'EXAMINATION

MSc IN QUANTUM FIELDS AND FUNDAMENTAL FORCES
TP.7 — Supersymmetry

Wednesday, May 30" 2001

Answer Three of the following Five Questions

Use a separate booklet for each question. Make sure that each booklet carries your name, the
course title and the number of the question attempted.



1. Derive the irreducible supermultiplet of states for particle of mass m in their Lorentz rest
frame. Do this as follows

a)

Start from the d = 4, N-extended supersymmetry algebra in 4-component notation,
(@, @} = 269y P, ' i=1...,N

where Q7 = (QJ )TWO. Specialise this algebra to the subspace of mass m states in the rest
frame and show that, within this subspace, the supersymmetry algebra in 2-component
notation takes the form

{QL, Qp;} = 2mdapd!
{in %}:0 {Qai»@ﬁj}=0 a,B=12.

To do this, recall that in the Weyl representation, the y-matrices take the form

0 o ; A
7m=<-.a,6 '"80‘!8> sz"'WB

iom

)

where o, 5= =(1,5); gef = ~(1;="0)(whereo are the-Pauli matrices); and-the trans- ——

lation rule between 4-component and two-component notation for a general Majorana
spinor A is given by

. AL - -
A= (Edb?\ﬁ) where Ag; = (Aj)".

Include in your discussion an explanation of why one does not need to distinguish
between dotted and undotted indices in considering the rest-frame supersymmetry al-
gebra.

Give the explicit form of the representation matrices for the Lorentz little group in the
chosen Lorentz frame when acting on the Q’ and give their commutators with the Q’

Construct normalised generators such that their algebra becomes a Clifford algebra,
and then use this to derive the irreducible supermultiplet of mass m states at rest.

Carry out the construction derived above explicitly for the case of the d = 4, N = 2
supersymmetry algebra (without central charges). Show in particular how the combi-
natorics of the construction yields a finite multiplet of states, with the index structure
of the next to last level given by

1 [ev€ihak) + €ratirtAgi) + €aperilhyi) — €xg€ikl Aag) — €an€iilAgr) — €gatiilMi)]
for some spinor states |Aq;), and the index structure of the last level given by

% [eapeqs(€ikeji + €jkEit) + €aseqplEineil + €ijert) + €avegs(€ir€in + eijert)] |0)

for some scalar state |¢). Show that these combinations have the necessary symmetries
and find expressions for the independent states |A\q;) and |¢) using combinations of
the Clifford creation operators with indices i, 8j, vk, 8¢, etc. acting on the Clifford
vacuum.

Summarise your results by giving the multiplicities for states of each spin found in the
supermultiplet.



2. Consider a supersymmetry algebra in two-component index notation that is modified to
make the {Qq, @3}, {Qa. @ 5}«anticommutators nonvanishing:

1 . 1 |
{Qa-QB} = “é]woﬁ {deQﬁ} = EWI&B a,B=1.2,
- where My (= M3a), M, is the complex 2-component form of the angular momentum:
‘/‘/[a3'v5 g [;’0 sMmn = GO’YMQ[; + flg('yMa'y m.n=40,...,3.

The ¢ tensor satisfies €12 = —€2! = 1, €*7e,5 = §%3. The other lowest-dimension commu-
tation relation is the standard one,

{Qa. Qs} = 2P,

For the M,g, one has the standard commutation relations with the Qa, QB and the P 5
expressing the Lorentz transformation properties of these generators:

[M,yé, Pa | = (60[7P + €a5P7$) o

[1"{76, Qa = §(€a'yQ6 + fa&Q'y)
[My5,Qp] =0,

while the commutation relations with M, ; follow from M. ; = (Mys)*. Thus, a chiral
Lorentz transformation of Q, with complex parameter p?° = p57 is given by

0Qa = [0"° Mys, Qa] = pa’Qs.
a) Use the above and the QQQ Jacobi identity to show that
[Pag> Qsl = 3€a[P"5 Q0]

b) Use the PQQ Jacobi identity to show that
{Q57 [Paﬁs Qa]} == ﬂ

c) Hence, consider the general covariant possibilities and show that

1

[ aﬁvQO’] = faaQﬂ ) [PaBaQU] = 4R gaQa
d) Finally, show that
: 1 1
{Paﬂ’ P75]v= —Wfa»yMéﬁ - 8—R72€53A/I—Ya .

(These results, taken together with the [M, M] commutation relations, form the Lie
algebra for the anti-De Sitter group SO(3,2). This is the isometry group of anti-De
Sitter space, in which the the cosmological constant A is given by A = R™4.

e) Show how the above construction limits to the usual super Poincaré algebra when
spacetime is required to be flat, and why this then requires the momentum and super-
symmetry generators to commute in this limit.)
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3. Consider the free field action in D = 4 for a real gauge vector field A, and a massless

Majorana spinor field ¥:

= / d*2(= L Fnn F™ — 0™ 0my)
an = 8rnAn - anAm

a) Assuming that the supersymmetry transformations for this action are linear. write
the most general form of the transformations for A, and 1 that is consistent with
dimensional analysis, Lorentz covariance, reality and gauge invariance, leaving a relative
numerical coefficient to be determined.

b) Determine the relative coefficient left unfixed in a) by requiring invariance of the action.
Find the conserved supersymmetry current.

c) Verify that, up to terms proportional to the free equation of motion for ¢ and a gauge
transformation for A,,, your transformations satisfy the supersymmetry algebra:

—

[Oeys 0y = —2i€1Y ™ €20m.

where €7 and €2 are the anticommuting supersymmetry parameters.

Basic relations: {7™,7"} = 20™"; Ymn = %(’}’m’)’n = YnYm); "/§ = —1; €™y = 6757

Fierz identity for anticommuting «, 3,7v: 86y = —%(&m@h%, where

1
Y4 =1, 75, Ym, ¥5m; :/—i')’mn

1
’YA = 1’ —75, ’Ym, '757m7 _—ﬁ’y

mn

For anticommuting Majorana o & (3, the following hold:

aB=Ba ay™B = -y avsy™B = By &Ym= —Bymno.



. The R-weight w of a chiral superfield ¢(z.63.6 3) expresses the phase that the whole super-

field acquires under an R-transformation with parameter a:

Ro(z,6.0) = e“Co(r, %9, e719) .

Thus, for example, a standard mass term in the superspace action for the Wess-Zumino
model is R-invariant if the superfield ¢ has R-weight +1.

a)

b)

Consider a model with three chiral superfields ¢, ¢2 and ¢3 and find the Lagrangian for
the O’'Raifertaigh model as the most general parity-invariant model containing linear.
bilinear and trilinear terms in these superfields that is also R-invariant with weights
wy = 2, we = 2, ws = 0 and that is also invariant under the discrete transformation
@1 — 01, 2 — —@2. 03 — —@3. Let the coefficient of the linear term have parameter
A, let the coeflicient of the bilinear term have coefficient m and let the coefficient of the
trilinear term have coefficient g. ‘

Write down the auxiliary field equations for the three complex auxiliary fields of the
model. You may assume a normalisation of the kinetic terms such that the auxiliary
fields appear in the form [ d*zhh*. Express the potential for this model in terms of the

component physical fields, after elimination-of the auxiliary fields:—You do not-have-to———

be concerned with the overall normalisation of the potential.

Show that when m? > 2)\g, the minimum of the potential is at A = A3 = 0 and
is independent of .4;. where the A; are the complex scalar fields, i.e. the lowest 6
components of the ¢;. Letting A; = A; + iB;, find the masses of the 4; and B; in
this case. Explain what happens and find the values of the scalars that minimise the
potential when m? < 2)g. ,
Determine whether supersymmetry is spontaneously broken, independently of the rela-
tion between m? and 2\g.

Find the fermion mass matrix for the model. Again, you do not have to be concerned
with the overall normalisation. Explain whether your result is consistent with what one
expects for masses in the ¢; supermultiplets.



a)

Describe the general superspace form of the quantum corrections AI' to the effec-
tive action for a Wess-Zumino model with classical action Iwy = f d*zd*0o0 +
Re [ d*zd?0(me? + g¢®), as derived from consideration of the superspace Feynman
rules. You should make clear which aspects of AT are “local.”

Show how translation invariance in the bosonic variables rf'. i = 1... N for an N-point
Green’s function occurring in AT leads to supersymmetry invariance of Al

Weinberg’'s theorem states that the counterterms required to cancel the ultraviolet
divergences in AI' have a local structure in the bosonic coordinates. In this context.
local means that the counterterms are expressed by a single [ d*z integral, with an
integrand involving the fields corresponding to the external lines of a diagram, together
with their derivatives out to a finite order. In momentum space, this translates to
having polynomial behaviour in a single momentum.

Show how this locality constraint, together with the structure of AI' described in part
a), gives rise to the non-renormalisation theorem for the Wess-Zumino model.

Show how the WZ non-renormalisation theorem may also be derived using the back-

ground field method. Split the total chiral superfield ¢ into a background part ¢ and
a quantum part Q: ¢ = ¢ + (. In the background field method, ¢ appears only on

the external lines of the one-particle-irreducible (1PI) diagrams contributing to AT,

while the internal lines involve Q. All three superfields, o. ¢ and @), are subject to the

chirality constraint Dy¢ = Dy, = Da@ = 0.

i) Solve the constraint on @ by setting Q = D?X and show how the terms actually
used in deriving the AI' quantum corrections have a structure that leads, when
combined with the locality requirements for counterterms expressed in Weinberg’s
theorem, to the non-renormalisation theorem of part c).

ii) The solution Q = D?X actually introduces a superspace “prepotential gauge sym-
metry” for X, i.e. a transformation 6X that leaves @ invariant. Find this 4.X
transformation, with a parameter superfield Ag. (This prepotential gauge symme-
try requires gauge fixing, similar to that in super Maxwell theory, but this does not
disturb the validity of the non-renormalisation theorem.)



