
Imperial College London

Gauge-gravity Duality

Benedict Fraser

Submitted in part fulfilment of the requirements for the degree of

Master of Science in of Imperial College London

1



To my parents,

To Kiran and Claire for keeping me sane,

And to my coursemates for keeping me insane.

2



Contents

1 Introduction 5

2 Anti de-Sitter Space 8

2.1 Basic anti-de Sitter space . . . . . . . . . . . . . . . . . . . . 8

2.2 The universal cover . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Coordinate patches . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Causal structure . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Euclidean vs. Lorentzian AdS . . . . . . . . . . . . . . . . . . 16

3 Why, how gauge-gravity duality? 18

3.1 AdS/CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Large N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 The Dynamical Statement 23

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Conformal dimensions . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Renormalisation Group Flow . . . . . . . . . . . . . . . . . . 29

4.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Gravity calculation of correlators . . . . . . . . . . . . . . . . 32

4.5.1 Position space two-point function . . . . . . . . . . . . 32

4.5.2 Gauge Field Propagator . . . . . . . . . . . . . . . . . 37

4.5.3 Witten diagrams . . . . . . . . . . . . . . . . . . . . . 40

5 Examples ; N = 4 Super Yang-Mills 46

5.1 The Original - Discussion . . . . . . . . . . . . . . . . . . . . 47

5.2 Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 N = 4 Super Yang-Mills . . . . . . . . . . . . . . . . . 49

5.2.2 Type IIb Supergravity . . . . . . . . . . . . . . . . . . 51

5.3 Maldacena’s Correspondence . . . . . . . . . . . . . . . . . . 57

5.4 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3



5.4.1 Mapping BPS states . . . . . . . . . . . . . . . . . . . 60

6 Finite Temperature 62

6.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion 69

4



1 Introduction

String theory was originally mooted in the late 1960s, as a theory of the

strong interaction. After QCD was discovered to be the correct theory for

this phenomenon, string theory went out of favour. It then took ten years,

and the remarkable successes of Schwarz, Greene, Neveu and Ramond to

bring string theory back into the limelight as a remarkably elegant theory

which could incorporate both gravity and the lower spin gauge theories of

particle physics. In the 1990s, despite continuing successes (such as the

discovery of D-branes and various ‘dualities’ which merged various string

theories into one ‘M-theory), string theory (by now also a theory of many

other types of extended objects) was coming to be seen as an esoteric area

of physics, far removed from experiment, with some critics to call it not

physics at all, or worse still a religion (refs).

However, in the past ten years the new concept of ‘gauge-gravity duality’

has emerged [DF02]. In short, this is the statement that certain string

theories on manifolds with a special asymptotic behaviour can be thought

of as quantum gauge field theories without gravity, which are defined on the

boundary space of those manifolds. This is an example of a ‘holographic

principle’: something which has long been suspected to exist in quantum

gravity, in which physics in a certain region can be entirely described by

information on its surface. (ref Susskind)

Part of the reason people are now getting so excited about his topic is be-

cause it finally relates string theory to something experimentally observable

and indeed ubiquitous: gauge theory. Furthermore, the regime in which the

correspondence is mathematically simplest is that of ‘strong gauge coupling’.

Solving non-Abelian gauge theories (in particular QCD) at strong coupling

has long been seen as the most important unsolved problem in quantum field

theory. Systematic calculation of correlation functions in these theories has

only been tractable at ‘weak coupling’ when the coupling constant g of the

theory is small, enabling us to express them as a perturbation series in g.
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This is the case at high energies, and the effective degrees of freedom are

then quarks and gluons. At lower energies, g becomes large, perturbation

theory is no longer possible, and we observe a phenomenon known as con-

finement. The effective degrees of freedom are now colour neutral hadrons.

We still do not have a systematic method of obtaining the masses of these

hadrons. So not only has string theory touched ground with experiment (at

least in principle), but it has done so in the best possible place: where it

could advance our understanding of the standard model, crowning bastion

of the golden age of theoretical physics.

There are two main areas in which gravity theories are being used to study

gauge theories. The first is in QCD, specifically in heavy ion collisions which

take place at places such as RHIC in Brookhaven, NY. In these collisions, a

strongly coupled quark-gluon plasma is created, which is a state of matter

which exists just above the confinement energy of the theory. Interesting

properties of theories which resemble QCD at these energies can be derived

from the duality, leading to insights into the thermal properties of a large

class of such gauged theories. The second is in condensed matter physics.

Here effective field theories are commonplace, and have been used with great

success over the past 50 years to study critical phenomena (phase transi-

tions) in a wide variety of situations, such as ferromagnets, semi-conductors

and super-conductors. But our understanding has been limited by the same

lack of systematic understanding of non-perturbative phenomena. The du-

ality provides a potential wealth of new models for effective field theories,

and will hopefully lead to further understanding of new classes of condensed

matter systems.

In this thesis we review the basic concepts and methods of the gauge-

gravity correspondence.

In chapter two we review the geometry of Anti-di Sitter (AdS) space, in

preparation.

In chapter three we present some basic arguments in favour of the duality,

and outline the basic concepts.

In chapter four we give an explicit formalism for making calculations in

gauge theory using gravity in AdS space. This naturally leads on to a

discussion of the generic properties of the duality dynamics. We end the

chapter doing some of the calulations.

In chapter five we describe a specific example of the duality, and show
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how concepts introduced in chapter four can be used.

Finally in chapter six we give a hint of how to go on a create new dualities

using the geometry of spacetime.
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2 Anti de-Sitter Space

The whole geometrical structure of gauge theories which we will be describ-

ing is based on a spacetime manifold called anti-de Sitter space. Therefore

the very first thing we need to do is define this manifold, and discuss its

quirks, so that we will have collected all the necessary information before

we start. The manifold comes in several different forms, and has different

coordinate patches in which one can choose to describe it.

2.1 Basic anti-de Sitter space

Anti-de Sitter space in d + 1 dimensions (AdSd+1), in its most basic form,

is defined as follows. Take the manifold Rd+2, endowed with a metric:

ds2 = −dX2−1 − dX
2
0 +

d∑

i=1

dX2i (2.1)

Then basic AdSd+1 is the d + 1-dimensional hypersurface defined by the

embedding:

−X2−1 −X
2
0 +

d∑

i=1

X2i = −R
2. (2.2)

To see what this looks like, it is useful to consider the simplest non-

trivial case, namely d = 1. Here the the flat embedding space is R3, and

ds2 = −dX2−1−dX
2
0 +dX

2
1 . Let us show the X−1−X0-plane as the vertical

y−z plane in the usual (x, y, z) construction, and let X1 be the x coordinate.

This is shown in 2.1. AdS3 is the hyperboloid shown in 2.2.

We can satify the d = 1 embedding conditions with the following coordi-

nates on AdS3:
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X−1 = R sin τ cosh ρ

X0 = R cos τ cosh ρ

X1 = R sinh ρ,

where − inf < ρ < inf, and 0 ≤ τ < 2π. These coordinates cover the

entire manifold, and so are called the global coordinates. A position on the

manifold is determined by a ρ coordinate (position in R) and a τ coordinate

(position in S1); in fact there is a bijective mapping between the set of

coordinates {ρ, τ} and points on the manifold, which maps open sets to

open sets. Therefore AdS3 has the topology R× S1, which is a cylinder.

Figure 2.1: The setup of out axes for the embedding shown in 2.2.

This embedding induces the following metric on AdS3:

ds2 = R2(− cosh2 ρdτ2 + dρ2). (2.3)

In higher dimensions we have the following global coordinates and induced

metric:
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Figure 2.2: The two-dimensional hyperboloid of AdS2.

X−1 = R sin τ cosh ρ

X0 = R cos τ cosh ρ

Xi = R(Ωd−1)i sinh ρ

ds2 = R2
(
cosh2 ρ dt2 + dτ2 + sinh2 ρ dΩ2d−1

)
;

where (Ωd−1)i, i = 1, 2 ∙ ∙ ∙ i) are the embedding coordinates for a unit (d-

1)-sphere in Rd , so that
∑
(Ωd−1)i = 1. For example, (Ω1)1 = cos θ; (Ω1)2 =

sin θ.

2.2 The universal cover

As can be seen from its topology, basic AdS space is not simply connected.

In particular, it has a factor of S1: a cylic time coordinate. This means there

are severe problems for causality in this space. For example, to properly

define a quantum field theory on a manifold, we need to concept of time-

ordering. This is impossible to define if time is cyclic. For this reason,

when physicists talk about AdS, they are always referring to its universal

cover. This is produced if we decompactify the τ coordinate in the global
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coordinates, i.e. we take −∞ < τ < ∞. This has an differential structure

identical to basic AdS, but globally is now simply connected (hence its

name, just as for example SU(2) is the simply connected universal cover of

SO(3)).

2.3 Coordinate patches

Apart from the global coordinates, there are a few other coordinate sys-

tems for AdS space. None of these cover the whole space, but only cover

patches of it. The most useful of these to us will be the Poincaré coordinates

y, xμ, μ = 0, ∙ ∙ ∙ d− 1. These are:

ds2 =
R2

y2
dy2 +

y2

R2
ημνdx

μdxν 0 ≤ y <∞ (2.4)

They only cover a wedge of the Penrose diagram, the ‘Poincaré patch’,

as shown in 2.5. The boundary of the space in this patch consists of the

hypersurface at y =∞, and the point y = 0.

These coordinates have the advantage of making explicit some of the

key features of AdS. Firstly, the metric has explicit Poincaré invariance

in the transverse coordinates xμ. In the the metric, the coefficient of the

Minkowski metric is y2. Therefore we can think of AdS as consisting of

infinitely many copies of M, one at each radial (y) coordinate, which get

larger as we head out towards the boundary at large y.

Secondly we note another important isometry of the metric: scale invari-

ance. By this we mean the following coordinate transformation:

xμ 7→ axμ ; y 7→
y

a
, a > 0 . (2.5)

If we invert the radial coordinate z = R2

z , we find the ‘upper half space’

ds2 =
R2

z2
(
dz2 + ημνdx

μdxν
)
0 < z <∞, (2.6)

so called because they cover the region z > 0 in cartesians. In these coor-

dinates the scale invariance is xμ 7→ axμ; z 7→ az. Also, we can ’see’ the

boundary at z = 0. The rest of the boundary z =∞ is a point (like y = 0),

because the metric goes to zero there.
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Figure 2.3: We rotate the axes to line up with null geodesics.

2.4 Causal structure

Anti-de Sitter space has a special causal structure, which enables the precise

form of the correspondence to be formulated in (chapter). To see this,

we need to study its conformal compactification. It will be informative to

compare the causal structure of AdS with that of normal Minkowski space.

Here’s the standard way of conformally compactifying R1,1. Take the

metric

ds2 = −dt2 + dx2 −∞ < t, x <∞ (2.7)

and change coordinates to u = t−x; v = t+x. Lines of constant u are paths

of outgoing light rays, lines of constant v are incoming light rays (2.3).

The metric is

ds2 = −dudv −∞ < u, v <∞. (2.8)

Now compactify these coordinates, i.e. bring infinity to a finite value, by

letting u = tan p; v = tan q. The metric is
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Figure 2.4: The Penrose diagram of R1,1. Timelike geodesics end on i±,
spacelike geodesic end on i0.

ds2 = − sec2 p sec2 q dpdq; −
π

2
< p, q <

π

2
. (2.9)

Now rotate back to modified time and space coordinates p = t′ − x′; q =

t′ + x′, to finally get

ds2 = sec2 p sec2 q
(
−dt′2 + dx′2

)
. (2.10)

This is what we started with, but with the coordinates now having finite

range, and with an extra factor out front. It takes the form of a diamond(fig.

2.4), and this factor goes to infinity at the edges of this diamond, reflecting

the fact that there is an ‘infinity’ of space-time distance compressed into

these edges. A conformal transformation is one in which we simply change

the metric by a (in general space-time dependent) factor, gμν → Ω2(xα) gμν ,

where Ω ∈ R. The key point is that this does not change the sign of norms

of vectors on the manifold, since for a vector v:

v2 ≡ gμνv
μvν → Ω(xμ)v2, (2.11)
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and Ω is positive. So a conformal transformation maps timlike vectors to

timelike vectors, null ones to null ones, and spacelike ones to spacelike ones.

But this is the entire causal structure, which is therefore preserved under the

transformation. So if we want to study the causal structure of a manifold,

we might as well make a conformal transformation to bring the metric to

the simplest possible form. In the present case, let Ω(xμ) = 1
sec p sec q , so

that the metric becomes the R1,1 metric again. Lights rays follow t′ = ±x′,

and we have the picture in fig. 2.4. Because we have divided the metric by

a function which diverges asymptotically (p or q = π
2 ), the boundary of the

new manifold is a finite proper distance away from any given point. We call

this manifold the conformal compactification of R1,1. It encodes the entire

causal structure of R1,1.

The compactification of AdS2 is a bit more straightforward. Take the the

global coordinates

ds2 = − cosh2 ρ dt2 + dρ2 (2.12)

and let sinh ρ = tan θ. The metric becomes

ds2 = sec2 θ
(
−dt2 + dθ2

)
−
π

2
< θ <

π

2
, (2.13)

which diverges at θ = ±π2 . Following our general prescription, we confor-

mally transform away the sec2 θ factor, leaving the Minkowski space metric

with different coordinate ranges. The space is an infinitely long strip, as in

fig. 2.14.

For higher dimensions (AdSd+1), 0 ≤ ρ < π
2 , and each ρ > 0 position is to

be thought of as an Sd−1 of radius ρ, as in polar coordinates. For example

AdS3 can be thought of as the interior of an infinitely long cylinder (fig).

The metric is:

ds2 = sec2
(
θ(−dt2 + dθ2 + θ2dΩ2d−1

)
(2.14)

from which we can again remove the sec2 factor.

The first to notice about (fig. 2.13), is that the boundary of the space at

θ = π
2 is a timelike surface.

This has implications for dynamics on AdS. When we vary an action for

a dynamcial field we in general obtain two sorts of terms:
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Figure 2.5: The Penrose diagram of AdS2. It continues to infinity above
and below. The Poincar is the shaded area.

• The field equations integrated over the bulk

• A boundary term.

In Minkowki space the standard procedure is to consistently set the fields

to zero at infinity, so that the boundary term disappears. We do not need

to know about the field far away. This works because because we can

say we are considering a problem that is local in spacetime. Variations of

the boundary conditions propagate along time curves, and so would take

infinitely long to reach the interior, measured by a timelike observer (in (fig),

all timelike curves end at timelike infinity i+). Therefore interior solutions

are determined independently of the boundary behaviour.

However, as can be seen from a comparison of (fig) and (fig. 2.14), the sit-

uation in AdS is qualitatively different: there is no timelike infinity, reflect-

ing the fact that null curves propagate into the interior from the boundary

in finite time, as measured by a timelike observer. So we can never ignore

the boundary terms. We need to include a counter-term in the action to re-

move it. But to evaluate this counter-term, we need to know the behaviour

of the fields at the boundary. They are needed to solve any wave equa-

tion on AdS. In fact there is a theorem (the Graham-Lee) theorem [??],

which states that given boundary conditions for a field on AdS, there is a

unique interior solution. This will be important for the formulation of the
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correspondence.

2.5 Euclidean vs. Lorentzian AdS

There is another form AdS space, in which the time component has been

Wick rotated so that the metric signature is Euclidean. Let’s formally define

it.

Take the manifold Rd+2, endowed with a metric:

ds2 = −dX2−1 + dX
2
0 +

d∑

i=1

dX2i (2.15)

Then Euclidean AdSd+1 (EAdSd+1) is the (d+1)-dimensional hypersurface

defined by the embedding:

−X2−1 +X
2
0 +

d∑

i=1

X2i = −R
2. (2.16)

This is shown in fig. 2.6. AdS2 is disconnected, but higher dimensional

versions are not. To see the general topology, look at one piece of the the

hyperboloid. EAdSd+1 has the topology Rd+1 for d > 1. It is therefore

simply connected.

We can map all of EAdSd+1 onto the (d + 1)-dimensional upper half

space:

ds2 =
R2

z2
(
dz2 + δijdx

idxj
)

(2.17)

. This is true even though the upper-half space only covers the Poincaré

patch, i.e. some, of Lorentzian AdS.

A note on the uses of AdS and EAdS: many of the original calcula-

tions (e.g. in [[Wit98a]]) were done in EAdS space. This has the following

advantages:

• It has a postitive definite Euclidean metric.

• It can be completely covered by the very convenient upper-half space

coordinates.

We have used the upper-half space coordinatization of the Poincaré patch

of AdS in most of this review. As such there are several subtle points which
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Figure 2.6: The hyperboloid of EAdS2, showing the R2 topology. Higher
dimensional versions are completely connected manifolds.

we have swept under the carpet. It should be noted that many of the

calculations can be made more rigorous by Wick rotating to the Euclidean

space.
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3 Why, how gauge-gravity duality?

Why do we have any reason to think that gravity should be able to describe

to describe a non-gravitational theory in one less dimension? And how does

the relationship between the two theories work?

Evidence for a duality comes about from consideration of black holes.

The work of Bekenstein and Hawking in the 1970s (ref) showed that the

entropy of a black hole was proportional to its area. Actually, in natural

units (~ = c = 1):

SBH =
A

4GN
.

this is actually the largest possible entropy that ‘stuff’ can have in a given

region R of spacetime, of surface area A. There is a simple heuristic argu-

ment to show this: Let the entropy in R intially be larger than this entropy,

S0 > SBH. This means that there is not currently a black hole of area A in

R covering all of R, though there might be smaller one. Now start to put

more matter into R. Eventually, even if there wasn’t a black hole in R to

begin with, one will form. As we add matter, the mass of the black hole

will increase, therefore so will its radius, until finally it fills the whole of R.

Now we do have a black hole of area A, so the final entropy of the region is

Sf = SBH. Which means that Sf > S0. The entropy has decreased! So given

the second law of thermodynamics, and given that there are gravitational

interactions. SBH is the maximum entropy in a region of surface area A.

Looking back at (eq), we see that the maximum entropy of R in pro-

portional to its area A, not its volume V . If we are to treat gravity as a

quantum field theory with even most basic of assumptions, we would deduce

a maximum entropy proportional to V, so that fact that this is not true sug-

gests that there is new physics at play. How might we hope to describe a

physics in which Smax ∝ A?

One possible answer is a quantum field theory defined on the boundary of
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R, this theory would have Smax ∝ volume(∂R) = A. We call the interior R

the bulk, and its boundary ∂R the boundary. The gravity and field theories

are called the bulk and boundary theories, respectively.

Fine I hear you say, we are able to describe gravity in R somehow by stuff

going on at its boundary. But surely there is whole dimension’s worth more

information in the bulk theory. What has happened to all that information?

The answer lies in the Wilsonian idea that when we consider a quantum

theory theory, we must also consider the scale at which we are working.

This is the smallest scale at which we take the theory to be valid. In

doing caculations we do not consider excitations of the field with a smaller

wavelength than this. This corresponds to some maximum energy, the cutoff

of the theory, Λ. This parameter is as much a part of the theory as the

Lagrangian, and studies of how QFTs depend on their scale has been of

fundamental importance in understanding their interpretation. The basic

idea is that the extra dimension should correspond to this energy scale.

3.1 AdS/CFT

There exist QFTs known as conformal field theories. These are theories

which are invariant under conformal transformations of their background

manifold, as described in (eq). The set of conformal transformations form

a group known as the conformal group. An important subgroup of the

conformal group is that of constant scaling of all the coordinates:

xμ → a xμ a > 0. (3.1)

Let us say we want our boundary QFT to be conformal. And let us say that

there is certain limit of the bulk theory we can take, in which the gravity

is dominates by a description involving a background metric g, over which

there are perturbations. This is fair - it corresponds to classical Einstein

gravity. If the QFT is independent of scaling the coordinates, which involves

scaling the energy scale inversely as Λ→ Λ
a , then g, which provides the dual

description, should also be invariant under this. Let us split up the bulk

geometry into a radial coordinate u, which is the QFT energy scale, and

the other, ‘transverse’ directions xμ, on which we define the QFT. Then the

transformation:
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u→
u

a
(3.2)

xμ → a xμ (3.3)

should be an isometry of g.

Furthermore, we need a (non-dynamical) metric h on which to define the

boundary theory. In order to have causality, there needs to be a time-like

component to the boundary. If we want a standard QFT on Minkowski

space-time, h should be Minkowski, which means it has the Poincaré group

as its isometries.

All this implies we need a metric with scale invariance and Poincaré in-

variance in the transverse directions. There is only one candidate, as we

saw in the last chapter: AdS space:

ds2 =
R2

u2
du2 +

u2

R2
ημνdx

μdxν . (3.4)

Therefore a conformal field theory (CFT) on the boundary is dual to a

gravity theory on AdS space, giving rise the popular term ”AdS/CFT”.

This term is however misleading, because we emphasize that the boundary

does not have to be a CFT in order to have a gravity dual. But the dual

metric will not be pure AdS space - it will just have to be asymptotically

AdS.

3.2 Large N

A theory of quantum gravity is hard to deal with. Be it string theory or

loop quantum gravity, or something else, the quantum nature of spacetime

changes things dramatically from the classical picture. If we have a gravity

setup in the bulk which is overwhelmingly classical, so that we can use

Einstein’s theory, what does this mean for the boundary theory?

We can find this out by examining the number of degrees of freedom in

the the field theory. We expect to go like the entropy of the field theory,

which we have just said is A
4GN
. Let’s try to find these independently.

Will assume a pure AdSd+1 geometry, and work with Poincaré coordi-

nates. Let’s calculate the area of the boundary at some fixed t:
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A =

∫
dd−1x

√
γ (3.5)

where γ is the induced metric on the spatial boundary, γ =
(
R
z

)d−1
. (3.5) is

infinite. This comes from two things: 1)the boundary is a copy of Minkowski

space infinitely magnified by the 1z factor in γ, and 2) the transverse space

has an infinite volume. So we need to regulate the area by:

1. Taking the boundary at z = ε

2. Putting the tranverse coordinates in a box, 0 < xμ < L.

⇒ A =

∫ L

0
dd−1x

(
R

ε

)d−1
=

(
LR

ε

)d−1
. (3.6)

Now let’s calculate the number of degrees of freedom. Corresponding to

the energy scale cutoff z = ε we used in (3.6), we will take the field theory on

a lattice with lattice spacing ε. And we’ll take the this space (the boundary)

to be in a box (again as in ??). We will say the that there are N2 degrees

of freedom per lattice site, so we have the picture in fig. 3.1. The total

number of degrees of freedom on the boundary is N2 times the number of

lattice points:

degrees of freedom =

(
L

ε

)d−1

︸ ︷︷ ︸
d.o.f./lattice site

N2 (3.7)

Now we equate
A

4GN
= degrees of freedom:

⇒

(
LR

ε

)d−1
=

(
L

ε

)d
N2

⇒
Rd−1

GN
∼ N2 (3.8)

This is a very simple rough calculation, but it shows us something important.

The LHS of (3.8) is the AdS radius (i.e. the typical radius of curvature of

the bulk geometry), in units of the bulk Planck length GN
1
d−1 . We rewrite

(3.8):
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Figure 3.1: A two-dimensional planar cross-cross section of the boundary
lattice.

(
curvature scale

Planck length

)d−1
= N2 . (3.9)

So if there are a large number of degrees of freedom at each point in the

field theory, the bulk curvatures will be small compared to the Planck scale

and the energies will be low. We will have classical gravity.

large N2 → Classical gravity dual
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4 The Dynamical Statement

Up until now we have almost exclusively considered mappings between the

respective symmetries of the gravity and gauge theories. (ordering?) How-

ever, if we are being honest with ourselves, this does not tell us that much.

Consider the following: Given a theory with a certain symmetry group, G,

we can always take objects which transform in a certain representation of G,

and then take suitable products of them to give a composite object which

transforms in any given representation we like, call it R. Then we take

a second theory with the same symmetry group. It too will have objects

transforming under representations of G. We again take products until we

have an object transforming in R. Lastly, we define a map between the two

composite objects. They transform in the same way under G, so things are

looking good. Does this mean they are the same theory?? No! Why not?

The answer is that a theory is not entirely defined by its symmetries.

A classical theory is defined by its Lagrangian, and a quantum theory is

defined by its path integral, or generating functional. To precisely define

a duality between two physical theories, we must define a bijective map

between the generating functionals of the two theories. This is precisely

what Witten did in 1998 [[Wit98a]]. Witten’s key idea was that fields in

the gravity theory should be dual to operators in the gauge theory. Take

a field ϕ in the bulk, with boundary condition ϕ = ϕ0 at the boundary of

the AdS space. Let ϕ be dual to an operator O in the boundary theory.

Witten’s ansatz is:

ZQFT [ϕ0] =

∫
DϕeiS[ϕ]|ϕ0 , (4.1)

where the LHS is the generating functional for O in the gauge theory as a

function of the source ϕ0, and the RHS is the path integral of the gravity

theory over all field configurations of ϕ(z, xμ) with ϕ = ϕ0 at the boundary.

This means the following: the field ϕ couples to an operator O on the
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boundary, and adds a term Lint = ϕ0O to the Lagrangian of the boundary

theory. Fluctuations of ϕ0 then act as a source perturbing this theory with

the operator O. Then, in usual way, the generating functional for O is

defined as the vacuum path integral in the presence of the source:

Z[ϕ0] :=

∫
Dϕei

∫
d4x(L+ϕ0O) (4.2)

and the vacuum expectation value of products of this operator are found by

finding the ’response’ of the path integral to small fluctuations of the source

about zero:

〈Ω| O(x)O(y) ∙ ∙ ∙ O(z) |Ω〉 =
δ

δϕ0(x)

δ

δϕ0(y)
∙ ∙ ∙

δ

δϕ0(z)
Z[ϕ0]|ϕ0=0 (4.3)

The correlation functions of a theory encode all of its information [??].

Therefore by knowing the correlators we are a long way to understanding

the correspondence. It will be the goal of this chapter to calculate some

correlation functions in the limit of classical gravity, and to outline the

associated subtleties. In particular we will see that renormalization of these

correlators corresponds to something geometrical in the gravity theory.

4.1 Preliminaries

So what will it take for us to calculate some juicy correlation functions?

Firstly, we need to know what regime we are working in, so that we can

make some all-important simplifying approximations and introduce some

key concepts in the application of the precise duality statement. We will

work in the limit of classical gravity in the AdS. In this limit, quantum

(and stringy) fluctuations are small (see §5.1), and the path integral of the

gravity theory is dominated by a classical solution of the coupled Einstein

and matter field equations. In this case we have:

∫
DϕeiS = eiS[ϕclassical], (4.4)

where ϕclassical is a classical solution to the equations of motion of some field

ϕ.

The next issue we must address is the role of the boundary conditions ϕ0
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appearing in (4.1). To do this let us take the simplest field we can think of:

a real scalar field, and try to solve its field equation out on the boundary of

the AdS space. Asymtotically, as we mentioned, the space must be exactly

AdS, so we know the metric we must take as our background.

Throughout this chapter, we are going to be working in the upper half

space Poincaré coordinates (2.4), repeated here for your convenience:

ds2 =
R2

z2

(

dz2 + ημνdx
μdxν

)

. (4.5)

The action for our scalar field we will take to be:

−
1

2

∫
d4x
√
−g

(

gμν∂μϕ∂νϕ+m
2ϕ2
)

, (4.6)

with equations of motion:

1
√
−g

∂μ

(
√
−g gμν∂νϕ

)

−m2ϕ = 0. (4.7)

It is an important assumption here the field configuration will not back-

react on the metric, so that we can solve for the field on a gravity back-

ground without worrying about the fact that the two systems are dynamical

coupled. We will come back to this point later.

For simplicity, let us consider the mode with zero momentum in the trans-

verse directions, by letting ϕ = ϕ(z). We will also take the AdS radius to be

unity, R = 1, so we are measuring lengths in units of R. Now substituting

in the metric (4.5), (4.7) becomes:

z5∂z

(
1

z5
z2 ∂zϕ

)

−m2ϕ = 0 (4.8)

⇒ z2 ∂2zϕ− 3z ∂zϕ−m
2ϕ = 0 (4.9)

This is an ordinary differential equation of the Euler variety. Since in these

coordinates z ≥ 0, we can solve it using a power law ansatz: ϕ(z) = zλ.

We find the indicial equation:
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λ2 − 4λ−m2 = 0 (4.10)

⇒ λ = 2±
√
4 +m2 := Δ± (4.11)

There are three separate cases:

• m2 > 0: One root Δ− < 0, which causes the solution to blow up at

the boundary (z → 0). The other solution Δ+ dies away towards the

boundary. For a general solution with non-zero coefficient for Δ−, Δ−

will be the dominant contribution at small z. What are we to make of

this? In the end we are going to want to evaluate the classical action

for a field configuration with a given boundary condition φ0 at z = 0.

But in general the solution is infinite there. Therfore we must regulate

the boundary. That is to say, we take the boundary of AdS not at

z = 0, but at z = ε, so that we can impose finite boundary conditions.

• m2 = 0: The roots are coincident, Δ+ = Δ− = 0. This means that

all solutions to the scalar wave equation are radially constant near the

boundary. Thus there seems no need to introduce a cutoff.

• m2 < 0: Is this possible? The scalar potential for a negative mass is

concave, and is classically unstable to the field configuration ‘falling’

off the top (see fig. 4.1). In Minkowski space, where the kinetic en-

ergy of the scalar in the vacuum is zero, this is indeed fatal, and it is

impossible to define a sensible field theory 1 However, in AdS this is

OK. Why? Well let us look at the solutions in this case: both roots

Δ+,Δ− > 0. This means that any solution to the equations of motion

will decrease towards the boundary. With this radial field variation

will be associated a positive kinetic energy in the stress-energy tensor

component T00, which, as long the mass is not too negative, pro-

vides vacuum stabilization. Here we are faced with the same problem,

namely: how are we supposed to impose finite boundary conditions

on φ at the boundary, when all solutions go to zero there? So again,

we must introduce a cut-off near the boundary at z = ε.

1At least using conventional quantum mechanics.[[McH09]]
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Figure 4.1: The upside-down potential. A static field configuration is un-
stable, but AdS forces momentum into the field, so it can some
‘upside-down-ness’.

4.2 Conformal dimensions

If we are working at an energy/length scale at which the bulk space is

AdS, i.e. asymptotically, the boundary theory behaves like a conformal

field theory (CFT). If conformal tranformations of the boundary commute

with the boundary Hamiltonian, the operator dual to some bulk field must

transform in some irreducible representation of the boundary conformal

group.

Of particular interest amongst the generators of the conformal group is

the dilatation operator, which governs how a field transforms under scale

transformations. If the coordinates are scaled as in (3.1) with a = eω:

xμ 7→ eωxμ (4.12)

then the field ϕ will transform as

φ 7→ e−Δωφ (4.13)

and Δ is called the conformal dimension of φ. Notice the minus sign in

the exponent, which means that a field of positive Δ scales up with the

energy, and inversely with the coordinates. For a classical CFT, the confor-

mal dimensions of the fields are just their classical energy dimensions, but
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quantum mechanics will in general renormalize the classical dimension. The

change in dimension of an operator due to quantum loops in known as its

anomalous dimension. From here on in, when we talk about the ‘dimension’

of a field, we will mean its full quantum conformal dimension.

The conformal dimensions add up for two fields multiplying each other:

given two fields φ1, φ2 of conformal dimensions Δ1, Δ2, we have:

Δ(φ1φ2) = Δ1 +Δ2 (4.14)

Can we deduce what Δ will be for a field theory operator dual to some

bulk field?

Let’s look at the coupling term in the boundary action:

Sint =

∫
ddxOϕ (4.15)

The whole action must have ΔS = 0. The measure d
dx naturally has

dimension Δ = −d. Now what is the dimension of ϕ? We have seen in §4.1

that a bulk field satisfying a second order differential equation of motion will

have two different possible boundary behaviours near the boundary. E.g.

for a massive scalar field we had:

ϕ ∼ zΔ± 0. (4.16)

In general, as for the m2 > 0 case, one will grow towards the boundary

and one will die away. There is an elegant theory of linear response [[McG]],

which describes how we should treat the growing solution zΔ− as the source

for the operator, i.e. the ϕ leading to the ϕ0 in (4.15). We should then

interpret the other solution as the response, i.e. the vacuum expectation

value ofO in the boundary theory in the presence of the source term coupling

in the Lagrangian.

We will see in §?? that the ϕ we use in (4.15) is a renormalized field,

which scales like z−Δ− with z, which in turns scales as the dμ. That is, ϕ0

has dimension Δ = Δ−. Therefore to make the action conformally invariant

O must have Δ = Δ+.

So we have the following picture: a scalar field of mass m couples at the

boundary to an operator of dimenion Δ+, which is the large root of (4.11).

From now on, we will refer to Δ+ a simply Δ, and we will denote the dual
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operator with dimension Δ as OΔ.

4.3 Renormalisation Group Flow

Where have we seen this idea of regulating something in order to calculate

correlation functions? It appears in renormalization theory. Indeed we see

that when we identify z with the distance scale of the theory, ε becomes like

a short distance or high energy cutoff, exactly mirroring the procedure in

any field theory. Concomitantly, the whole Wilsonian picture of varying the

cutoff of a field theory to see how the couplings run with the scale is dual

to a nice geometrical picture of changing how far towards the boundary the

field theory ‘lives’. As the ‘home plane’ of the field theory wanders off into

the asymptotics of the AdS space, its couplings flow into the UV. As this

plane comes in towards the interior of AdS, the field theory couplings run

into the IR.

Let us see explicitly how this works. The dynamical statement of the du-

ality says that each field in the bulk couples to an operator on the boundary:

L ⊃ ϕ0O,

where ϕ0 should be considered as the leading term in the solution, i.e. z
Δ− .

Again it is stressed that (last eq.) implies that each field configuration of the

bulk corresponds to a different quantum field theory, with different values

for the couplings or perhaps completely new terms. Given a field ϕ coupling

to an operator O there two things we can do.

Firstly, we could ‘turn on’ (change the field configuration to) a solution of

ϕ which is of finite value ϕ0 at the boundary. This corresponds to turning

on the coupling ϕ0O in the field theory, i.e. actually changing the theory.

Secondly, we could turn on a ϕ solution of infinitesimal value, small

enough not to effect the dynamics of the field theory, and finding its differ-

ential effect on the path intergral. This corresponds to ‘propagating’ O in

the field theory to find its correlation functions. This is what we do in the

standard procedure for finding correlators described at the beginning of the

theory, and we will do it explicitly in the next section.

Henceforth we will refer to turning on a finite solution as simply ‘turn-

ing on’ the solution, and refer to turning on an infinitesimal solution as
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‘perturbing’.

Since the correspondence tells us that the value of a bulk field solution

at a particular z is the the coupling of the dual operator at a certain point

in the RG flow, the variation of the solution is the beta function for the

coupling.

Solutions like that for m2 < 0 above are called normalizable modes (not

to be confused with renormalizability, although the two are connected) 2.

They decrease towards the boundary, i.e. the coupling ϕ0 dies away at high

energies. Therefore the dual operator O is a relevant operator in the field

theory.

Solutions like that for m2 > 0, which become infinite at the boundary,

are called non-normalizable modes 3. They are couplings which increase

as we flow into the UV, so their corresponding operators O are irrelevant

operators. For these modes we need to reconsider our assumption that the

metric and scalar field have decoupled from each other. If such a solution

is turned on there will be a large energy density near the boundary, causing

back-reaction on the metric, and the asymptotics of the space-time will be

changed. One of two things could happen:

• The solution might blow up so dramatically as to disfigure the asymp-

totics beyond all recognition. There might not even be a boundary of

the space-time on which to define boundary conditions for the fields.

Or if we still have a boundary, it will not be time-like. This de-

stroys the conditions for the Graham-Lee theorem, so that we couldn’t

uniquely define a solution in the interior given some boundary con-

ditions. In short, our scheme for finding correlators in the theory

will fail. However, given the large space-time curvatures involved, our

classical gravity assumption will probably break down as well. The

assumption is this that we will be saved by some UV completion of

the bulk theory, such as string theory, which will tell us what to do

at high energies. Without knowledge of the UV physics, we cannot

compute anything. This corresponds to the existence of a Landau pole

in the RG flow.

2In fact the definition of a non-normalisable mode is that it is a solution to the equations
of motion for which the (non-regularized) classical action is infinite.

3The classical action is infinite.
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• The solution might not change the metric asymptotics too drastically,

in which case there will still be a time-like boundary. Thus, by defi-

nition, the space is asymptotically anti-de Sitter. We can still do all

of our computations of correlators in the theory using the bulk field

values at this boundary. We do not need to know what goes on past

our chosen cutoff ε to do this. This corresponds to us being saved by a

UV fixed point in the RG flow, so that we can still do renormalisation

by ignoring higher energies.

Solutions like that for m2 = 0 are radially constant near the boundary.

They will in general be non-normalizable, since the volume of AdS is infinite.

So, at least in the approximation we are working in, these couplings do not

run. Therefore the operators O are marginal. Quantum corrections in the

bulk may correct the operator dimension, making it relevant or irrelevant.

4.4 Remarks

The field theory on the boundary is determined by two things:

• The dual gravity theory Lagrangian. Amongst other things this de-

termines the field content of the boundary theory. Excitations of op-

erators in the field theory are dual to excitations of fields in the bulk.

• The boundary conditions of the gravity theory. This fixes the interac-

tion terms in the boundary theory Lagrangian.

We have discussed how the gravity theory needs to asymptote to a clas-

sical AdS geometry background. In order for this to happen, the gravity

theory needs to have some classical solution of the coupled equations of

motion for the metric and matter fields, in which the metric is AdS with

a certain radius, and the fields have some definite radial behaviour. By

boundary conditions, we mean that classical solution.

By turning on bulk field solutions, we are changing the boundary con-

ditions of the gravity. We cannot turn on a mode dual to an irrelevant

operator, because this would make the field theory non-renormalizable. We

can however perturb this solution to find its correlation function in a theory

were it hasn’t been turned on.
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So we see that given a gravity Lagrangian, we can construct lots of differ-

ent dual field theories, which correspond to different boundary conditions

for the bulk fields. We end this chapter with some explicit calculations of

correlators. Thus fortified, we will be able to go on and put these tools to

work in interesting and important situations.

4.5 Gravity calculation of correlators

If we can’t do any explicit calculations, all of this is just a vague theoretical

idea. They will be the subject of this section. In the field theory we want

to calculate correlators of operators, each of which is dual to a bulk field.

According to Witten, we must follow the prescription 4.1. There are two

ways to do this. The first is in position space. This is easier to visualize

and helps with intuition. The second is in momentum space. This is more

abstract, but it is simpler to do and so more useful, especially in the case in

two point functions, as we will see. We will present both methods for the

two-point function of a scalar operator. Then we will calculate the three

point function 〈Ω| OΔO∗ΔJ
μ |Ω〉 of two charged scalars and a conserved

current.

4.5.1 Position space two-point function

This method was originally used in [[Wit98a]]. (4.1) says the first step is to

evaluate the action for the classical solution of the bulk field with boundary

condition ϕ = ϕ0 at z = ε, which we shall from now on refer to as the

boundary. We do this using a Green’s function method. That means, we

find a solution to the field equation which is a delta function centred at a

point (ε, yμ) on the boundary. (Greek indices refer to Lorentz indices for

the boundary metric, raised/lowered by ημν , so y
μ, or just y for short, is a

point on the boundary. ) Then we multiply by ϕ0(y) and integrate over the

boundary.

We can solve the equations of motion, as we saw in 4.1, simply by

ϕ(z, xμ) = cΔz
Δ+ , where cΔ is some constant. This solution becomes infi-

nite at large z, and is singular at the point z = ∞ in the deep interior of

the AdS.

Instead we need a function (a transverse space delta function) which is
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singular at a point y on the z = 0 surface (or rather z = ε, but we’ll come to

this), and because of the transverse translational invariance of the metric we

can take y = 0 without loss of generality. To proceed we note an important

isometry of the metric which is used in almost all position space calculations

in AdS. This is the inversion transformation:

z 7→
z

z2 + x2

xμ 7→
xμ

z2 + x2
, (4.17)

where x2 ≡ xμxμ = ημνxμxν . This should not be confused with the inversion

of just z, which we did in 2.3, and which is not an isometry. There is an

important difference between them. Inverting just z changes the patch, so

that the boundary is a different boundary after the transformation. Under

(proper) inversion, which is an isometry, we stay with the same patch. All

that has happened is:

• The point at z = ∞ in the interior has been mapped to the point

z = 0 ;x = 0 on the boundary.

• The boundary is still at z = 0, and points on the boundary z = 0 ;x 6=

0 have been inverted, x 7→ x
x2
.

We have found a solution that is a delta function at z =∞. If we perform

an inversion on it, it will still be a solution (because inversion is an isometry),

and it will be singular instead at z = 0 ;x = 0. This is just what we need.

So let us now perform the inversion on our solution (eq):

cΔz
Δ+ 7→ cΔ

zΔ+

(z2 + x2)Δ+
:= cΔKΔ(z, x; 0) , (4.18)

So we have:

KΔ(z, x; y) :=

(
z

z2 + (x− y)2

)Δ+
(4.19)

(shows graphs of limit, in Mathematica? Contour/shaded plot?) where

the reason for the K notation will become clear soon. As promised this

is singular at z = 0 ;x = 0. In fact z−Δ−KΔ(z, x; 0) is proportional to a
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delta function on the boundary, centered around x = 0. We can see this by

noting:

• As we take the limit

lim
x→0

z−Δ−KΔ(z, x; 0) (4.20)

the function, which is a Lorentzian curve as a function of x for fixed

z, becomes thinner and narrower, until at z = 0 it only has support

at x = 0. This is shown in fig. 4.2.

• The integral

I =

∫
ddxz−Δ−KΔ(z, x; 0) (4.21)

stays constant as we take the limit. We see this by noting that I can

only be ∝ zλ, for some λ ∈ R. But by dimensional analysis λ = 0, so

I is a constant. By normalizing K correctly, we can make I = 0.
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Figure 4.2: The bulk-to-boundary propagator (modulo a power of z), for a
free scalar field in AdS. As z → 0, its support falls away apart
from at x = 0.
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We can construct the solution with a given boundary behaviour by inte-

grating over the boundary:

ϕ(z, x) =

∫
ddx′ϕ0(x

′)KΔ(z, x; x
′) . (4.22)

For this reason, KΔ(z, x; x
′) is known as the bulk-to-boundary propagator. It

is the Green’s function giving the effect on the bulk field of a delta function

disturbance at the boundary. From the above argument, ϕ does not tend to

ϕ0(x) at the boundary, but instead behaves like z
Δ−ϕ0(x). Actually the ϕ0

we have written here is actually a renormalized field. The bare field, ϕB0 (x)

is what we need the field to be equal to at z = 0. We can therefore deduce:

ϕ(x) = zΔ− ϕ0(x) = z
Δ− ε−Δ−

(
εΔ− ϕ0(x)

)
(4.23)

⇒ ϕB0 = ε
Δ−ϕ0(x) . (4.24)

Notice that if we keep ϕ0(x) finite, then ϕ
B
0 becomes infinite as ε → 0.

We have literally scaled away this infinity, in exact parallel with the QFT

renormaliztion scheme. For massive fields in bulk, we deal with renormalized

fields and the bulk-to-boundary propagator, as above.

The next step is to calculate the action for this classical solution. Up to

a constant factor we can express the action as, using integration by parts,

S[ϕ] =

∫
dd+1x

√
−g gMN∂Mϕ∂Nϕ (4.25)

=

∫
dd+1x

{

∂M
(√
−g gMNϕ∂Nϕ

)
− ϕ∂M (

√
−g gMN∂Nϕ)

}

(4.26)

=

∫

AdS

{

d(ϕ ∗ dϕ) − ϕ d(∗dϕ)

}

, (4.27)

where capital letter indices denote are for the bulk spacetime. The equation

of motion reads d ∗dϕ = (∗1)�ϕ = 0, so the second term vanishes on shell.

Now, using Stokes’ theorem, we can write the first term as a boundary term
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S[ϕ] =

∫

∂AdS

ϕ ∗ dϕ (4.28)

=

∫
ddx
√
−γε ϕn

M∂Mϕ , (4.29)

where again greek indices are for the boundary spacetime, γε is the metric

induced by g on the boundary (z = ε), and n = nM ∂
∂xM

is the outward

facing unit normal to this boundary. By symmetry, n ∝ ∂
∂z , so let n = A

∂
∂z .

Now if we require it to be a unit vector, we need

1
!

=
g(z = ε)MNn

MnN =
R2

ε2
A2 ⇒ A = ±

ε

R
. (4.30)

To make it point outwards, we choose the negative sign. We have
√
γε =

(Rε )
d. So up to constants:

S[ϕ] =

∫
ddx

(
R

ε

)d−1
ϕ∂zϕ|z=ε . (4.31)

Now we have, using the notation α := z2 + (x− x′)2 for clarity:

ϕ(z, x) = cΔ

∫
ddx′ ϕ0(x)

zΔ+

(z2 + (x− x′)2)Δ+
(4.32)

⇒ ∂zϕ(z, x) = cΔ

∫
ddx′ ϕ0(x)

αΔ+Δ+z
Δ+−1 − zΔ+Δ+2zαΔ+−1

α2Δ+

(4.33)

= cΔ

∫
ddx′ ϕ0(x)z

Δ+−1αΔ+−1
−z2 + (x− x′)2

(z2 + (x− x′)2)2Δ+
(4.34)

In the limit z → 0 this becomes

cΔ+z
Δ+−1

∫
ddx′ϕ0(x

′)
1

(x− x′)2Δ+
(4.35)

We have already found that ϕ(x) ∝ zΔ−ϕ0(x) at the boundary. So now,

plugging both of these into (4.31), up to constants as always:
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S[ϕ(x)] = ε1−d
∫
ddx ddx′ εΔ−ϕ0(x)ϕ0(x

′)
1

(x− x′)2Δ+
(4.36)

= ε1−d+Δ++Δ−−1
∫
ddxddx′ ϕ0(x)ϕ0(x

′)
1

(x− x′)2Δ+
(4.37)

We have that Δ+ + Δ− = d, so we see that using our renormalized bulk

fields the action becomes finite. So we have the result:

S[ϕ(x)] =

∫
ddxddx′

ϕ0(x)ϕ0(x
′)

(x− x′)2Δ+
. (4.38)

And finally:

〈Ω| OΔ(x)OΔ(x
′) |Ω〉 =

δ

δϕ0(x)

δ

δϕ0(x′)
S[ϕ(x)] =

1

(x− x′)2Δ+
(4.39)

which is correct up to an uninteresting normalization. Note that this is the

form the two-point function must take in a conformal field theory, for a

field of conformal weight Δ+. It is a triumph for Witten’s postulate that

this calculation works out correctly. We will now go on to show that this

prescription seems to work for any type of bulk field, providing the correct

form for a conformal field theory.

We have used a renormalization idea identical to that in QFT and found a

correlation function. Except that instead of complicated Feynman integrals

(over infinitely many fields, furthermore, since we are in general taking the

large N field theory limit), we have only had to deal with much a simpler

calculation in classical gravity. In this way the correspondence maps ‘very

quantum’ physics (where the coupling is large and loop effects dominate)

to ‘very classical’ physics in which quantum loops can be ignored. All we

have to do is map between physics in completely different spacetimes! This

is a revolutionary concept, and one which means we should definitely get

excited about gauge-gravity duality.

4.5.2 Gauge Field Propagator

In the last section we considered the simplest possible action: that for a free

scalar field. Of course, to be interesting the bulk theory will in general have
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fields in different representations of the Lorentz group, and interaction terms

between them. For example we may have gauge fields Aaμ, dual to boundary

current operators J aμ, where the index a is for the adjoint representation

of a bulk G. Or there might be several scalars fields ϕa rotating amongst

themselves in the adjoint of G, with G-invariant interactions fabcϕaϕbϕc.

And there will have to be a renormalizable Einstein-Hilbert term to describe

perturbative gravity fluctuations about the AdS background, i.e. 1
16πGN

R.

All of these fields will have duals in corresponding representations of the

boundary symmetry group (which must be isomorphic to the bulk one).

And the bulk field must couple to the boundary operators in a way which

preserves this symmetry group.

For example let’s work out the bulk-to boundary propagator for a U(1)

bulk gauge field.

Maxwell’s equations read:

d ∗ dA = 0 (4.40)

Without loss of generality we can Lorentz transform in xμ so to a frame in

which the field has no momentum along the boundary: A = A(z). We also

work in a gauge in which the gauge field has a non-zero component only in

one of the dxμ, which we will take to be x0 = t. So we have A = A(z) dt.

Now we solve (4.40):

A = A(z) dt (4.41)

⇒ dA = A′(z)dz ∧ dt (4.42)

⇒ ∗dA =
√
−g

(d− 1)!
gzzgttA′(z) (d− 1)! dx1 ∧ dx2 ∧ dx3 ∧ ∙ ∙ ∙ ∧ dxd−1

(4.43)

=
Rd+1

zd+1
z2

R2
z2

R2
gttA′(z) (d− 1)! dx1 ∧ dx2 ∧ dx3 ∧ ∙ ∙ ∙ ∧ dxd−1

(4.44)

=
Rd−3

zd−3
A′(z)dx1 ∧ dx2 ∧ dx3 ∧ ∙ ∙ ∙ ∧ dxd−1 (4.45)

⇒ d ∗ dA =

(
Ld−3

zd−3
A′(z)

)′
dz ∧ dx1 ∧ dx2 ∧ dx3 ∧ ∙ ∙ ∙ ∧ dxd−1 (4.46)
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Substituting into (4.40) yields:

(
Ld−3

zd−3
A′(z)

)′
= 0 (4.47)

⇒
Ld−3

zd−3
A′(z) = constant (4.48)

⇒ A′(z) = const× zd−3 (4.49)

⇒ A(z) ∝ zd−2 . (4.50)

So just as for the massless scalar field the behaviour was φ ∼ zd, here we

have A ∼ zd−2. Now we can use exactly the same trick as we did there: we

make the inversion (4.17).

In the scalar case (4.18) we only needed to transform the coordinates,

but this is a tensor field so we need to worry about its non-trivial Lorentz

transformation:

ĀA =
∂xB

∂x̄A
AB (4.51)

where A, B = 0, 1, ...d are bulk spacetime indices.

We need to calculate the inverse Jacobian factor in (4.51) for the inversion

transformation:

x̄A =
xA

z2 + xμxμ
=

xA

xBxB
(4.52)

⇒ xA =
x̄A

x̄Bx̄B
(4.53)

⇒
∂xA

∂xB
=

∂

∂x̄B

(
1

x̄C x̄C

)

x̄A +
1

x̄C x̄C
∂x̄A

∂x̄B
(4.54)

= −
1

(x̄C x̄C)2
∙ 2x̄Bx̄

A +
1

x̄C x̄C
δAB (4.55)

=
−2

(x̄C x̄C)2

{

x̄Ax̄B −
1

2
δAB (x̄C x̄

C)

}

(4.56)

=
1

x̄C x̄C

{

δAB − 2
x̄Ax̄B
x̄C x̄C

}

(4.57)

This gives us the bulk-to-boundary propagator for a gauge field of polar-

ization in the xμ direction at boundary point yμ to propagate in to point
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Figure 4.3: The correlation function 〈Ω| OΔ(x)OΔ(x′) |Ω〉 expressed as a
Witten Diagram.

(z, xμ) with polarization along xA:

KiA(z, x; y) =
zd−2

(z2 + (x− y)2)d−1

{

δiA − 2
xixA

z2 + (x− y)2

}

. (4.58)

4.5.3 Witten diagrams

Notice that the scalar two-point function is just the limit of the bulk-to-

boundary propagator, as z → 0, up to a (divergent) factor:

lim
z→0

KΔ(z, x;x
′) =

zΔ+

(x− x′)2Δ
∝ 〈Ω| OΔ(x)OΔ(x

′) |Ω〉 . (4.59)

We could choose to represent it as in figure fig. 4.3.

That is, we ‘propagate’ the scalar field from one point x on the boundary

to another, x′. This may seem superfluous and useless, but read on and we

will see why these little diagrams are so conceptually and computationally

useful.

Using a free field action, we can calculate the two point functions of the

dual boundary operators for different types of bulk field, as we did for the

scalar case. For example we could have calculated the two-point function

of two boundary currents, 〈Ω| J μ(x1)J ν(x2) |Ω〉 . Just as in the scalar

case, the two-point functions are the boundary limit of the corresponding

bulk-to-boundary propagators.

Now what happens when we introduce interactions? These will cause the
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classical action to be hard to evaluate exactly, but we can solve as a per-

turbation series in the coupling constant, call it λ. The result we obtain is

identical to the tree level approximation of Feynman diagram representing

the different possible bulk processes for the correlation function. To cal-

culate boundary correlation functions, we must scatter the dual bulk fields

and find the amplitudes! This is our classical dual of the horrible strongly

coupled quantum mess which occurs in the bulk.

As an example let’s take a complex scalar field, minimally coupled to a

U(1) gauge field, all in the bulk. The action is:

S = −
∫
dd+1x

{
1

4
FμνF

μν + (∂μφ+ ieAμφ)(∂
μφ∗ − ieAμφ∗) +m2φ∗φ

}

(4.60)

The cubic interaction term in the Lagrangian is:

ieAμ
{

φ∂μφ
∗ − φ∗∂μφ

}

(4.61)

In the dual theory we want to find the three-point correlation function

〈Ω| J μ(x3)O ∗Δ (x1)OΔ(x2) |Ω〉 . (4.62)

We use our new technique. Instead of laboriously finding the classical

solution, evaluating the action and differentiating, we just write down the

corresponding Witten diagram for the O(e) vertex (fig. 4.4). We evaluate

it using the familiar position space Feynman rules.

Holographically, we can treat each of φ, φ∗ as a real scalar field of dimen-

sion Δ given by (4.11), with dual operators OΔ,O∗Δ, as above. Each has

the propagator (4.19). So the diagram becomes, up to constants:

e

∫
dd+1x

√
−g KiA(z, x;x3) ∂

AKΔ(z, x;x1)KΔ(z, x;x3) (4.63)

If we substitute the respective propagators into this expression, we get

a bit of mess. To evaluate, it the trick is go into the most convenient

coordinate system. First, we set x3 = 0 without loss of generality, because

of translational invariance. Then we redo the inversion calculation leading

to (4.58), so that KiA becomes x̄
d−2 again.

We must also work out how the scalar propagators in (??) transform under
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Figure 4.4: The three-point interaction vertex for the scalar QED theory, as
a Witten diagram. From it we can immediately write down the
expression for a boundary correlation function.

the inversion. In general for the inversion we have for two (d + 1)-vectors

xA and yA:

(x− y)2 ≡ (x− y)A(x− y)
A =

(
x̄

x̄2
−

ȳ

ȳ2

)2
(4.64)

=

(
x̄2

x̄4
+
ȳ2

ȳ4

)2
− 2

x̄ȳ

x̄2ȳ2
(4.65)

=
1

x̄2
+
1

ȳ2
− 2

x̄ȳ

x̄2ȳ2
(4.66)

=
x̄2 + ȳ2

x̄2ȳ2
− 2

x̄ȳ

x̄2ȳ2
(4.67)

=
(x̄− ȳ)2

x̄2ȳ2
. (4.68)

Then considering the (d + 1)-vectors X ≡ (z, x) and X1 ≡ (0, x1) we have

the tranformation:
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KΔ(z, x;x1) =

(
z

z2 + (x− x1)2

)Δ
(4.69)

=

(
z̄/X̄2

(X̄ − X̄1)2/X̄2X̄21

)Δ
(4.70)

=

(
z̄

(X̄ − X̄1)2

)Δ
∙ X̄2 (4.71)

=

(
z̄

z̄2 + (x̄− x̄1)2

)Δ
∙ X̄2 . (4.72)

Now we plug the transformed propagators back into (4.63). Things to notice

in transforming the intergral:

• Since inversion is an isometry,
√
−g does not need to be transformed.

• The index on the ∂A dervative does not transform because it is con-

tracted with the gauge field propagator. The correlator becomes

gx̄21x̄
2
2

∫
dd+1x̄

1

z̄d+1
z̄Δ−2δiA

=gμμ
︷︸︸︷
z̄2 ∂A

(
z̄

z2 + (x̄− x̄1)2

)Δ
(4.73)

= gx̄21x̄
2
2

∫
dd+1x̄

1

z̄
∂i

(
z̄

z2 + (x̄− x̄1)2

)Δ( z̄

z̄2 + (x̄− x̄2)2

)Δ
− (x̄1 ↔ x̄2)

(4.74)

This still looks quite difficult. To proceed we use a nifty trick of the type

Feynman liked, by noting following:

∂

∂xμ

(
z̄

z2 + (x̄− x̄1)2

)Δ
=

∂

∂x
μ
1

(
z̄

z2 + (x̄− x̄1)2

)Δ
. (4.75)

This allows us to change the ∂μ in (4.74) with ∂xμ1 , which we can then take

outside the integration sign. (4.74) becomes:

ex̄21x̄
2
2 ∂xμ1

∫
dd+1x̄

1

z̄

(
z̄

z2 + (x̄− x̄1)2

)Δ( z̄

z̄2 + (x̄− x̄2)2

)Δ
− (x̄1 ↔ x̄2) .

(4.76)

Now let’s look at this integral:
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• It is translationally invariant on the boundary: if we shift x̄1 and x̄2
by the same distance each, we can just shift the integration variable

to bring the integral back to the same form.

• Given the above, it can be evaluated up to a numerical consant by

dimensional analysis.

The integral has length dimension = d− 2Δ, therefore it is proportional to

|x̄1 − x̄2|
d−2Δ . (4.77)

Putting this into (4.76), we have

〈Ω| J μ(x3)O∗Δ(x1)OΔ(x2) |Ω〉 = constant×e(∂
x̄1 |x̄1−x̄2|

d−2Δ − (x̄1 ↔ x̄2)

(4.78)

Doing the derivative:

constant× e(x̄21x̄
2
2)
Δ 2x̄μ1 (

d

2
−Δ− 2)|x̄1 − x̄2|

d−2Δ − (x̄1 ↔ x̄2) (4.79)

Finally, changing back to the original coordinates:

constant× e
x2Δ1 x2Δ1
x4Δ1 x4Δ1

x
μ
1

x21

(
|x1 − x2|
|x1||x2|

)d−2Δ−2
− (x1 ↔ x2) (4.80)

= constant× e

(
x
μ
1

x21
−
x
μ
2

x22

)
|x1 − x2|d−2Δ−2

(|x1||x2|)d−2
(4.81)

This is exactly the form we expect from conformal covariance. This may

seem like a tautology, since surely this was bound to happen? But remember

that although there is a shared symmetry group we have no a priori reason

to expect that the AdS geometry describes the conformal field theory using

a dynamical correspondence of the form (4.1). Every different correlator we

calculate gives further evidence of the gauge-gravity duality.

We have in fact done something more than this. If we had really done

the integral in (4.76), which is possible using Feynman parameters, we

would have calculated the coefficient of the correlator, which is non-trivial

since it depends on the detailed dynamics of the CFT. Furthermore, as
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will be made clear in §5.3, the fact that we have used the Einstein grav-

ity approximation to the bulk theory means we would have done this at

strong field theory coupling. So we have done an inherently non-perturbative

problem, using perturbative bulk dynamics. This shows that the strongly

coupled physics is like the weakly coupled version, only seen with another

dimension, and gravity!
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5 Examples ; N = 4 Super

Yang-Mills

Up until now, we have studied the basic ideas of gauge-gravity duality. But,

perhaps infuriatingly, we have provided no concrete, ‘real life’ examples.

Which are these gauge theories? Do they include the sort of gauge theories

that have been so successful in describing particle physics since the Second

World War, namely SU(3)× SU(2)× U(1)?

Now, excitingly, with all the tools at our disposal, we are able to give

examples of explicit gauge theories, and the quantum gravities that they

are conjectured to be dual to. Currently, nobody knows the gravity dual for

the standard model. In particular, as mentioned in the introduction, it is a

long term goal of physics to find a dual to Quantum Chromodynamics, which

is of particular interest because no precise analytical structure has yet been

developed to deal with its low-energy, strong coupling regime consisting of

baryons and mesons.

The standard model theories are hard to dualize essentially because they

have too little symmetry. But if we impose more symmetry on our gauge

theories, i.e. we make them supersymmetric1. Indeed a large part of the

work in gauge-gravity duality in the 12 years since its inception has consisted

of non-trivial checks on the duality between superstring theory and SUSY

gauge theories.

1The Coleman-Mandula theorem limits us to this type of extended symmetry. ([CM67]),
there arise natural candidates for their duals. These are the supersymmetric string
theories and M-theory, in 10 and 11 space-time dimensions respectively. The first
example of such a duality was conjectured by Maldecena in his seminal paper of 1997
[Mal98], and caused an explosion in the study of all related topics2
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5.1 The Original - Discussion

This is the original example of the correspondence, was proposed by Mal-

dacena in [Mal98], and in many ways is the simplest to understand. The

most precise way to state it is this:

D = 4, N = 4Super Yang-Mills theory is dual to

type IIb superstring theory withAdS5 × S5 boundary conditions.

We have discussed what we mean by the boundary conditions in the

last chapter, i.e. there is some low energy effective theory for IIb string

theory. This is known to be 10-dimensional type IIb supergravity. There

is a solution to the supergravity equations of motion, in which the metric

is that of AdS5 × S5. Asymptotically, this is the boundary condition we

impose on the quantum gravity theory.

So now we know what must happen near the boundary of spacetime, in

order for the dual field theory to be N = 4 Super Yang-Mills. What can

happen in the interior? The answer is that the full string theory happens

in the interior. This includes the high energy string excitations, and highly

quantum effects that occur at strong coupling. These bulk dynamics are

described by the path integral on the RHS of (4.1), and the integral is taken

over all possible string/field states in the string theory.

The landscape of string theory has not yet been fully charted; in a full,

non-perturbative description of string/M-theory, we should expect that the

fields themselves are effective degrees of freedom formed by states of strings,

branes, or even other, as yet unknown exotic objects.

But there are certain limits of string theory which are well known. In

type IIb superstring theory, this is limit in which the string coupling gs and

string length
√
α′ are both small. Then we can consider:

• A background metric/field configuration, which is an exact solution

to the classical equations of supergravity.

• Quantum excitations excitations of the fields about this classical back-

groud. These are governed by a perturbation series in gs.

• Stringy excitations about the classical background: 1) closed strings
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moving freely on the background, which are like gravitons and 2) open

strings tied at each end the p-branes appearing in the supergravity

backgroud. These are governed by a perturbation series in α′.

When the coupling is small enough, we can make a tree-level approxima-

tion to the quantum excitations, i.e. ignore loops. This the approximation

we have been using so far in this review, for example when we calculated

correlation functions at the end of the last chapter.

We have seen how to use this approximation. The one question remaining

is: what should we use as the classical background? We know from this

discussion that it should a) be a solution of classical IIb supergravity, and

b) be asymptotically the AdS5 × S5 solution.

The answer is this:

Different interior gravity solutions correspond to different equilibrium

conditions for the field theory.

What do we mean by different conditions for the field theory? We mean

things like different temperatures, chemical potentials, or sources for field

(e.g. static heavy quarks sitting at a point in spacetime, which is like

considering quantum electrodynamics between charged plates or next to a

current-carrying wire). The thing that all these conditions have in common

is this: at high enough energies, the effects of the conditions go away, and

we are left with the ‘pure’ field theory, which is at zero temperature with

no sources or thermodynamic potentials present.

This has a dual geometrical interpretation: low energies correspond to

the interior of the bulk, where there is some choice of background. As we

increase the energy, we approach the boundary, where we have specified the

boundary conditions. Indeed, as we discussed in the remarks at the end

of the last chapter, there is a one-to-one correspondence between bound-

ary conditions and field theories. Now we can add to this statement, by

saying that there is also a one-to-one correspondence between equilibrium

conditions for a field theory and interior backgrounds for the bulk. Being

on shell in the bulk theory corresponds to being in equilibrium in the field

theory, and fluctuations about equilibrium are the quantum perturbations
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about the classical bulk background.

5.2 Ingredients

If we take particular boundary conditions, then the dual field theory is at

zero temperature, with no sources or interesting thermodynamics. These are

the field theories used to describe high-energy physics at particle colliders,

for example at CERN, where experiments may eventually begin at some

point. They are also the starting point for most studies of field theory, since

they are the simplest. In these theories, the equilibrium condition is the

ground state |Ω〉 of the theory, and we consider quantum excitations above

this state.

For the N = 4 duality, the dual geometry the zero temperature, no source

theory is the the same as the asymptotic geometry, i.e. AdS5×S5, with the

corresponding field configurations. In this section we will describe N = 4

Super Yang-Mills, then describe type IIb supergravity and its AdS5 × S5

solution. Then in the next section we will get down comparing to two.

5.2.1 N = 4 Super Yang-Mills

In D = 4, N = 4 is the most supersymmetry possible without gravity. Then

the unique type of supermultiplet is the vector multiplet, consisting of: 1

scalar Aμ; 4 Weyl fermions λ
b
α; and 6 scalars φ

i. This can be constructed by

taking a Clifford vacuum and acting with lowering operators, as shown in fig.

5.1. There is an SU(N ) = SU(4) global R-symmetry, with 15 generators

T bc, which rotates fields of the same spin: the Fμν in the 1, the φ
b’s in the

4̄, the φi’s in the 6̄.

To get the Yang-Mills theory we take N vector multiplets and let them

transform in the adjoint of the gauge group, which we can choose but take

to be SU(N). The unique action is:

S =
1

g2YM
Tr

∫ {
1

2
FμνF

μν +
∑

b

iλ̄α̇ bσ̄
μ α̇αDμλ

b
α −

∑

i

Dμφ
iDμφi (5.1)

+
∑

b,c,i

(
Cibcλ

bα[φi, λcα] + C̄
bc
i λ̄bα̇[φ

i, λ̄cα̇]
)
+
1

2

∑

i,j

[φi, φj ]2
}
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α’s and α̇’s, and other letters from the beginning of the Greek alphabet are

Lorentz spinor indices; μ’s and ν’s are Einstein indices. Roman letters are

SU(4)R indices; gauge indices have been suppressed.

There is also a possible instanton term,
θI
8π2
Tr(Fμν ˜Fμν), which is topo-

logical in nature, and will not appear in our analysis.

|0〉 1

Q1 |0〉 Q2 |0〉 Q3 |0〉 Q4 |0〉 4

Q1Q2 |0〉 Q1Q3 |0〉 Q1Q4 |0〉 Q2Q3 |0〉 Q2Q4 |0〉 Q3Q4 |0〉 6

Q1Q2Q3 |0〉 Q1Q2Q4 |0〉 Q1Q3Q4 |0〉 Q2Q3Q4 |0〉 4̄

Q1Q2Q3Q4 |0〉 1

Figure 5.1: Clifford state diagram of the D = 4, N = 4 massless state di-
agram. (The states are massless because explicit mass terms
would break gauge invariance.) The SU(4)R symmetry mixes
the states in each ‘layer’, in the labelled representation. The
fields are obtained by gathering together these states into rep-
resentations of SL(2,C)

In general the Lagrangian of any theory will change as we flow in the

renormalisation group. Each coupling flows according to its dimension, and

additional terms appear. The 4D Yang-Mills coupling is dimensionless, so

classically the coupling is scale invariant, and BRST symmetry means that

no terms appear in the flow. But quantum corrections cause the coupling

to flow, so that we still have to renormalize the theory. These are generic

features for any 4D Yang-Mills theory, and still apply if we couple scalars

and fermions to the gauge field.

Supersymmetry helps with this situation, by cancelling some of the quan-

tum corrections, e.g. in N = 1 SYM the remaining corrections are all loga-

rithimic (∝ log Λ). The more supersymmetry the better, as it were, and for

N = 4, miraculously they completely disappear. This is very unusual for a

quantum field theory.

This fact means that N = 4 SYM is fully scale invariant, and in fact

it is invariant under the full conformal group. It is therefore a CFT. The
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super-Poincaré algebra (Pμ; Mμν ; Q
b
α; T

bc) and conformal algebra (Kμ; K)

combine into the superconformal superalgebra. This contains the conformal

and super-Poincaré as subalgebras, but also contains conformal supersym-

metries Sbα. These arise as the commutator between the conformal and

supersymmetry generators. In summary, an element of the superconformal

algebra looks like this:

(
PμMμν KμD Qbα S̄

b
α̇

Q̄bα̇ S
b
α T bc

)

(5.2)

This superalgebra has the structure SU(2, 2|4).

5.2.2 Type IIb Supergravity

Supergravity [[vN82]] is a supersymmetric effective field theory of gravity.

It is non-renormalizable, but is a well-defined classical theory. It can be

constructed by requiring an action which is invariant under:

• Local Poincaré transformations. This is the veilbein formulation of

the diffeomorphism invariance of Einstein gravity.

• Local supersymmetry transformations.

Said another way, we need to gauge the Super-Poincaré group. All of

these gauge symmetries must have gauge fields associated with them:

• Translations: the vielbein one-form ea = eaμdx
μ.

• Lorentz transformations: the connection one-form ωab = ωabμ dx
μ.

• Supersymmetry transformations: the gravitino one-form ψ = ψμ.

Here a, b, c etc. are local Lorentz indices, and μ, ν are Einstein indices.

To build a gauge invariant action, we need a covariant derivative. For a

vector vμ we should first express it in the vielbien basis: va = eaμv
μ, then

the covariant derivative is

Dμv
a = ∂μv

a + ωaμ bv
b . (5.3)

Acting on a spinor, it is
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Dμλ = ∂μλ+
1

4
ωabμ γabλ , (5.4)

where the γa’s are the Dirac matrices in the relevant dimension, so that
1
2γ
ab ≡ 1

4 [γ
a, γb] are the generators of Lorentz transformations in the spinor

representation.

From these fields we can form the Riemann curvature tensor:

Rab(e, ω) ≡ Dω
ab = dωab + ωac ∧ ω

cb (5.5)

Now we can define the one-form object Raμ(e, ω) ≡ eνbR
ab
μν (like the Ricci

tensor) and the Ricci scalar:

R ≡ eaμe
b
νR(ω)

ab
μν . (5.6)

With these we can form the simplest possible supergravity: N = 1, with

no cosmological constant:

SSUGRA = −
1

2

∫
ddxe

(

R(e, ω) + ψ̄μγ
μνρDν(ω)ψρ

)

. (5.7)

These terms are common to all supergravity actions. But in general more

fields will have to be included, to complete the supermultiplets and make

the action (5.7) invariant under superymmetry. These are:

(p+ 1)-form fields:

Ap+1 =
1

(p+ 1)!
Aμ1μ2μ3∙∙∙μp+1 dx

μ1 ∧ dxμ2 ∧ dxμ3 ∧ ∙ ∙ ∙ ∧ dxμp+1 . (5.8)

Left and right-handed spinors: λα, λ̄α̇. We will not be as concerned with

these.

Let us lot at the form fields in more detail. These are the generalized

gauge fields of local U(1) symmetries. We can define the corresponding

(n+ 1)-form field strengths Fp+1 ≡ dAp+1.

(p+1)-forms naturally couple to objects defined by a (p+1) dimensional

submanifold ω of spacetime:

Sint =

∫

ω

Ap+1 . (5.9)
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We call these objects p-branes, and they are intimately connected with the

full UV-completed string theory picture. Any field solution will be called a

p-brane solution if there is a non-zero (p+ 1)-form field.

Forms have kinetic terms which look like
1

2
F ∧ ∗F ; their equations of

motion take the generic form:

d ∗ F = J , (5.10)

where J is a (d− p− 1)-form current which sources Ap+1.

Let’s integrate the equations of motion over some (d− p− 1) dimensional

submanifold Ω:

∫

Ω
d ∗ F =

∫

∂Ω
∗F =

∫

Ω
J (5.11)

The second equality follows from Stokes’ theorem. This is Gauss’ law for

a generalized gauge field: the flux of ∗F through the boundary of Ω equals

the ‘charge’ inside Ω. Dirac presented an argument (ref) that this should

be quantized, and indeed we will see an example of this later on.

Type IIb supergravity is a theory in 9 + 1 dimensions. It contains just

massless fields, so that all the fields fall into irreducible representations of

the little group, SO(8). They can all be labelled with their highest weights

in the Cartan basis. The SO(8) algebra is has rank 4 and is nice because

it possesses an symmetry called triality. The Dynkin diagram is is show in

fig. 5.2.

Looking at the rotational symmetry of the diagram, we can see that in

a highest weight labelling (r1 r2 r3 r4), r1,3,4 may be interchanged without

affecting the dimension of the representation. Thus there is an infinite se-

quence of groups of three representations of the same dimension, e.g. there

are three 8’s: 8V , 8S , 8C corresponding to (1000), (0010) and (0001) re-

spectively. The dimensions of a representation equal its number of on-shell

degrees of freedom.

The bosonic fields of IIb supergravity are as follows. They are divided into

two sectors: the Ramond-Ramond (R-R) sector and the Neveu/Schwarz-

Neveu/Schwarz (NS) sector:
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Figure 5.2: The dynkin diagram for the SO(8) dynkin diagram. Each circle
is a simple root. SO(8) has an automorphism group S3, cor-
responding to the symmetries of this diagram when rotated by
120o or 240o.

field SO(8) rep. highest weight name

eaμ 8V (2000)
vielbein/graviton (rank 2

tracless symmetric tensor)

R-R Bμν 28 (0100) ‘B field’ (2-form)

φ 1 (0000) dilaton (scalar)

C+4 353 (0020) self-dual 4-form

NS C2 28 (0100) R-R 2-form

C0 1 (0000) axion (scalar)

The fermionic fields are:

field SO(8) rep. highest weight name

2× ψμα 2× 561 2× (1010) two left-handed gravitini

2× λα 2× 8S 2× (0010) two left-handed spinors

By counting up the bosonic then the fermionic representation dimensions

we can that the number of on-shell degrees of freedom are the same (128)
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for each, which we must have for supersymmetry. Also notice that all of the

fermions are left-handed, therefore IIb is a chiral theory.

The form fields all have corresponding field strengths. We say:

Fn+1 ≡ dCn H3 ≡ dB2 . (5.12)

We will be most interested in the dilaton φ, and the self-dual four-form

C+4 . Represented on R
8, C+4 is self-dual itself, but when represented on the

full 9 + 1 dimensional spacetime its five-form field strength F5 ≡ dC
+
4 is

self-dual instead. Precisely, this is the statement:

F̃5 = ∗F̃5 (5.13)

where

F̃5 ≡ F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (5.14)

We can write down an action for the bosonic part of the theory [[BBS07]]:

SIIb =
1

4κ2

∫
d10x
√
−g

{

R−
1

2
∂μφ∂

μφ−
1

2
e−φ|H3|

2

}

−
1

2κ2

∫
d10x
√
−g

{

e2φ + eφ|F̃3|
2 +
1

2
|F̃5|

2

}

+−
1

4κ2

∫
C+4 ∧H3 ∧ F3 . (5.15)

Note that this does not describe the theory completely, because we need to

supplement it with the self-duality condition on F̃5. It has always been a

problem with IIb supergravity, but does not matter much because we always

solve for the equations of motion rather than quantize the theory, and at

this level it is easy to impose the constraint (5.13).

It turns out that we can decouple gμν , F5, φ and C0 from the rest of

the theory and consider a solution where these are the only non-zero fields.

Then we have F̃5 = F5. Since we have a five-form, we are going to try to

construct a 3-brane solution, by imposing Poincaré symmetry on 4+1 of the

dimensions (R4 × SO(3, 1)), and we work in a gauge in which C+4 has non-

zero components in these directions only. In the rest the of the coordinates

we impose rotational symmetry SO(6).
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It can be found that the solution is characterized by a single radial func-

tion:3

ds2 = H(r)−
1
2dxμdx

μ +H(r)
1
2 (dr2 + r2dΩ25)

F5 = εabcdef∂
fH

φ = constant

C = constant′ (5.16)

Here xμ are the Poincaré directions and (r,Ωi) are spherical polars in the

SO(6) (‘transverse’) directions. The a, b indices are for the cartesian ver-

sion of the transverse coordinates. All of the other fields are zero. The

symmetries are evident.

(5.16) solves the IIb equations of motion iff H(r) is a harmonic function

[[HS91]]. By this we mean:

ηab∂a∂bH(r) = 0 . (5.17)

It has the general solution:

H(r) = 1 +
L4

r4
(5.18)

with L some length scale which is a free parameter.

We have indeed found a 3-brane solution. This will finally provide us with

the asymptotic AdS5 × S5 solution we must use in the duality. Because let

us take the limit of r << R (the ‘near-horizon’ limit):

r << R ⇒ H(r) = 1 +
R4

R2
'
R4

R2

⇒ H(r)
1
2 '

R2

r2

⇒ ds2 '
r2

R2
dxμdx

ν +
R2

r2
dr2 +R2dΩ25 (5.19)

3The calculation is best done in the ‘string frame’, i.e. by working with the metric

(gStr)μν ≡ e
φ
2 gμν . The equations of motion should be used instead of the action when

there is a non-zero F5, for the reason discussed in the text.
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We see that in the metric the two sets of coordinates are now separated

out, corresponding to a product geometry. Furthermore, we can recognize

the first two terms in the metric as the Poincaré coordinates for AdS5. The

last term is the metric for a 5-sphere. So we have found the near horizon

geometry AdS5 × S5.

Regularity of this solution however requires that

R4 = 4πgsN(α
′)2 . (5.20)

This in turn implies that the flux of F5 over through the S
5 is quantized:

∫

S5
F5 = N (5.21)

agreeing with the Dirac charge quantization, because (5.11) tells us the flux

is equal to the charge enclosed. We interpret this in string theory as the

presence of N D3 branes.

The group of supersymmetry transformations which preserve the solution

corresponding to the metric (5.19) is SU(2, 2|4).

5.3 Maldacena’s Correspondence

The theories (N = 4 SYM and the IIb supergravity/superstring theory

solution) have the following parameters:

N = 4 SYM gYM

N

IIb SUGRA/strings gS = e
φ ∼ GN

κ10

α′ = l2s

R

. (5.22)

Maldacena considered the large N limit of the gauge theory. There is an

elegant theory, due to ’t Hooft [[tH74]][[Col85]], for Feynman diagrams in

this limit, in which only a certain type of diagram survives. This can be

compared with string perturbation theory [[McG]], and the natural outcome

of the analysis is to conclude that gS = g
2
YM. Once this is done, we can use

it in (5.20) to show that R4 = 4πg2YMN(α
′)2.

So we have the following identifications between the parameters of the

two theories:
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gS = g
2
YM

R4

(α′)2
= 4πg2YMN . (5.23)

There are two limits we can take:

• Large N . This was the starting point for the suggestion of the corre-

spondence. We take N → ∞ while keeping g2YMN fixed. This means

that gS → 0. Looking at table 5.22 we see that this makes GN small,

and so gives an explicit example of the large N argument in §3.2:

many degrees of freedom imply a classical gravity dual. This limit

corresponds to classical string theory.

• Large g2YMN . If we now let g
2
YM take a finite value (it does not have

to be large), then g2YMN becomes infinite. Looking at (5.23), we

can see that this corresponds to α′ becoming much smaller than R2.

Again from (5.22),this means that the string length is much smaller

than the bulk curvature scale. That means we can ignore the stringy

corrections, and use supergravity. This limit corresponds to classical

supergravity.

The various supergravity limits are illustrated in (5.24) below.

small α′ large α′

small gs Classical Supergravity Classical String Theory

large gs Quantum Supergravity Quantum String Theory

(5.24)

5.4 Symmetries

The theories have the same symmetry group, SU(2, 2|4), with 16 real super-

charges. The maximal bosonic subgroup is SU(2, 2)×SO(4, 2) ' SO(4, 2)×

SO(6).

SO(4, 2) arises as the isometry group of AdS5, or the conformal symmetry

group of the SYM. This is related to the fact that the boundary is defined

using a conformal compactification of AdS.

SO(6) arises as the isometry group of S5, or the R-symmetry group of

the SYM.
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We build representation of SU(2, 2|4) as follows. Start with bosonic sub-

group. Label representations of the subgroup by choosing a Cartan subal-

gebra. We’ll choose it such that a representation is:

(s1, s2)︸ ︷︷ ︸
SO(3,1)

× (Δ)
︸︷︷︸
SO(1,1)

× (r1, r2, r3)︸ ︷︷ ︸
SO(6)

(5.25)

Each of these representations corresponds to a bulk field, and to a boundary

operator which is its dual. s1,2 are the spins of the boundary operator, Δ is

the boundary dilation eigenvalue, i.e. the scaling dimension of the operator

OΔ.

Now to represent the full supersymmetry we state that the Q’s and

Q̄’s rotate between these different bosonic representations. One first finds

an operator known as the superconformal primary operator for a given

supermultiplet(SU(2, 2|4) representation). For a given multiplet this is de-

fined operator of lowest dimension in that multiplet. The test of whether

this is true is if the operator is annihilated by all of the superconformal

supercharges Sα, S̄α̇, since these are the only generators in the algebra with

negative dimension. If they can’t lower the dimension nothing else can, so

that we have found the lowest dimension operator in the multiplet. Fur-

thermore, the other operators are built from the Q’s and Q̄’s, which all

have dimension +12 . Therefore all the other operators in the multiplet have

higher dimension, so the superconformal primary is unique.

What explicit form do the primary operators take? We know it cannot

be formed by acting with Q’s on another operator. Let us look at the effect

of the supercharges on the SYM fields:

{Q,φ} ∼ λ {Q,λ} ∼ F + [φ, φ]

{Q, λ̄} ∼ Dφ [Q,F ] ∼ Dλ
. (5.26)

So we see that to be a primary the operator cannot involve F or the

λ’s. Furthermore it can’t involve a commutator of the φ’s. So it must be a

completely symmetrized product of φ’s:

Oprimary = Tr(φ
i1φi2 ∙ ∙ ∙φin) (5.27)

Since each φ is a 6 under SO(6)R, (5.27) will transform as a symmetric

SO(6) tensor. For the orthogonal groups these are reducible because we can
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take out the traces.

5.4.1 Mapping BPS states

Supersymmetry is very useful for testing hypotheses because it removes

quantum fluctuations, and the fact that we have supersymmetry in this

example of the duality makes it easy verify in the following case.

There is a certain type of primary operator which is annihilated by half

of the supercharges. Their multiplets are called 1/2-BPS multiplets. These

are the analogue of chiral superfields in N = 1 superspace which satisfy

D̄α̇Φ = 0. Thus some of the states built from applying supercharges to

the primary are zero, and the multiplets are correspondingly shorter. The

primaries of these representations look like:

(0, 0)× (Δ)× (Δ, 0, 0) (5.28)

Treating the three sets of quantum numbers in turn, (5.27) means that

the 1/2 BPS primaries

• are scalars (all primaries are)

• have scaling dimension Δ

• are traceless symmetric SO(6) tensors of rank Δ.

i.e. their tensor rank is the same as their scaling dimension. The impor-

tant thing to realize is that for BPS multiplets these numbers are protected

against quantum corrections by supersymmetry. So even in the full quan-

tum theory, there is a discrete series of representations parametrized by an

integer Δ ≥ 2.

Do these representations appear in either theory? If they appear in one,

they’d better appear in the other, otherwise we would have shown the cor-

respondence to be false. Happily, this is not the case:

• In SYM these are the operators (5.28) with all possible traces removed.

• We should have a field per representation. To find the supergravity

fields visible in AdS5 we must do a decomposition of the fields into

spherical harmonics on S5:
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φ(x,Ω) =
∞∑

Δ=0

φ̃(x,Ω)Y Δ(Ω) . (5.29)

Here x are the AdS coordinates, Ω are the S5 coordinates. When we

do this we find a number of series of fields, whose masses are quantised

because of the cylic boundary conditions on the sphere [[AGM+00]]4.

The φΔ’s are traceless symmetric SO(6) representations. Amongst

these we find a series of massive scalar fields with masses:

m2R2 = Δ(Δ−
d2

4
) (5.30)

Setting R = 0 and d = 4, we see that this is just what we expect from

the dual of a dimension Δ scalar operator, according the analysis after

(4.11). So we have found the dual bulk fields corresponding to the 1/2

BPS primaries, with a dimension equal to the SO(6) tensor rank.

There is much more we could do here. The N = 4 SYM duality has

been extensively studied since 1997, and there are many branches of its

study. One concerns finding the anomalous dimensions of non-BPS gauge

operators, with a mind to matching these to the supergravity. This is more

non-trivial than for BPS states, since the quantum corrections depend on

the exact dynamics of the gauge theory and not just its symmetries. The

systems is found to be integrable [[MZ03]], and the theory surrounding them

is elegant.

Another branch concerns quantizing strings on an AdS5×S5 background

[??], which is a hard thing to do. Matching of string states beyond the

supergravity approximation is important for both gauge and string theory.

There is still much work to do in establishing a full mapping between the

two theories, ensuring work for string theorists for years to come.

4for a complete Kaluza-Klein decomposition, see [[GM85]].
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6 Finite Temperature

There are, broadly speaking, two different approaches to gauge-gravity du-

ality. One, which we have been outlining in the last chapter, is based on

string theory, and aims to discover new examples of the duality by studying

different brane configurations. The other approach, which we have empha-

sized in this review, is the ‘purer’ approach, in which a new field theory is

built by specifying the bulk dynamics and studying what this implies for

the boundary. If the bulk theory is classical, the field theory is necessarily

strongly coupled. In this way we hope to be able to find new tools for dealing

with strongly coupled gauge theories, which are traditionally intractable.

There has recently been some excitement surrounding the possibility of

constructing models of strongly coupled condensed matter systems using

a gravity dual. There are two mains observations to be made about such

possible field theories: firstly, there are not supersymmetric. Although the

subject was discovered by the study of SUSY gauge theories, we have em-

phasized in this review that the duality is a completely general principle,

which does not rely on supersymmetry for its construction. Secondly, these

field theories will be at finite temperature. That is, they are based on field

excitations around a thermally mixed state, as opposed to theories at zero

temperature (such as we deal with in high energy particle physics), in which

excitations are around the ground state |Ω〉 of the theory.

How do we construct a gravity dual of a finite temperature (thermal) field

theory? Thermal field theory at equilibrium is obtained by Wick rotating

to a Euclidean time (t 7→ iτ), and making τ periodic, by identifying τ ∼

τ + β). The structure of the manifold Rd−1,1 changes to Rd−1 × S1. The

period (circumference of the ‘thermal circle’) is related to the temperature

by β = 1
T , so that field theory at high temperature is like the theory on a

small circle, and at low temperature the circle unwinds and we recover the

original theory on Minkowski space.

We have already noted that the conditions of the boundary theory are
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determined by the interior of the gravity solution. We need a classical

solution for the metric to describe field theory at a temperature. It follows

that to describe thermal field theory on the boundary, the bulk manifold

must have boundary metric which is Rd−1 × S1 asymptotically. We choose

the simplest possible action for the bulk that will give us anti-de Sitter type

geometries, namely

−
1

16πGN

∫
ddx
√
−g

(

R − 2Λ

)

. (6.1)

In order to have the specified boundary conditions, this manifold must

asymptote to Euclidean anti-de Sitter space with periodic time. For the

action (6.1), there are two known possibilities, and they are believed to be

the only ones:

1. Thermal AdS. By this we mean Poincaré AdS space, with cyclic

Euclidean time:

ds2 =
R2

z2

(

dt2 + dz2 + ημνdx
μdxν + dxidxi

)

, (6.2)

where we identify t ∼ t+ β. This seems the simplest option.

2. AdS black brane. This is Poincaré AdS with a ‘black brane’ sitting

inside it:

ds2 =
R2

z2

(

f(z)dt2 +
dz2)

f(z)
+ ημνdx

μdxν + dxidxi
)

(6.3)

f(z) ≡ 1−
zd

zd0
. (6.4)

The Euclidean time is automatically compactified in this metric, if we

require its regularity at z0. To do this we look at it near z = z0 Taylor

expanding f(z) u f ′(z0)(z − z0) = 2κ(z − z0) = κ2z20ρ
2, where we

have defined the surface gravity κ ≡ |f ′(z0)|
2 and the new coordinate

ρ2 ≡ 2
κz20
(z − z0). Now

dz = kz20ρdρ ⇒ dz2 = κ2z40ρ
2dρ2 (6.5)

⇒
dz2

f(z)
u

dz2

f ′(z0)(z − z0)
=
κ2z40ρ

2dρ2

κ2z20ρ
2
= z20dρ

2 , (6.6)
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so that we have ds2 = L2(κ2ρ2dt2 + dρ2). This looks like polar co-

ordinates ds2 = r2dθ2 + dr2, which only describe a space smooth at

r = 0 if θ ∼ θ + 2π. Otherwise there is a conical singularity. So in

our black brane metric we conclude that for smoothness we must have

κt ∼ κt + 2π ⇒ β = 2π
κ . Much like a Schwarzschild black hole, the

metric has a temperature T = 1
β =

κ
2 associated with it.

An interesting feature of the black brane solutions, which only occurs

for the Euclidean version, is that the spacetime stops at z = z0, so

that 0 ≤ z ≤ z0.

Which one of these metrics, 1 or 2, should we choose? In the full quan-

tum gravity we expect a path integral over metrics, and the metric which

dominates will be the one which has the smaller action. Let’d do this calcu-

lation explicitly. We will construct the difference in actions S1 − S2. If this

is positive, the black brane solution wins out, if negative it is the thermal

AdS.

Both metrics solve the field equations with Λ = −d(d−1)
2R2
. This also means

that R = −d(d+1)
R2
. Which these two facts, the gravity action (6.1) becomes

S =
d

8πGN

∫
ddx
√
g (6.7)

The change
√
−g →

√
g comes from the Euclideanization. So we see the the

action for either solution is directly proportional to its volume, therefore

it suffices to work with the volumes. To keep things finite, we introduce a

radial cutoff, as usual, at z = ε. We have:

S1 ∝
∫ ∞

ε

dz(
R

z
)d+1

∫ β1

0
dt

∫
dd−1x = Vol(Rd−1)β1

Rd+1

d

1

εd
(6.8)

S2 ∝
∫ z0

ε

dz(
R

z
)d+1

∫ β2

0
dt

∫
dd−1x = Vol(Rd−1)β2

Rd+1

d

(
1

εd
−
1

zd0

)

.

(6.9)

The commmon factor Vol(Rd−1) (which must be suitably regularized) is just

some positive constant, so we will drop Vol(Rd−1)R
d+1

d .

The next step is to fix the relation between β1 and β2. This is done by

equating the radii of the thermal circles at the boundary, so that we are
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comparing two metrics which give field theories at the same temperature,

which is the point of the calculation. To do this we measure circumference

of the timelike circle at z = ε, and equate this between the metrics. Using

circumference =

∫

S1
dt
√
gtt|z=ε (6.10)

we find that we need

β1(
R

ε
)d+1 = β2(

R

ε
)d+1

√
f(ε) (6.11)

⇒
β1
β2
=
√
f(ε) ' 1−

1

2

εd

zd0
. (6.12)

The last equation is valid for small ε. Now finally we take the action differ-

ence

S1 − S2 ∝
1

εd
(β1 − β2) +

β2

zd0
= β2

(

(
β1

β2
− 1) +

1

zd0

)

=
1

2

1

zd0
(6.13)

So we see that the black brane spacetime always dominates, and that there-

fore this is the correct dual to describe finite temperature conformal field

theory on Rd−1 × S1.

We make two comments on this calculation:

The Einstein-Hilbert action for AdS type spacetimes has additional bound-

ary terms. These cancel in the preceding because 1 and 2 are asymptotically

the same.

Secondly, we have used for our manifolds the Poincaré type AdS. These

are separate manifolds in their own right. They are to be compared with

the corresponding metrics in the global AdS. These are

1. Thermalized global AdS:

ds2 = (1 +
r2

R2
)dt2 +

dr2

1 + r2

R2

+ dxidxi (6.14)
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2. and the Schwarzschild AdS (SAdS) solution:

ds2 = (1 +
r2

R2
+

a

rd−2
)dt2 +

dr2

1 + r2

R2
+ a
rd−2

+ dxidxi (6.15)

.

The same calculation can be done with these two metrics [Wit98b], and

in contrast we find that the thermal AdS dominates at low temperature,

the black hole at high temperature. This is called the Hawking-Page phase

transition [HP83], and implies a thermal phase transition in the field theory.

This difference in results comes from the fact that the boundary of Poincaré

AdS is Minkowski space, whereas the boundary of full AdS has a spacial

sphere. So in the global case we are studying finite temperature field theory

on a sphere, where we therefore predict the phase transition. This was to be

expected - conformal field theory on flat space can have no phase transition

since there is no scale to compare T to, whereas on a spatial sphere the

radius provides a transition scale.

6.1 Entropy

We now have an exact prescription for dealing with the equilibrium ther-

modynamics of a large class of strongly coupled gauged theories: the above

black hole metric is the dual geometry to the boundary gauge theory at

finite temperature with no sources or potentials.

The duality tells us the partition function of the thermal field theory, as

a function of temperature:

Z(T ) = e−S(gBH) . (6.16)

All equilibrium thermodynamic properties can be derived from this partition

function:

F = −T logZ(T ) E = −T 2
∂

∂T
Z(T ) (6.17)

S = −
∂F

∂T
etc. (6.18)

So we need to caculate the action for the the black hole metric. We did

66



somthing like this in the last section. However now we must take account

of the boundary terms which cancelled in that calculation:

S = SEH +

∫

∂AdS

ddx
√
γε

{

− nzγμν ∂zγμν +
2(d− 1)

R

}

(6.19)

The first term is the so-called ‘Gibbons-Hawking’ term [??]. It arises be-

cause varying the Einstein-Hilbert action yields not only the equations of

motion but also a boundary term, which we need to cancel in order for the

bulk solution to be a solution of the Euler-Lagrange equations. See the

discussion in §2.4.

The second term is a renormalization counter-term designed to cancel the

divergence in the action coming from integration near the boundary. This

simply corresponds to the fact that the metric is always a non-normalizable

mode - it determines the metric on which the field is defined, so its effects

are present at all energies.

This integral can be done, but it would not be particularly instructive to

do it explicitly here. We merely state the result:

S(gBH) = −
Rd−1

16πGN

V

zd0T
(6.20)

⇒ F = −T logZ(T ) = −TS(gBH) =
Rd−1

16πGN

V

zd0
. (6.21)

Using T = κ
2π =

|f ′(z0)|
4π = d

4π
1
z0
, we have

F

V
= −

(4π)d

16πdd
Rd−1

GN
T d (6.22)

S

V
=
(4π)d

16πdd
Rd−1

GN
T d−1 (6.23)

. (6.24)

To find this entropy (6.22) in terms of field theory parameters, we need to

know the precise mapping between the theories. This differs from example

to example. For N = 4 SYM we have

S =
π2

2
N2V T 3 (6.25)
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This was to be expected: since the entropy is a extensive quantity, it is

proportional to V . It should also scale with number of degrees of freedom

per field, which is N2 − 1 ' N2(for large N) in this case. The only other

scale is T , since we are considering a CFT , so that dependence follows from

dimensional analysis. The only unknown thing is the numerical factor. The

correspondence predicts this at strong coupling g >> 1. It can also be

worked out at small coupling [[GKP96]], and we find:

Sstrong =
3

4
Sweak (6.26)

This demonstrates a general rule: the physics (at least thermodynamics)

at strong coupling doesn’t seem to be too different than at weak coupling.

AdS/CFT may be trying to give us a lesson: when we leave one coupling

regime, we seem to enter another which can just be mapped back into the

first.

68



7 Conclusion

Gauge-gravity duality is a very powerful tool. It enables us to probe the

strongly coupled dynamics of gauge theory, and perhaps more excitingly

in principle it allows us to study the non-perturbative aspects of string

theory. In fact, it is the best way we have yet actually to define string

theory, since it says that string theory is dual to something we can define,

i.e. supersymmetric gauge theories.

In this review, we gave one example of the correspondence in string theory,

i.e. IIb superstrings asymptotic to AdS5 × S5. This describes string theory

with a boundary condition that looks like a D3 brane. But in the ten

years since its inception, gauge-gravity duality has been used to give many

holographic duals to string and M theory asymptoting to different brane

solutions. Topical examples are the N = 8 superconformal Chern-Simons

theories living on M2-branes, as holographic probes of M theory.

In other developments, work has been done on extending the correspon-

dence to de Sitter spacetimes. Is it reasonable to assume that all of string

and M theory be defined by gauge theories living on all the possible bound-

aries conditions of the theory?
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