the result in independent of the last xq integration. Thus that generates a space-time volume
factor of V7.

A similar argument works for the tadpoles. We can change the 7 integration variable to be

2’ = 1 — zo and then the result is clearly independent of x.
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4. ? Scattering in Scalar Yukawa Theory

We are considering the the case of 1) — 1) scattering with incoming v particles of three-momenta p,

and p, while the outgoing v particles have three-momenta g; and g,. The matrix element is M where

(i)

(i)

(iii)

= (f1S11) = (@1, @[S pr,p2) = Y Mn,  M~O(g"). (37)
Interaction Hamiltonian for this theory is

Hi = g / & 1 () (2)6(x) (38)

where the coupling constant g is real and a measure of the interaction strength. The Lagrangian
is just of the general form L = [l — H so as the interaction term has no derivatives it simply
appears as a —Hip term in the Lagrangian. The moving to the density just removes the [ d3x so
the quadratic terms will be the usual ones for real ¢ and complex ¢ fields (note the different factors
of 1/2) with a —gyT(x)1(z)¢(x) from the non-linear, cubic, interaction term. So the scalar Yukawa
theory has the Lagrangian density

= %@qﬁ)@%) - %m%ﬁ + (0u91)(0"9) — MP¢Ty — gyl (2) ()6 () (39)
Here we are considering

= (f15]4) = (a1, 42|S| p1, p2) = A(0|b(q1)b(g2) Sb (p1)b' (p5)] 0) (40)

ignoring, for now, possible corrections to the vacuum coming from interactions (this will be con-
sidered later in the course). The factor A = (16Q(p1)Q(p2)Q(q1)Q(g2))"/? comes from the normal-
isation of operators and states used here. To lowest order in g we have S = 1 so that we want to

consider

AT Mo = (0[b(gy)b(g2)b (p)bT (p2)]0) (41)
= (0lb(q) (b (p1)b(@2) + 6%(py — g2) ) b (p)] 0) (42)
= (0lb(g1)b'(p1)b(g2)b' ()] 0) +5° (1 — g2)(0b(q1)b' (p2)] 0) (43)

= (0] (b @)b(ar) + 5 (py — @) bla2)b' (p2)]0)
+3%(py — 42) (0] (¢ (P2)b(ar) + 5 (P2 — 1)) [0) (44)
= 53(1’1 - Q1)<0‘b(Q2)bT(p2)’ 0) + 53(271 - Q2)<0’b(Q1)bT<P2)’ 0) (45)
= 8(p1— )8 (P2 — 42) + 8 (p1 — 42)8° (P2 — @) (46)

If we have M,, for n is odd then we will have an odd number of ¢ terms coming from (Hiy)". From
Wick’s theorem we know that the only non-zero terms will be ones where all fields are contracted
with another, terms with a normal ordered factor present are zero. The only contractions involving
¢ which are non-zero are contractions between two ¢ fields so we need an even number of ¢ fields
to get a non-zero results. There are no ¢ terms in the initial and final states, so they must all come
from the S matrix. So odd orders in n have odd numbers of ¢ factors and so must be zero.

In terms of diagrams for every power of g we get another vertex. These vertices have only one ¢
leg coming out. There are no external ¢ legs as the initial and final states are only built from
fields. So an odd number of vertices, n odd, means that we can not connect our ¢ edges in pairs as
needed.



QFT PS6 Solutions: Scalar Yukawa Theory (3/1/19) 9
(iv) Substituting in the form (2) for the field ¢, you find that

< / d*y exp{—ipy}m(p)) d(y)|0) = \/%29(10) / dy ek (47)
ﬂgg(p
/0
= V2p)i}| 0) = V2P v(@) = [4()  (49)

where t = y°. The |1(p)) state is the one 1) particle state with the appropriate normalisation for

)53 (p — k) e 7PN 0y (48)

relativistic calculations while | (p)) = IA)};] 0) has the standard normalisation usually encountered
when first looking at QHO.

We can repeat the process for the second v particle but now we need to introduce labels on the
momenta of incoming particles, p; and ps.

1Y(p1), ¥ (p2)) = V2w(py)v/2w(Py)| ¥(p1),%(py)) (50)
</ d*y, eXp{—ip1y2}2Q(p1)> (/ d*y, eXp{—ip2y2}2Q(p2)> D(y1)P(y2)[9))

=TI ([ @ ewtcimm2awm)) dnieo (52)

i=1,2

Taking the hermitian conjugate will give us the final state in this case, provided we also switch the
labels for momenta and coordinates appropriately. That is we have

W@ = I ( [z exp{+z'quf}2w<qf>) O1(21)i(2) (53)

=12

From our expression (37), we then have that the relationship between the matrix element M and
the relevant Green function for this ¥ — ¥ scattering process in Scalar Yukawa theory is just

M) = T ([ @ exotrigznzetan) T ( [ @ exot-inai2om, )

f=12 i=1,2
X G(217227y17y2) (54)
Gz 22,91,02) = (0T(21) 9 (22) (1) (y2) 5] 0) (55)

where the order you write the operators in the vacuum expectation value is irrelevant as that is
fixed by the time ordering.

(v) The two Feynman diagrams for G which contribute to Mg are (no vertices in either)

--------------- ' L L L] (56)

(vi) In terms of Feynman diagrams, the lack of O(g') diagrams contributing to 1) — 1) scattering
is encoded in the rules we have for joining vertices by propagators. If we had a diagram at O(g')
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(vii)

it means we have one vertex. That means it has one ¢ leg. However, this can not end anywhere.
There are no other vertices allowed at this order so it can not end at another vertex. There are
no ¢ in the initial or final states which could be linked to this propagator. We can not construct a
legal diagram at this order if we follow the rules for diagrams in this theory.

The Feynman diagrams which contribute to the 1) — 91 scattering matrix element My at O(g?)
are shown in the following equations 57, 58 and 59. Further similar diagrams are indicated in the
accompanying text.

Diagrams representing first non-trivial contribution (O(g?)) in the perturbative expansion for the
1) — 1) scattering process in scalar Yukawa theory of (39) are shown in equation (57).

z

57a 57b

For these diagrams (57), the symmetry factors are S = 1, no symmetries under exchange of internal
lines. Remember that the arrows on the lines make a difference when assessing if exchanging internal
lines leaves the diagram invariant.

To find the number of loops in diagrams (57)a and (57)b, using this formula is overkill as indeed
it is for most examples we have in this course. You can see, literally, there are no loops in either
(57)a or (57)b.

If you want to practice using the formula then in both diagrams of (57), the number of internal
edges is I = 1, there are two vertices so V = 2, and each has just one component so C' = 1. Using
L =1-V + C we find there are no loop momenta confirming our visual identification.

The diagrams in (58) also contribute at O(g?) to the ¥ — 11 scattering process in scalar Yukawa
theory of (39) but consist of self-energy contributions to the ¢ propagator so do not change the
non-trivial interactions. There are also the same diagrams but with ¢; and ¢s switched round and
with the self-energy contribution on the ps leg not on the p; leg. This gives us 8 distinct diagrams
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in total of this self-energy type.

! 1

! 1

i 1

: 1

. : e L LLLLL
:y1 - Z,| Eyl A~ Z,
: : : S~ ’¢ : (58)
: D T E
! : : 1
! 1
:y > Z : - > 7
I__2____________2_: 1 2 2 1

58a 58b

The symmetry factors in the diagrams of (58) are S = 1, no symmetries under exchange of internal
lines. Note that the first diagram, 58a, is a tadpole contribution. Such tadpole contributions are
considered in the question on vacuum expectation values of ¢.

To find the number of loops is trivial here by observation; the diagrams of (58) each have one loop,
L = 1. However, if you want to use the formula, then consider each component of each diagram
separately. So start with the non-trivial component of (58) (the top part with y; and z; external
legs). There we see the number of internal edges is I = 2, there are two vertices so V' = 2 and there
is just one component in that subdiagram, C = 1. Using L = I — V + C we find there is one loop
momenta.

It is important to not two things here. First the contribution to the formula L = I — V 4+ C from
each separate component is linear, so we can apply this formula to each component separately and
it is easier to do so. Second this formula L = I —V +C fails when applied to the diagram of a single
line, at least given the rules stated in this course®. For a single line we have one component and no
internals lines or vertices yet clearly no loop momenta. This is why best to focus on the vacuum
subdiagram which, like any diagram with at least one internal vertex, follows the L =1 —V 4+ C
rule. Better still, just spot the loops by inspection or at least as a common sense check.

5Tt is possible to change the way we count the elements of a diagram but the only problem with our framework is for
this simple example. I prefer to just treat this case, where an external line is not connected to an internal vertex, as an
exception.
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(viii)

These last type of diagrams at O(g?) are

| 1 1 1
OO =
1 1 1 1
: L |
:yl - Zl: :yl - Zl: (59)
1 1 1 1
. : : :
:yz Z, : :yz Z, :
59a 59b

These are not usually included when calculating contributions at O(g?) to the ¥ — 11 scattering
process in scalar Yukawa theory of (39). The disconnected parts are vacuum diagrams which capture
the difference between the vacuum in free theory (]0)) and in the fully interacting theory (|£2)).
These contributions are cancelled when the normalisation factor (Z = (0|S]0)) is included which is
used to express the execration value in the vacuum of the full interacting theory (|£2)) in terms of
free vacuum expectation values (0|T'(fields)| 0). There are two further diagrams which are identical
except the ¢; and g9 are swapped making a total of 4 distinct diagrams with vacuum contributions.

The vacuum diagrams in (59) have symmetry factors & = 2 coming from the interchange of the
vertices as there are no external legs pinning these down. I had to use Wick’s theorem to see this.

As before, the linearity of the L = I —V +C = 2 formula means we can just focus on the non-trivial
vacuum components, ignoring the single line components which are again the only exceptions to
this rule. Each of the vacuum subdiagrams in (59) has two loop momenta since the number of
internal edges is I = 3, there are two vertices so V = 2 and there is just one component in that
subdiagram, C' = 1. Using L = I —V 4+ C = 2 we find there are two loop moments, certainly
obvious in the diagram 59a, perhaps less so in 59b.

I would again note that using this formula is overcomplicated for 59a as I would contend there are
two very obvious loops in the diagram. I would concede that without some experience is harder
to know that there are two independent loops in the vacuum subdiagram of 59b so knowingthe
formula might help here but this example is about as difficult as we are likely to get in this course.

We have for the first diagram in 57
G(21,22,Y1,y2) =
—92/d4x1 /d4x2 An(yr — z1) A (m1 — 21) Ap(@1 — 22) Aps(y2 — 22) Aps (2 — 22) (60)

The symmetry factor is 1 in each case. The second diagram is the same expression except that z;
(labelled as ¢; in the diagram 57b) switched is switched with with zs.
We have for the first diagram with self-energy contributions, shown in 58a, that

Gaalz1, 22,91, 2) =
92/d4x1 /d4x2 An(yr — 1) Ap (w1 — 21) A (21 — 22) Aps (22 — 22) Apr (Y2 — 22) (61)
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(ix)

where again the symmetry factor is 1. There is another term where the self-energy contribution
is on the other leg, so basically where we switch the 1 and 2 labels on y; and z; (not on the z’s)
to give a total of two terms. These two terms each have a partner where just y; is switched with
Y2, leaving us with four terms of the same form but with various permutations of the coordinates
(momenta) of the external lines, i.e. of the final and initial states.

For the second diagram with a self-energy contribution in 58 we have that

Gaal(z1, 22, Y1,Y2)

/ diz, / 2 Ayt — 21)Am(r — 22)Ans (21 — 22) A (s — 21)Aar(ys — 22) (62)

where again the symmetry factor is 1. There is another term where the self-energy contribution is
on the other leg, so basically where we switch the 1 and 2 labels on y; and z; (not on the z’s) to
give a total of two terms. If we switch just the labels on the two external legs alone, we get two
more contributions. This leaves us with four terms of the same form but with various permutations
of the external leg coordinates, y1, y2, 21 and 29 (likewise with external momenta if you work in
momentum space).

For the diagrams with a vacuum contribution we always pick up the same contribution as given
above for the O(g"), multiplied by a vacuum diagram contribution. The vacuum contributions are
written out in equations (7) and (11) below. The vacuum diagram in the both cases has a symmetry
factor is 2 (see the next question to see how I found that for 59a).

The type of diagram is mentioned in the text above for each case. The tadpole contributions are
considered in the question on vacuum expectation values of ¢. The question on vacuum diagrams
gives more detail on those diagrams.

The diagrams are exactly the same.

However the diagrams now represent a different expression for a different object. The expression
is now written in terms of momentum dependent propagators Ays(p) and A, (p). This expression
is a contribution in the perturbative expansion of G(p1,p2,q1,q2) — the Fourier transform of the
coordinate space Green function G(z1,22,y1,¥y2). In the earlier parts of this question using the
same diagrams but applying the coordinate space Feynman rules we were finding perturbative
contributions to this coordinate space Green function G(z1, 22, y1, y2)-

Another way to see this is to take the contributions to the coordinate Green function G(z1, 22, y1, y2)
represented by the expression given by the coordinate space Feynman rules for the same dia-
grams. Now take the Fourier transform of that expression which gives us G(p1,p2,qi,q2) but
written in terms of coordinate space propagators A(z). If you then substitute for these coordinate
propagators using their expression in terms of a Fourier transform of a momentum propagator,
A(z) = [6*kA(k), you will find you can do all the coordinate integrations associated with the
vertices. What you will end up with is just the same answer as we got using momentum space rules
directly on the same set of Feynman diagrams.
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5. ¢ — ¢ Decay in Scalar Yukawa Theory

Consider the decay of a ¢ particle of Mass m into a -1 pair (each of mass M) in the scalar Yukawa
theory with interactions defined by (38).

(i)

The matrix element we wish to have is

M(p—9v) = (W(q1),¥(q2)|S] 6(p)) (63)
(@), ¥(@)l = (0lb(q1)é(q2)v/492(q1)Uq2) (64)
[6(p)) = 2w(p)al(p)0) (65)

where a(p) = a, etc is used to make the subscripts on the momentum arguments clear.

Substituting in the form (1) for the field ¢, you find that

3y exp{—i w 5 = dgik w 3y e~ P—k)y
( [ @y ei-im2 <p>) 5(4)|0) N [ayeo (66)

d?)ikgw(p
V2w(k)
= V2uw(p)lo(p)) = [¢(p)) (68)

where t = 3°. The |p) state is the one ¢ particle state with the appropriate normalisation for

)83 (p — k) e~ @)= (BDta] 10y (67)

relativistic calculations while | ¢(p)) = &L| 0) has the standard normalisation usually encountered
when first looking at QHO.

Taking the hermitian conjugate shows us that (switching to the convention in the lectures of using
z and ¢ for final state coordinates and momentum, write this out to check if you want)

06 ([ = ewtriziza@) = tolal (69)

Changing to the complex field case will work exactly the same way so we deduce (or write it out
to check this) that

(01 (2) ( JEE exp{+z'qz}2w<q>) — W)l (70)
(Ot (2) ( [ = expqu}zw(q)) — ()l (71)

Since the two particles in the final state are distinct there is no problem applying the each of the
one-particle ¢ and ¢! examples together (all the relevant operators commute). From our expression
(65), we then have that the relationship between the matrix element M and the relevant Green
function for this ¢ — 11 decay process in Scalar Yukawa theory is just

M(b — D) = ( / Bz exp{—l—iq1z1}2w(q1)> < / &2 exp{—l—iqzzz}Zw(qz))

(/ dy exp{ipy}Qw(p)) G(z1,22,9) (72)
G(z1,22,y) = (0T (21)9  (22)(y)S| 0) (73)

where the order you write the operators in the vacuum expectation value is irrelevant as that is
fixed by the time ordering.
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Figure 2: The Feynman diagrams for the full Green function describing the decay ¢ — ¢1) in Scalar

Yukawa theory showing all contributions up to O(g?).
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(iii) The Feynman diagrams for the full Green function which correspond to contributions to M up to
O(g®) for the decay of the ¢ particle.

The symmetry factor and the number of loop momenta for each diagram is as follows

Diagram | Symmetry factor | Loop momenta | Type
S L

A 1 0 I
B 1 1 I's
C 1 1 Xy
D 1 1 Xy
E 1 1 >y and tadpole (74)
F 1 1 >y and tadpole
G 1 1 o
H 2 2 Vacuum
I 2 2 Vacuum

Other More diagrams

with tadpoles

(iv) The type of each diagram is given in (74).

The contributions labelled T',, are three-point 1PI diagram of order O(g™). These are the core
contributions which really capture the QF T effects of the interaction and they describe how quantum
fluctuations alter the effective strength of the interaction”. A 1PI diagram not be cut into two parts
by cutting any one internal line. This is not true for the remaining diagrams and the effects described
by the remaining diagrams will all be absorbed into other quantities once you have learnt the tricks
to deal with such corrections.

The contributions labelled vacuum have vacuum diagrams, that is parts of the whole diagram are
disconnected from the external legs. These disconnected parts represent the virtual fluctuations in
the vacuum of a fully interacting theory. They are eliminated when we use the vacuum of the full
interacting theory (] Q)) not the free vacuum state, |0), we are currently using.

The contributions labelled ¥4 come from self-energy corrections to the ¢ field propagator, while
the X is a 9 field self-energy correction. By cutting these diagrams in the right place you would
have two parts, one the core diagram (A) representing the decay process, and the second would be
a contribution to a two-point Green function so represent corrections to the free field propagators.
Such propagator corrections can be summed up and absorbed into the effective mass and propagator
(wavefunction) normalisation so again these are not really addressing the decay process directly.

Any diagram with a tadpole has a part connected to the rest of the diagram by a single edge (here
a ¢ field propagator). By themselves these tadpole diagrams give the vev (vacuum expectation
value) of the ¢ field, that is (0|T¢(z)S|0). In this QFT course we are implicitly assuming such vev
are zero for all fields e.g. the vev depends on the normal ordered product of a single field which
we are assuming is zero®. You can then deduce that diagrams with tadpoles will sum with other

"The proper way to tackle this issue is to use a renormalisation group approach which which be encountered in more
advanced discussions.

8To be more precise the relation that Gx|0) = 0 assumes that |0) is the free non-interacting vacuum we want. In fact as
problem sheet 1 indicated there are other (infinitely many) possible free vacua. It turns out that when we have symmetry
breaking (see the Unification course), we need to work with a different free vacuum. We need to rearrange our fields if we are
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tadpole diagrams to give zero because the vev is zero. If we have a problem where the dynamics of
the theory produce a non-zero vev for a scalar field, then we have symmetry breaking (the Higgs
mechanism) which requires further work outside this course.

In fact there are more tadpole diagrams in the general Green function. For instance the incoming
decaying ¢ line can connect to one of these tadpoles. This would represent a ¢ particle being
absorbed by the vacuum. The 1 and v lines can then connect to each other. This is just an O(g)
diagram so you can then throw in self-energy or vacuum corrections to get many more O(gB) terms
built on this type of O(g) diagram. There are several reasons I ignored this type without thinking
but formally it will appear in an expression for the Green function. First the tadpoles are zero
as (0|¢(x)|0) = 0. Secondly the way the 1 propagator matches the final state particles in this
case already means this diagram can not contribute to the matrix element for ¢ decay, though it
is formally present in the generic Green function. Finally these will be disconnected diagrams and
these can always be reinterpreted as corrections to other quantities. Just as the vacuum diagram
contributions can be dropped by demanding that we work with the full interacting vacuum, any
disconnected diagram will represent “trivial” corrections to other aspects, here the ¢ propagator
or the ¢ vacuum expectation value.

(v) You may work in terms of coordinates or in terms of momenta. The shape of the diagrams for
Green functions are the same in both cases. To get from the coordinate diagrams given above,
a representation of G(z1,z2,y1,¥2), just replace the labels on the external legs, so y; — p; and
zy — py in the conventions used here.

to work with Wick’s theorem in the way we have done in this course. What we need is to make sure the vacuum expectation
value of odd numbers of fields is zero. That implies we must work with fields with a zero vev. So the first step is to work
with a new scalar field n(z) = ¢(z) — (0|T¢(z)S|0) so that (0|Tn(x)S|0) = 0 by definition. We can then use the work of
this course without further problems.



