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1. (i) Derive the electromagnetic charge and weak hypercharge assignments of the uL, uR, dL and
dR quarks. In doing this, you may use the following information. The unbroken electromag-
netic U(1)em generator in the Standard Model is conventionally taken to be Qem = T 3

L + Y ,
where T 3

L = 1
2
σ3 and Y is weak hypercharge, i.e. the generator of the U(1)Y factor in the

SU(2)L×U(1)Y gauge group. The left-handed spinorial (uL, dL) quarks transform as a doublet
under SU(2)L, while the right-handed spinorial versions of these quarks are SU(2)L singlets.
As for electromagnetic charges, note that the left-handed component of the proton (uud)L has
electromagnetic charge +1 while the left-handed component of the neutron (udd)L has electro-
magnetic charge zero. [15 marks]

(ii) The Standard Model gauge group SU(3) × SU(2)L × U(1)Y fits nicely as a subgroup into the
Georgi-Glashow candidate Grand Unification gauge group SU(5).

(a) How does the fundamental 5 representation ψA (A = 1, 2, 3, 4, 5) of SU(5) decompose into
(R3, R2) representations of SU(3) × SU(2) where R3 and R2 are representations of the
respective simple groups?

(b) Write the 5T representation of SU(5) as a row (f1, f2, f3, h1, h2). Given that the Standard
Model gauge group is the direct product SU(3)×SU(2)L×U(1)Y , explain why the fã (ã =
1, 2, 3) must correspond to the same U(1)Y hypercharge yf and the hb (b = 1, 2) correspond
to the same hypercharge yh. From the requirement that the hypercharge Y generator must
be chosen from among the SU(5) generators, derive a linear relation involving yf and yh.

(c) Given the value for the hypercharge assignment for the dR quarks found in part (i) above,
find the corresponding values of yf and yh for the SU(5) representation that contains the
dR quarks.

(d) Show that the hb part of the 5 representation containing the dR quarks can only be
(L̃C)b = εbd(LC)d, where (LC)b is the charge conjugate of the Standard Model Lb = (νL, eL)
doublet (suppressing Lorentz spinor indices) containing the left-handed neutrino and elec-
tron components.

(e) The conventional normalisation of the non-abelian SU(5) generators T i is such that
Tr(T iT j) = 1

2
δij. Find the rescaled Ỹ that satisfies this condition. [15 marks]

(iii) Show how the charge-conjugated right-handed electron singlet (eR)C , the charge-conjugated
SU(3) triplet of right-handed (uR)C quarks and the (SU(3) triplet, SU(2) doublet) of left-
handed (QL)ãb quarks (again suppressing Lorentz spinor indices) fit into a two-index SU(5)
tensor representation χAB. Find the symmetry of χAB needed to agree with the Standard
Model content. Show that the Y hypercharge values for the components of this two-index
representation agree with those required in the Standard Model. [10 marks]

(iv) Explain how a Higgs mechanism involving scalar fields carrying two different representations
of SU(5) can account for spontaneous symmetry breaking of the SU(5) gauge symmetry: first
down to SU(3)× SU(2)L × U(1)Y and then down to SU(3)× U(1)EM . [5 marks]

(v) Explain why, despite the attractive representation composition of the SU(5) Grand Unified
model, this theory is not acceptable as a physical theory. [5 marks]

[Total 50 marks]
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2. The standard Dynkin-index convention CF = 1
2

for the fundamental representation of a Lie group G
corresponds to the fundamental-representation trace relation tr(T IT J) = 1

2
δIJ . For the group SU(N),

the corresponding symmetrised product relation for the fundamental-representation T I generators is

{T I , T J} =
1

N
δIJ1l + dIJKTK

which also defines the SU(N) anomaly symbol dIJK . For a given representation R, one defines the
anomaly coefficient A(R) by the relation

tr(T I{T J , TK}) =
1

2
A(R)dIJK ,

where the trace is over all fermion fields carrying the representation R. The anomaly coefficient is
normalised to unity for the fundamental representation.

In computing anomalies in a given theory, chiral fields are all taken to be left-handed. Accordingly,
fields which are intrinsically right-handed are included in the above trace through their left-handed
charge conjugates, with appropriately conjugated group representations R∗.

(i) Explain why anomalies can give important physical information about the rigid symmetries
of effective theories developed after integrating out higher energy/mass scale physics, but that
they are inadmissible for gauge symmetries in a fundamental theory. [6 marks]

(ii) Show that dIJK is totally symmetric in I, J,K. [3 marks]

(iii) Define a pseudoreal representation (not necessarily irreducible) of a compact Lie group and
show that the anomaly coefficient for such a representation must vanish. Hence show that the
anomaly coefficient vanishes for a symmetry group representation carried by both a left-handed
and a right-handed fermion field, i.e. for a left-right symmetric representation. [6 marks]

(iv) Show that the anomaly coefficients A(3, 3, 3) (denoting all anomaly coefficients between three
SU(3) generators, etc), A(3, 3, QEM), A(3, QEM, QEM) and A(QEM, QEM, QEM) involving the
unbroken SU(3) and U(1)EM gauge symmetry generators all cancel in the Standard Model.

[10 marks]

(v) The effective-theory chiral symmetry model of pions is based on an SU(2) representation U =

exp
(

i
Fπ

(
π0

√
2π+

√
2π− −π0

))
, where π− = (π+)∗, transforming under rigid SU(2)L × SU(2)R as U →

gLUg
†
R where the nonlinearly-realised axial symmetries have gR = g†L. Fπ is the pion decay

constant. This pion effective-theory symmetry is partially broken by electromagnetic coupling

in the chiral Lagrangian Lchiral = −F 2
π

4
tr
[
(DµU)(DµU)†

]
where Dµ = ∂µ − iqAµ is the usual

electromagnetic covariant derivative for a field of electromagnetic charge q.

(a) For gL = exp( i
2
ωkσk) ∈ SU(2)L, expand the axial gR = g†L symmetry transformation of

(π+, π−, π0) to lowest order in the transformation parameters ωk and show that the axial
symmetry transformations of π+ and π− are broken by the electromagnetic coupling but
the ω3 transformation of π0 remains unbroken and is given by π0 → π0 + ω3Fπ. [9 marks]

(b) At the quark level, for vanishing quark masses and Yukawa interactions and considering just
the first generation, show that the axial generator of the rigid SU(2)L×SU(2)R symmetry
that is compatible with the electromagnetic coupling is T3A = 1

2
σ3γ5. [8 marks]

(vi) Experimentally, the decay of a π0 neutral pion into photons is well described by an interaction
term

Lπ0AA =
e2

32π2Fπ
π0εµνρσF

µν(A)F ρσ(A) .

Show that the electromagnetic-coupling compatible symmetry found in part v(a) is vio-
lated in this interaction by the same amount as that arising from the anomaly coefficient
A(3A,QEM, QEM) for precisely NC = 3 colours, given that the anomalous axial symmetry
violation is given by δLSM = ω∂µJ

µ
3A = ωe2

64π2A(3A,QEM, QEM)εµνρσF
µν(A)F ρσ(A). [8 marks]

[Total 50 marks]
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3. (i) In a seesaw mechanism model for two Majorana spinors, N and n, with Lagrangian mass terms

Lmass = −i(MN̄N +
µ

2
(n̄N + N̄n)) ,

suppose that M � µ and show that one finds a state with a large mass eigenvalue m+ ' M

and a state with a small mass eigenvalue m− ' − µ2

4M
with magnitude |m−| � µ. Find the

corresponding low-mass Majorana spinor field n− as a combination of N and n, to leading order
in µ

M
. [8 marks]

(ii) Show that the negative sign in m− is not physically meaningful by making a field redefinition
of the corresponding low-mass spinor n− involving γ5 that preserves the Majorana condition
for n− but flips the sign of the −im−n̄−n− mass term while leaving invariant the kinetic term
−in̄−γµ∂µn−. [7 marks]

(iii) In a system with Ng generations and PMNS unitary matrix U diagonalising the neutrino mass
matrix, the relation between flavour eigenstates |να〉 and mass eigenstates |i〉 is |να〉 =

∑
i U
∗
αi|i〉.

Consider ultrarelativistic neutrinos with momentum p = |~p| >> mi for any of the mass eigenval-

ues mi, whose energies can accordingly be approximated by Ei =
√
p2
i +m2

i ' pi+
m2
i

2pi
≈ E+

m2
i

2E
.

For ultrarelativistic neutrinos and c = 1, one has a time of flight T to distance travelled L rela-
tion T ≈ L.

(a) Show that the probability for a neutrino originally of flavour α to be later observed with
flavour β is to leading order

Pα→β = |〈νβ|να(T )〉|2 = |
∑
i

U∗αiUβie
−im2

iL/2E|2 . [8 marks]

(b) Show that this probability may be rewritten as

Pα→β = δαβ − 4
∑
i>j

Re(U∗αiUβiUαjU
∗
βj) sin2(

ωij
2

) + 2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj) sin(ωij)

where ∆m2
ij = m2

i −m2
j and ωij =

(
∆m2

ijL

2E

)
. [9 marks]

(c) The CP asymmetry is AαβCP = Pα→β − Pᾱ→β̄ = 4
∑

i>j Im(U∗αiUβiUαjU
∗
βj) sin(ωij).

In terms of the Jarlskog invariant J , determined in the N = 3 case by
Im(U∗αiUβiUαjU

∗
βj) = −J

∑
γ,k εαβγεijk, use the identity sin(a + b) sin(a + c) sin(c + b) =

1
4

(− sin(2a+ 2b+ 2c) + sin(2a) + sin(2b) + sin(2c)) to show that the CP asymmetry is
given by

AαβCP = 16J
∑
γ

εαβγ sin(
ω31

2
) sin(

ω32

2
) sin(

ω21

2
) . [9 marks]

(iv) The disappearance of νe neutrinos coming from the Sun gives a measurement of ∆m2
12 = ∆m2

� ∼
7.5×10−5eV2 between two neutrino mass eigenstates labelled ν1 and ν2. Either ν1 or ν2 must have
a significant overlap with the νe flavour basis neutrino; this is conventionally taken to be ν1. The
third mass eigenstate is ν3; information about it is obtained from the disappearance of νµ and ν̄µ
neutrinos from upper atmospheric cosmic-ray showers, giving ∆m2

23 = ∆m2
atm ∼ 2.4× 10−3eV2.

Explain the difference between the “normal” and the “inverted” neutrino mass hierarchies given
this data pattern. [9 marks]

Some relations: γ†5 = γ5, ΨC = C(ψ̄)T , C2 = 1l, CγT5 C = γ5.

[Total 50 marks]
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