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1. (i) In the form developed by Feynman and Gell-Mann, the Fermi theory of the weak interactions

had a basic 4-fermion interaction of the form 1√
2
GFJρJ

ρ, where GF is the Fermi constant and

the leptonic part `ρ of the current Jρ is of the form `ρ = 1
2
ψ̄(e)γρ(1 + γ5)ψν(e) + 1

2
ψ̄(µ)γρ(1 +

γ5)ψν(µ) , where ψ(e) and ψ(µ) are the electron and muon spinor fields and ψν(e) and ψν(µ) are the

corresponding neutrino fields. (Note that (µ) and (ν) here denote particle types.)

(a) The Fermi theory of the weak interactions describes well such low-energy phenomena as

neutron decay. Explain why it is nonetheless unacceptable as a theory at high energies.

Derive the dimensions of the Fermi spinor fields ψ and of the Fermi constant GF in units

of mass.

(b) Explain how the electroweak Standard Model as developed by Salam and Weinberg resolves

the problems of the Fermi theory. [10 marks]

(ii) Show that a general complex but nonsingular (i.e. having a nonvanishing determinant) matrix M

can be made to be purely diagonal with positive real entries by use of a biunitary transformation

of the form M→ V†MU where V and U are unitary matrices. One approach is as follows.

(a) Explain why M†M is straightforward to diagonalise by a unitary transformation U. Show

that the resulting diagonal entries are real and positive. Call this diagonal matrix D2, i.e. let

U†M†MU = D2, where the entries of D are the positive square roots of the corresponding

entries in D2.

(b) Let H = UDU† and let Ũ = MH−1. Show that V = ŨU is unitary and that V†MU = D.

[20 marks]

(iii) The Yukawa couplings between the Higgs field and the Standard Model fermions are of the form

LYukawa = −i(fmnLmeRnφ+ hmnQLmd
′
Rnφ+ kmnQLmu

′
Rnφ̃) + hermitian conj.,

where the vacuum values of φ and φ̃ (where φ̃a = εab(φ
∗)b) are φTvac = (0, 1√

2
v) and φ̃Tvac = 1√

2
(v, 0)

(in which v is a constant and the T notation denotes a transpose), LTm = (νm, eLm) are the left-

handed lepton doublets and QT
Lm = (u′Lm, d

′
Lm) are the left-handed quark doublets in generations

m = 1, 2, 3 . The right-handed electrons eRm and the right-handed quarks u′Rm and d′Rm are

SU(2) singlets. The coefficients fmn, hmn and kmn describe the mixing between generations.

(a) Explain why bare mass terms are not allowed in the SU(3)×SUL(2)×UY(1) gauge-invariant

action (for a theory without neutrino masses). Explain how the Yukawa couplings nonethe-

less give rise to mass terms for the fermions after shifts in fields occasioned by symmetry

breaking.

(b) Explain how biunitary transformations Ufield−type
mn such as those of part (ii) may be used to di-

agonalise the mass terms for the fermions in the m,n indices without disturbing the diagonal

structure of the fermion kinetic terms (i.e. terms of the form (spinor)γµ∂µ(same spinor)).

(c) Show why Lagrangian coupling terms involving the neutral Aµ and Zµ vector fields remain

invariant under such unitary transformations. Explain why Lagrangian terms coupling

the charged vector fields W±
µ to the Standard Model quarks become mixed between the

m = 1, 2, 3 generations and find the form of the Cabbibo-Kobayashi-Maskawa (CKM)

matrix Vmn as a result of the biunitary basis transformations of part (ii), since one cannot

simultaneously diagonalise in the m indices both the fermion mass terms and the charged-

vector-field couplings to the quarks. Why does one not need to introduce such a generation-

mixing matrix for electrons and neutrinos couplings to W±
µ in the original minimal Standard

Model without right-handed neutrinos? [20 marks]

[Total 50 marks]
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2. (i) In a seesaw mechanism model for two Majorana spinors, N and n, with Lagrangian mass terms

Lmass = −i(MN̄N +
µ

2
(n̄N + N̄n)) ,

suppose that M � µ and show that one finds a state with a large mass eigenvalue m+ ' M

and a state with a small mass eigenvalue m− ' − µ2

4M
with magnitude |m−| � µ. Find the

corresponding low-mass Majorana spinor field n− as a combination of N and n to leading order

in µ
M

. [9 marks]

(ii) Show that the negative sign in m− is not physically meaningful by making a field redefinition

of the corresponding spinor n− → ñ− = iγ5n− which a) preserves the Majorana condition for

ñ− and b) flips the sign of the −im− ¯̃n−ñ− mass term while leaving invariant the kinetic term

−i¯̃n−γµ∂µñ−. [9 marks]

(iii) In a system with N generations and PMNS unitary matrix U which diagonalises the neutrino

mass matrix, the relation between flavour eigenstates |να〉 and mass eigenstates |i〉 is |να〉 =∑
i U
∗
αi|i〉. Consider ultrarelativistic neutrinos with momentum p = |~p| >> mi for any of the

mass eigenvalues mi, whose energies can accordingly be approximated by Ei =
√
p2
i +m2

i '
pi +

m2
i

2pi
≈ E +

m2
i

2E
. For ultrarelativistic neutrinos and c = 1, one has a time of flight T to

distance travelled L relation T ≈ L.

(a) Show that the probability for a neutrino originally of flavour α to be later observed with

flavour β is to leading order

Pα→β = |〈νβ|να(T )〉|2 = |
∑
i

U∗αiUβie
−im2

iL/2E|2 .

[10 marks]

(b) Show that this probability may be rewritten as

Pα→β = δαβ − 4
∑
i>j

Re(U∗αiUβiUαjU
∗
βj) sin2(

θij
2

) + 2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj) sin(θij)

where ∆m2
ij = m2

i −m2
j and θij =

(
∆m2

ijL

2E

)
. [10 marks]

(c) The CP asymmetry is AαβCP = Pα→β − Pᾱ→β̄ = 4
∑

i>j Im(U∗αiUβiUαjU
∗
βj) sin(θij).

In terms of the Jarlskog invariant J , determined in the N = 3 case by

Im(U∗αiUβiUαjU
∗
βj) = −J

∑
γ,k εαβγεijk, use the identity sin(a + b) sin(a + c) sin(c + b) =

1
4

(− sin(2a+ 2b+ 2c) + sin(2a) + sin(2b) + sin(2c)) to show that the CP asymmetry is

given by

AαβCP = 16J
∑
γ

εαβγ sin(
θ31

2
) sin(

θ32

2
) sin(

θ21

2
) .

[12 marks]

Some relations: γ†5 = γ5, ΨC = C(ψ̄)T , C2 = 1l, CγT5 C = γ5.

[Total 50 marks]
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3. The standard Dynkin-index convention CF = 1
2

for the fundamental representation of a Lie group G

corresponds to the fundamental-representation trace relation tr(T IT J) = 1
2
δIJ . For the group SU(N),

the corresponding symmetrized product relation for the fundamental-representation T I generators is

{T I , T J} =
1

N
δIJ1l + dIJKTK

which also defines the SU(N) anomaly symbol dIJK .

For a general representation R, one defines the anomaly coefficient A(R) by the relation

tr(T I{T J , TK}) =
1

2
A(R)dIJK .

The anomaly coefficient A(R) is independent of the particular choice of generators T I , T J , T k and it

is normalised to one for the fundamental representation: A(F ) = 1. One can therefore make a simple

choice of generators or combination of generators in a given representation R in order to calculate

the anomaly coefficient A(R) for that representation and the result will be the same for any choice

of three generators in that representation, when multiplied by dIJK .

This problem considers the cancellation of gauge anomalies in the Georgi-Glashow grand-unified

model based on the gauge group SU(5). For simplicity, consider just the first generation.

(i) Show that dIJK is totally symmetric in I, J,K. [6 marks]

(ii) Explain which Standard Model (SM) fermions fit into the fundamental 5 representation of

SU(5). Use the conventional Standard Model Y hypercharge eigenvalue assignments for the

quarks and leptons to write the fundamental representation hypercharge generator Y as a di-

agonal 5× 5 SU(5) matrix. Find the necessary rescaling factor to rescale Y into a generator Ŷ

which obeys the standard SU(5) normalisation. [10 marks]

(iii) Using the convention that the unbroken electromagnetic charge in the Standard Model is taken to

be Q = T 3+Y where T 3 is the diagonal i = 3 generator of the SU(2) weak interaction subgroup,

show that in the standard SU(5) normalisation, one obtains a rescaled electromagnetic charge

generator Q̂ =
√

3
8
(T 3 +

√
5
3
Ŷ ). [6 marks]

(iv) Treating all the left-handed and right-handed Standard Model fermions as left-handed after

charge conjugation of the right-handed fields, show how the Standard Model fermions fit pre-

cisely into a 5̄+10 representation of SU(5). Take into account the decomposition of the SU(5)

5 into all the relevant Standard Model SU(3)× SU(2)× U(1) representations. [10 marks]

(v) In order to calculate the anomaly coefficients for the left-handed 5̄ and 10 representations of

the SU(5) grand-unified theory, write out Q̂ acting on the independent components of each of

these representations and then calculate tr Q̂3 for each. Hence show that

A(5̄) + A(10) = 0

so that the combination 5̄+10 of left-handed fermion representations in the SU(5) grand-unified

theory is free from gauge-symmetry anomalies. [12 marks]

(vi) Show that the gauge anomaly cancellation persists when one includes a right-handed neutrino

in order to generate neutrino masses by a see-saw mechanism. [6 marks]

Note: the quark content of the proton is uud; that of the neutron is udd.

[Total 50 marks]
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