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actuation. Numerical computations of such turbulent flows are now beginning to be
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wind tunnel measurements
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1. A multilevel introduction

19th century mathematics stumbled upon exciting and intriguing new concepts such
as nowhere differentiable continuous functions, Cantor sets and Koch curves and
various related fundamental questions such as how to define the age-old concept of
dimension. Caratheodory! gave a definition of dimension which was subsequently
generalised by Hausdorff? to non-integer dimensions. Thus, the concept of geomet-
rical forms, sets of points and functions with non-integer fractal dimensions was
born, Cantor sets and Koch curves being examples of such sets and forms. Work
on these extraneous and abstract mathematical objects carried on quietly in some
departments of pure mathematics around the world, as for example in the Uni-
versity of Cambridge where A.S. Besicovitch followed by S.J. Taylor (Besicovitch’s
PhD student) kept this esoteric activity alive from the 1930s all the way to the
1980s and beyond (see, for example, Falconer’s book on fractal geometry?). In the
1970s Mandelbrot*:® successfully forced the realisation into the minds of scientists
of all denominations that shapes and forms with non-integer dimensions are not ex-
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ceptional but in fact pervasive in nature, and coined the word ‘fractal’ to describe
such shapes. Suddenly, these fractal shapes and geometries were not the exclusive
preserve of pure mathematicians any longer and a frenzy of activity followed by a
wide variety of scientists who set out to measure the fractal dimensions of nearly
everything under the sun and beyond: clouds, trees, bird songs, geological sites,
geomorphology and coastlines, stock market fluctuations, fluid turbulence, poly-
mers, fractures, the sky distribution of stars...even Chinese landscape paintings.
This fractal spotting activity gave rise to such an enormous number of publications
and conferences that the eventual emptiness of the endeavour became embarrass-
ingly apparent to those prepared to confront it. In a paper published in 1986 with
the title “Fractals: where is the physics?”, Kadanoff® wrote, referring to this fractal
spotting frenzy, that “much of the work on fractals seems somewhat superficial and
even slightly pointless” and that “the physics of fractals is, in many ways, a subject
waiting to be born”. (The term ‘fractal’ in these statements can be understood
in the broadest sense of a geometrical structure which cannot be described in any
non-multiscale way. This is also the sense in which the term ‘fractal’ is used in this
paper.)

The point had nevertheless been made that fractal shapes and forms can fit an
effectively infinite length within a finite area and an effectively infinite area within
a finite volume. Human lungs are a stunning example of this fact: they are fractal
and, as a result, can cover an entire tennis court if unfolded! It seems that nature
uses fractal shapes to maximise contact within finite confines: trees rely on their
fractal shape to maximise photosynthesis and lungs rely on their fractal shape to
maximise provision of oxygen into the bloodstream. These fractal shapes and the
non-integer fractal dimensions which characterise them result from their multiscale
geometrical structure.

These were all good points, but it was necessary by the mid 1980s to start
extracting their physical and mechanical consequences and start developing what
Kadanoff had called “the physics of fractals”. The development of the physics of
fractals started slowly in the mid 1980s with works by Berry”, for example, who
showed how the power of waves diffracted off fractal surfaces and the diffusion
of fractal aerosols are dramatically altered by fractal boundaries. In the 1990s,
Sapoval et al.® started depositing soap bubbles on fractal boundaries and directing
sound waves on these bubbles. Their laboratory experiments (which carried into this
decade) revealed that fractal boundaries effectively soak up vibrational energy so
that some vibrations are dumped extremely quickly resulting in small regions of the
bubble vibrating noticeably whilst the rest hardly moves. Lapidus et al.? studied
the harmonics of the vibrating fractal drum both analytically and numerically, with
conclusions that indicate that the fractal dimension of the drum can effectively be
“heard”. Fleckinger et al.'® and van den Berg!! solved the heat equation for the
temperature field in open regions possessing a fractal boundary held at constant
temperature. They were able to show that the rate with which heat is lost at initial
times increases with the fractal dimension of the boundary.
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Without being exhaustive, this list of works more or less summarises the initial
directions of research in this emerging new field of study, the physics of fractals, over
the past twenty years. The defining characteristic of these initial research directions
is their concern with linear dynamics (e.g. wave and heat equations) constrained
by fractal boundary and initial conditions. The issues are about how the multiscale
nature of boundary/initial conditions permeates into the linear dynamics which
would not have had multiscale characteristics otherwise.

Engineering with fractals started rather timidly in the mid 1990s and remains,
to this day, hardly visible. Fractal Antenna Inc (founded 1995) sell fractal antennae
which have superior multiband performance and are typically 2 to 4 times smaller
than traditional aerials. Amalgamated Research Inc (mid 1990s to this day) sell
fractal fluid injectors for gases and liquids and develop fractal solutions for indus-
trial scale chromatography and uniform air circulation in sugar silos. In 2005, the
Fraunhofer Institute for Solar Energy Systems advertised fractal hydraulic struc-
tures for solar absorbers and other heat exchangers. But that is more or less it,
and the market penetration has been extremely limited. It may be a surprise that
in spite of their clear advantages, fractal antennae, for example, do not grace the
roof-tops of most major cities. The long march from pure mathematics to applied
mathematics to physics and mechanics and eventually to engineering is only half
the way, in those rare cases of commercially successful innovation, to prototyping,
commercialising and eventually creating a new business venture and/or successful
commercial product. Innovations have to overcome many so-called adoption hurdles
(strong resistance from various stakeholders and frozen inertia and conservatism at
the sight of the unknown)'? and successful innovators need to have the ability to
overcome these hurdles. Edison famously said that his work was 5% inspiration and
95% perspiration; his success would obviously not have been possible without his
inventions but it was his unique and celebrated abilities in overcoming adoption hur-
dles which contributed 95% of the acumen necessary for his success, the remaining
5% being attributable to his necessary but sadly secondary genius as an inventor.

Now, near the end of the fisrt decade of the 21st century, there remain two
important challenges in this broad line of activity. Firstly, whilst some progress has
now been made in the linear physics of fractals, the non linear physics of fractals still
remains “a subject waiting to be born”, to use Kadanoft’s turn of phrase. Secondly,
there is a lot of potential engineering applications of fractals that have never been
tried. A good place to start addressing both these challenges is fluid mechanics
in the high Reynolds number turbulence regime, which is the regime most often
encountered in nature and industry.

Studies of low Reynolds number and non-turbulent hydrodynamic properties of
fractals'3:14 have been occurring as part of the developments in the linear physics
and mechanics of fractals over the past 25 years or so. But conclusive studies of
the full non linear behaviour of turbulent flows generated by or interacting with
fractal boundaries have only started to appear very recently'®:16 following the rather
clumsy, but first ever, such attempt by Queiros-Conde and Vassilicos'” in 2001.
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The non linear dynamics of the Navier-Stokes equations for incompressible flow
spontaneously generate multiscale excitations characterised by multiscale intermit-
tency and multiscale order/disorder and coherence. In the case of the atmospheric
boundary layer, for example, excited turbulent eddies range from the millimetre to
the kilometre so that the multiscale range of excitations spans six decades. It is
currently impossible to resolve and simulate the entirety of this very wide range
of eddy scales. This hurdle results single-handedly from the non linear mechanics
of fluid flow, not even from the co-existence of various different physical mecha-
nisms acting at different scales and interacting with each other, as is the case in
a multitude of multiscale problems. This extra multiscale complication does often
present itself in many fluid flow problems, such as in turbulent flames and chem-
ical reactors where the combustion and chemistry introduce their own scales and
non-linear mechanisms. The example of polymer-laden turbulent flows for turbulent
drag reduction purposes may be particularly instructive because it clearly distin-
guishes between length- and time-scales and highlights their relative importance:
the polymer dynamics are characterised by length-scales (molecule lengths) ranging
between 107'2m and 10~%m whereas the smallest turbulent eddy may be as small
as 10~ "m. However, the polymer motions (local bond dynamics, Rouse dynamics,
stretch-coil relaxation) are characterised by time scales ranging between 107125
and 1072s and the turbulent eddy time-scales range from 10~°s to 10%s (and even
above in the atmosphere). Whereas there is no overlap in length-scales, there is a
clear overlap in the time-scales of the polymer and the turbulence dynamics. Mul-
tiscale approaches to polymer drag reduction must therefore take this observation
into account!® when attempting to simulate the observed drag reduction brought
about by polymer stretch mechanisms and explain why drag reduction, which is a
large-scale phenomenon, can be caused by polymer dynamics, which are small-scale.

In fact, polymers have complex multiscale dynamics of their own as well multi-
scale fractal geometrical structures of their own'®:'°. The full multiscale problem of
polymer-laden turbulent flows would therefore comprise two sub-problems, both of
multiscale nature but each one of single physical nature. Each one of these problems
can be quite daunting in itself, and the turbulence problem without polymers, in
particular, is widely regarded as one of the greatest unsolved problems in classi-
cal mechanics. In this paper we address the multiscale dynamics generated by the
high Reynolds number physics of incompressible fluid flow non linearities without
extra multi-physics effects as this problem is an essential milestone for progress in
various other multiscale and multiphysics fluid flow problems. For example, under-
standing and modelling the multiscale and multiphysics problem of turbulent drag
reduction by polymer additives cannot be expected without an understanding of the
multiscale energy and momentum transfers in a turbulent flow without polymers.

The main difference, however, between this paper and other works on turbu-
lent flows is that we consider turbulence generated by multiscale stirrers, that is
multiscale non linear flows generated by multiscale turbulence generators. As such,
this paper contributes both to the emerging non linear physics of fractals and to its



June 2, 2008 14:41 WSPC/INSTRUCTION FILE jmm

Multiscale generation of turbulence 5

sub-topic flow-fractal interactions which may come to be seen as a pilar of future
multiscale modelling for that particular range of flow applications involving com-
plex multiscale boundaries such as mountain and ocean floor topographies, plant

2L coral reefs?? and respiratory systems??. The necessity to in-

canopies?®, trees
vestigate turbulent fluid flows over and through such multiscale structures arises
from urgently pressing issues such as flood management, pollutant dispersal, at-
mosphere/biosphere interactions, and atmosphere-ocean interactions via the fractal
whitecap, all crucial for Mett Office, environmental and climate predictions and
subsequent governmental and intergovernmental decisions concerning crisis man-
agement of accidents and natural disasters, the environment and climate change.

The necessity to investigate turbulent flows generated and/or interacting with
multiscale fractal structures also arises from new prospects for engineering appli-
cations of flow-fractal interactions. For example, it was recently demonstrated that
fractal grids can be used as energy-efficient stirring elements for inline static mixers
and that, even without optimisation, they compare favourably with commercially
available state-of-the-art stirring elements®*. There are also countless other pos-
sibilities including fractal dynamic mixers, fractal ventilation, fractal combustors,
fractal burners, fractal airbrakes, fractal flaps etc. These can all be seen as part
and parcel of a new flow engineering approach called multiscale flow control'5-25:26
which may be either passive or active, and, if active, either with or without feed-
back. Two patents concerning fluid flow modification for applications such as the
ones just mentioned have already been filed by Imperial Innovations.

To address these necessities, we present in this paper the first ever Direct Nu-
merical Simulations (DNS) of turbulent flows generated by fractal objects (with the
exception of a few computer-generated graphics presented at the Gallery of Fluid
motion at the APS 60th Annual Meeting of the Division of Fluid Mechanics?).
The fractal objects considered here are the fractal grids used in recent wind tunnel

15:16 of turbulence generated by fractal grids. The experimental results

experiments
obtained from these recent wind tunnel experiments strongly suggest that all cur-
rently available turbulence modelling approaches, including RANS (Reynolds Aver-
aged Navier-Stokes) and LES (Large Eddy Simulations), cannot be used to simulate
fractal-generated turbulence as the properties of these flows differ from all known
turbulent flows in profound ways'®:16. Most notably, the turbulent kinetic energy
dissipation rate per unit mass in homogeneous isotropic turbulence generated by
some fractal grids in the wind tunnel is not independent of Reynolds number as it
is assumed to be in Kolmogorov phenomenology?®, in LES subgrid modelling and

29 such as k — e.

in one-point closures

Nevertheless, a modelling approach and numerical technique for simulating tur-
bulence interacting with idealised fractal trees was proposed last year3. It is called
Renormalised Numerical Simulation (RNS) and takes advantage of an assumed
scale-invariance in some flow properties to model subgrid scales. These simulations
only allow calculations of drag on fractal bodies and not of turbulence generated

by them. Furthermore, the strong assumptions concerning the drag’s dependence
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on the multiscale fractal iterations which they rely on are totally untested. It is
therefore an imperative to develop DNS of multiscale-generated turbulence and use
the recent experimental results to validate them so that the DNS and laboratory ex-
periments combined may eventually serve as a foundation for multiscale modelling
approaches such as RNS.

The remainder of this paper is structured as follows. Section 2 is a brief overview
of recently emerging laboratory studies of turbulence generated by fractal grids. In
section 3 we very briefly introduce the Immersed Boundary Method (IBM) and in
section 4 we report how this method may be combined to the well known fractional
step method. In section 5, we present the first ever direct numerical simulations of
a turbulence generated by a fractal grid. We then conclude in section 6.

2. Turbulence generated by multiscale grids

Turbulence is of enormous importance in the environment, meteorology and
oceanography and also in many industries where fluid flow is involved such as
the chemical, mixing, car, aerospace and naval industries. For example, the cost
of pumping oil through pipelines is directly proportional to the frictional losses
caused by turbulence. Understanding turbulence can lead to flow control schemes
for reducing skin friction drag. At 100 US dollars per barrel (a conservative estimate
nowadays), 10% such reduction would save worldwide ocean shipping (which con-
sumes about 2.1 billion barrels of oil per year) about 21 billion US dollars per year,
not to mention the consequent impressive reductions of pollutants in ship emissions.
Similar projections can be made for airline industries which consume about 2 billion
barrels of jet fuel per year. Improvements in turbulence management can also be
brought to combustion engines and mixing devices thus leading to further energy
gains and emission reductions.

Over the past 60 years or so the efforts in turbulence have been mostly in
ad hoc modelling of specific turbulent flows and the progress has been limited. A
fundamental understanding of turbulence dynamics is needed, and for this a well-
designed and well-targeted experiment is required where these turbulence dynamics
can be set out of joint so as to give us clues for understanding them.

This is what has been recently achieved at Imperial College London where the
first wind tunnel experiments to contribute unambiguous results on turbulence
generated by fractal grids have been conducted!'®:'6. These authors used hot wire
anemometry and investigated the scaling and decay of turbulence generated down-
stream of 21 different two-dimensional fractal grids pertaining to three different
families: fractal cross, fractal square, and fractal I grids (see fig. 1). Their wind
tunnel experiments have shown that the turbulence intensity of fluid turbulence
generated by planar fractal grids depends on the grid’s fractal parameters as well
as on the pressure drop across it!°. It is therefore possible to independently set the
levels of turbulence intensity and pressure drop. Fractal grids can be designed to
generate high turbulence intensities with low pressure drops, in which case one has
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energy efficient mixers, but can also be designed to have low turbulence intensities
with high pressure drops, in which case one may have relatively silent airbrakes.
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Fig. 1. Scaled diagrams of a fractal cross grid (left), a fractal square grid (middle) and a fractal
I grid (right).

One of the most interesting results in these experiments is that, for a particular
class of fractal grids, the fractal square grids, two regions exist downstream from
the grid: a turbulence production region followed by a turbulence dissipation region
where the turbulence is statistically homogeneous and isotropic'® 6. Other families
of fractal grids behave differently on the centreline and do not exhibit a progressive
turbulence build-up downstream of the grid on the centreline. The various velocity
profiles, correlations, spectra and coherence spectra in the free decay region indicate
that the turbulence is homogeneous and isotropic to a satisfactory approximation
there. Yet, remarkably, the integral and Taylor length-scales remain constant during
decay downstream of fractal square grids (as opposed to classical mesh grids where
they markedly increase, and fractal cross and I grids on the centreline where they
also increase). The most recent experiments in turbulence generated by fractal-
square grids'® indicate that the kinetic energy dissipation scales as Ry ! (where
Ry is the Reynolds number based on Taylor’s micro scale) over the range between
0O(100) to O(1000) and reaches values that are an order of magnitude smaller than
in any approximately isotropic turbulence experiment to date. However, the flow
is fully turbulent with an energy spectrum that has a clear -5/3 range. There is
also intriguing evidence that the interscale energy transfers are severely modified
in fractal-generated turbulence even very far downstream?'. These properties are
completely different from those of any turbulent flow studied to date and run counter
to the classical views on turbulence stemming from Taylor3? and Kolmogorov?®
who set the foundations of modern turbulence research. In particular, all modelling
approaches and all theories of turbulence assume that the kinetic energy dissipation
rate is independent of R). These unprecedented results indicate that the turbulence
in flows past fractal objects cannot be modelled using any of the existing and/or
conventional approaches.
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Moreover, fractal grids can be designed as stirring elements for inline static
mixers and, as shown by recent proof of concept experiments??, they compare
favourably with commercially available state-of-the-art stirring elements. This has
been achieved without time for optimisation and adaptation. Hence, possibilities
for improvement are vast with the potential to set new industrial mixing standards,
at least for some mixing applications.

The next steps which are now unavoidable for progress in this new field of
research is to perform large Direct Numerical Simulations (DNS) and Stereoscopic
Particle Image Velocimetry (SPIV) measurements in order to explain and extend
the recent wind tunnel anemometry measurements described above. Although these
measurements have provided invaluable time-resolved information on the unique
properties of our flows, understanding the spatial structure of these flows will be
necessary to understand the origins of these properties. In this paper we address
the DNS need but leave the SPIV need for future studies.

Fundamental scientific questions which require more elaborate experimental
measurement techniques and the exceptionally large DNS proposed here include
the following: what causes the protracted turbulence production region in the lee
of fractal square grids? Is the reason related, and if so how, to the expectation
that small turbulence eddies resulting from the many but small fractal iterations
are advected and break-up into a turbulence cascade nearer the grid than larger
turbulence eddies which result from the less numerous but larger fractal iterations?
What does this imply for the spectral development of the turbulence as it is ad-
vected away from the grid? Why does this multiscale turbulence generation lead, in
the far-downstream decay region where this generation has ceased, to what appears
to be major modifications of interscale energy transfers and a depletion or capping
of vorticity and strain generation such that it does not amplify with increasing
Reynolds number? Are direct “long-range” couplings between the largest and the
smallest turbulence eddies involved in this process? What kind of phase couplings
does the fractal generation of the turbulence impose for that turbulence to remain
so non-classical for such a long distance downstream from the grid!®:16:31? How
are the alignments/misalignments®® of vorticity and strain rate tensor in fractal-
generated turbulence? These questions matter as they directly relate to interscale
energy transfer, and as the energy spectrum of this non-classical turbulence ap-
pears to have a well-defined —5/3 power law range seemingly regardless of these
couplings and alignments. Is the turbulence generated by different types of fractal
grids really different, or is it similar in appropriately chosen parts of the flow? Im-
portant related questions are concerned with the decay rate of scalar fluctuations
in fractal-generated turbulence and the evolution of the scalar integral and Tay-
lor length-scales during decay. How are the alignments or misalignments between
scalar gradients and vorticity/strain rates affected by the fractal generation of the
turbulence? What are the implications for energy-efficient mixing and combustion
and for flame stability, ignition and extinction? Which fractal grids and with what
fractal grid parameters may give best mixing and combustion efficiency, i.e. what is
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the best possible fractal design for energy-efficient (i.e. low pressure drop across the
grid) generation of high turbulence intensities and homogeneous flows as required
for efficient mixing?

In the following sections, we present the DNS code that we use to compute
turbulent flow fields generated by multiscale/fractal grids and the results obtained
with our DNS.

3. DNS of turbulence generated by multiscale grids based on the
Immersed Boundary Method

The most faithful simulations of turbulence involve solving the Navier-Stokes equa-
tions without averaging, filtering, modelling or approximating other than numerical
discretisations. In such simulations all the motions are resolved at all scales and the
computed flow field is equivalent to a particular single realisation. If run over a
long enough time, the statistics of this realisation may be expected to coincide with
statistics over many realisations. This approach is called Direct Numerical Simula-
tion (DNS) and we are applying it here to turbulence generated by multiscale/fractal
grids such as those of Fig. 1.

The multiscale nature of our fractal grids gives them a complicated geometrical
shape where it is difficult to satisfy flow boundary conditions whilst at the same
time solving the Navier-Stokes equation for an incompressible flow with a high-order
numerical scheme®?. Despite the continual progress of computers, that kind of tur-
bulent flow with complex geometries remains a difficult task. Indeed, a compromise
must be found in order to correctly describe the physics of the flow for a reasonable
computational cost. One of the most popular approach is to generate sophisticated
meshes following the solid geometry. However, such simulations remain expensive
for a relatively small numerical accuracy due to the distortion of the mesh. An
alternative strategy can be found with codes based on a Cartesian mesh combined
with Immersed Boundary Method (IBM). We use here the generic term IBM in-
troduced by Peskin®® where the idea was to consider the fluid-structure interaction
problem involving blood flow in the human heart. The advantage offered by the
IBM is its ability to take into account flexible boundaries and their dynamic shape-
changes whilst solving the Navier-Stokes equations on a Cartesian mesh. However,
one does not need to be confronted with dynamic flow-structure interactions and
elastic boundaries3® for IBM to be of use. A subclass of IBM methods has been de-
veloped for simulating flows with complex embedded solid boundaries3”:38:39 which
do not conform with the shape of the mesh. The reader interested in a broad review
on IBM can find one*® published a few years ago in Annual Reviews on Fluid Me-
chanics. In this paper we focus on the IBM for solid non-moving boundaries which
acquire their complexity from their multiscale geometry.

Three types of IBM can be distinguished: a feedback forcing introduced by Gol-

l.41

stein et a which is based on an artificial term that can cancel the fluid in the

body region through a damping oscillation process.; an algebraic forcing by Arquis
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and Caltagirone®? which corresponds to the modelling of a porous medium, the
limit case of zero porosity leads to the modelling of a solid surface; a direct forcing
by Fadlum et al.? where the boundary condition is ensured directly on the veloc-
ity using a forcing term at each time step of the time integration. Unfortunately,
feedback and algebraic forcing have a common drawback related to their numerical
stability properties. Indeed, both methods lead to a severe additional restriction on
the time step to maintain very low residual velocities at the limit of the body sur-
face. In order to avoid this limitation, the use of a direct forcing is very attractive.
This forcing is implemented as an additional term in the Navier-Stokes equation.
This allows the use of a Cartesian mesh which in turn allows the implementation
of a high order compact finite difference scheme.

4. Implementation of the forcing combined with a fractional step
method

To solve the incompressible Navier-Stokes equations, we use a numerical code (called
“Incompact3d”) based on sixth-order compact schemes for spatial discretization
and second order Adams-Bashforth scheme for time advancement. To treat the
incompressibility condition, a fractional step method 43:44:45:46.47 requires to solve
a Poisson equation. This equation is fully solved in the spectral space, via the use of
relevant 3D Fast Fourier Transforms. This allows us to consider all the combinations
of free-slip, periodic or Dirichlet boundary conditions on the velocity field in the
three spatial directions. In the calculations presented here, boundary conditions
are only inflow/outflow in the direction z of the mean flow (velocity boundary
conditions of Dirichlet type) and periodic in directions y and z. The pressure mesh
is staggered from the velocity mesh to avoid spurious pressure oscillations. With
the help of the concept of modified wave number, the divergence free condition is
ensured up to machine accuracy. An extra potential advantage which we do not
make use of here is the possibility to introduce mesh stretching in one direction
without losing the non-iterative nature of the Poisson solver®. It should be noted
also that solving the Poisson equation in the spectral space has a cost limited to less
than 15% of the overall computational expense. More details about the present code
and its validation, especially the original treatment of the pressure in the spectral
space, can be found in the papers of Laizet and Lamballais*?°0.

The modelling of the fractal grids is performed by a forcing term following
the procedure proposed by Parnaudeau et al.?! which ensures the no-slip boundary
condition on the fractal grids. Note that our particular Cartesian mesh does, in fact,
conform with the geometries of the fractal grids of Fig. 1 because they consist of
right angles and they are placed normal to the mean flow. A priori, the combination
of a high order scheme with an IBM can be problematic because of the discontinuity
in velocity derivatives locally imposed by the artificial forcing term. However, even
though the formal order of the solution is reduced as a result, the code has been
demonstrated to be far more accurate with a sixth-order scheme than with a second-
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order scheme both in statistics and instantaneous field realisations?:50,51,52,53,54

The governing equations are the forced incompressible Navier-Stokes equations

86—1: = _-Vp-— % V(u®u)+ (u.V)u] + vV2u+f (1)
Vaua=0 (2)

where p(x,t) is the pressure field (for a fluid with a constant density p = 1) and
u(x,t) the velocity field. More details about the exact expression of the forcing term
f will be given below. Note that the convective terms are written in skew-symmetric
form. This specific form reduces aliasing errors while remaining energy conserving
for the type of spatial discretization considered here. It is therefore the form used
in our code.

In the framework of the fractional step method, several adjustments are neces-
sary in order to eliminate the various couplings introduced by the implicit nature
of the forcing used here. Indeed, the basic idea is to impose the forcing on the ve-
locity at the end of each time step. For this reason, using a a second-order Adams-
Bashforth scheme, a three step advancement of the forced Navier-Stokes equations
is required and can be expressed as

u* —uF 3 1

— _Fk o _kal o ~k §k+1
At 2 2 VP + (3)
u** _ u* —k
— 4
A7 Vp (4)
uk+1 —u*t ket
A7 =-Vp (5)
with
1
Ff=—C [V @u") + (" . V)u'] + v (6)
and
k+1 1 Pt d §k+1 1 bt f d 7
TAR— t = t
P s /tk p dt, Al /tk (7)

In this writing, the pressure and forcing terms are only used through their time-
averaged values on a given step At that is indicated by the tilde in p**! and £F+1.

In a classical fractional step method without forcing term, the incompressibility
condition (2) can be verified at the end of each sub-time step

Vauktl =0 (8)
through the solving of a Poisson equation
V.u**
~k+1 — 9
V.Vp AL 9)

that provides the estimation of pF+!

general IBM, the forcing term is defined such as to verify more or less rigorously

necessary to perform the correction (5). In a
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the expected boundary condition at the wall of the body®. In the present study, we
use a direct method and the forcing term in (3) is expressed as

_ 3 1 k+1 _ ;k
PRl _ o (_§Fk PR VRk %) (10)

2 A

with ¢ = 1 in the body region and € = 0 everywhere else. As for a conventional
Dirichlet condition, the present definition of f5+1 allows the exact prescription of u*
in the forcing region so that the final error on u**! is second order in time, namely
uFtl = up**! + O(A#?) when ¢ = 1. The target velocity ug(x,t) is calibrated in
order to verify the no-slip condition at the wall of the body while ensuring the
regularity of the velocity field across the immersed surface (see Parnaudeau et al.’!
for more details). Note that for the fractal grids, this target velocity ug is zero, but
as the target velocity is not necessarily divergence free, Parnaudeau et al.’' have

proposed to solve a specific pressure equation
141 V. [(1—e)u™]
voppest = VLT (1)
where the conventional Poisson equation (8) is recovered for & = 0 whereas inside the
body, the condition € = 1 yields the Laplace equation. Such a treatment allows one
to prescribe freely the level of divergence inside the body by satisfying a modified
divergence condition expressed as

V.t = V. (cuptt) (12)

The creation of an internal motion given by the target velocity introduces a mass
source/sink inside the body. This artificial flow based on a 'mirror velocity strategy’
is useful for the regularity of the solution when the boundary of the solid body does
not coincide with the Cartesian mesh®!.

5. Validations of the numerical method and comparisons with
experimental results

The simulations presented here correspond to a fractal cross grid with three fractal

iterations, the one of Fig. 3a of Hurst and Vassilicos!®.

5.1. Configuration of the flow

Only one multiscale grid will be considered here and it is from the family of fractal
cross grids (see left of Fig. 1). This grid is completely characterised by

e the number of fractal iterations N (N = 3 in the Fig. 1, left)

e the bar lengths L; = R%Lo and thicknesses t; = R{ to (in the plane of the
grid, normal to the mean flow) at iteration j, j = 0,..., N —1 (all these bars
have the same 5mm thickness in the direction of the mean flow)

aSee Mittal and Taccarino* for a review of the diversity of techniques already successfully devel-
oped.
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e the number B7 of patterns at iteration j.

Note that B =4, N = 3, R;, = 1/2 and R; = 0.55 for the cross grid considered here,
which corresponds to one of the fractal cross grids used by Hurst and Vassilicos!®.
By deﬁnition, LO = Lmax7 LN,1 = Lmin; to = tmaz and tN,1 = tmin and the
grid in question has t,,,, = 62 mm, tym = 18.78 mm and Le, = T = 0.91 m.
Our simulations aim at reproducing the same geometry. The blockage ratio o of
this grid is the ratio of their total area to the area T2 of the tunnel’s cross section
(T =0.91 m) and is equal to 40%. It is also of interest to define the thickness ratio
tr = tmaz/tmin = 3.3. Unlike classical grids, fractal grids do not have a well-defined
mesh size. Hurst and Vassilicos'® introduced an effective mesh size for fractal grids
defined as

417
Meff:? 1*0’

where P is the fractal perimeter’s length of the grid. Note that the fractality of the
grids influence M,y via their perimeter P which can be extremely long in spite
of being constrained to fit within the area T2. For this particular grid, M.ss =
114 mm.

As this is the first time that a realistic direct numerical simulation is conducted
of a multiscale-generated turbulent flow which can be closely compared to an exist-
ing experiments, it is important to validate carefully the numerical method and also
determine the numerical constraints of the simulations (Reynolds number, number
of mesh nodes, size of the computational domain, memory). In fact, due to the mul-
tiscale nature of the flow, these simulations require state-of-the art top-end parallel
computing and therefore the number of mesh nodes is of crucial importance. Note
that these simulations could not have been performed with second-order schemes.
Indeed, preliminary studies (not presented here) have shown that a simulation with
second-order schemes requires 3.5 more mesh nodes in each spatial direction for the
statistical results to be the same as those of a simulation with sixth-order schemes.

One of the imperatives of this preliminary numerical study is to be as close
as possible to the experimental set-up of Hurst and Vassilicos!® who conducted
hot wire measurements in a horizontal wind tunnel for a flow of mean free stream
Uso = 12 m/s. The parameters of the targeted grid correspond to the experimental
ones. The numerical parameters (computational size domain, time step, Reynolds
number, mesh nodes...) are determined to be as close to the experimental conditions
as possible, except for the Reynolds number Rey, , = @ which must be re-
duced from 14400 to 300 despite the use of high resolution DNS (up to 400 million
mesh nodes). Consequently, only qualitative agreement with experiments can be
expected. In order to validate the number of mesh nodes needed to discretize the
smallest thickness ¢,,;, and to have a good agreement with the experimental re-
sults, two simulations have been performed where the governing equation has been
solved in a computational domain (Ly, Ly, L.) = (153.6tmin, 51.tmin2, 51.2tmn)
(see Fig. 2 for a schematic view of the flow configuration). The resolution, time step
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DNS  Ret,,,, At (ng, ny ,n,)  CORES

DNS; 300  0.0075tmin/Us  (769,256,256) 128
DNS, 300  0.0075tmin/Us (1537,512,512) 256

Table 1. Numerical parameters of the 2 DNS

and number of computational cores of each simulation are given in Tab. 1

Fig. 2. Schematic view of the flow configuration with a fractal cross grid.

5.2. DNS Results

We have run our code twice with identical sets of parameters except for the number
of mesh points (see Table 1). We refer to the run with the lower spatial resolution as
DNS; and to the run with the higher spatial resolution as DNSs. One of the objects
of this exercise is to establish the resolution necessary to obtain turbulence statistics
which match, at least qualitatively, those obtained by Hurst and Vassilicos'® in their
wind tunnel experiments.

It is very difficult to obtain well converged statistics from our DNS as it is
meaningless to average over space because of the inhomogeneity in the production
region upstream from the fractal grid. Statistics are therefore obtained by averaging
over time at given spatial locations, giving mean flow and turbulence profiles as
functions of streamwise distance x and lateral coordinate y.

For both DNS; and DNSy we had to establish the time in the simulation when
statistics could start being collected as well as the duration of this collection. After
some experimentation we chose this starting time to be 200 ¢,,:, /U and the aver-
aging time (collection duration) to be 400 t,in /Uso. The flow downstream from the
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Fig. 3. Streamwise evolution of U/Ux on the centreline for the experimental data (left) and the
numerical data (right).

fractal grid was fully turbulent during this time period. Our choice of transient time
200 tymin/Uso, was shored up by comparing second order moments obtained by av-
eraging over the same duration 400 t,,:,/Us but with different starting times: 180,
200, 220 and 240 t;in/Us. There was less than a 5% difference in these statistics
with a starting time of 220 ¢, /Uso rather than 200 t,,:,/Us. Our choice of av-
eraging time was also given some support by trying different averaging times (300,
350,400,450 and 500 ty,in/Us) following the same starting time 200 tin/Uso in
all cases. We found a difference of less than 5% between the 400 and 450 tpin/Uso
cases.

Expe J— j j j j DNS,
DNS

0.95 -

09 -

0.85 -

u,,
u,

08 -

0.75 -

0.7

. . . . .
0.4 0.2 0 0.2 0.4
yr yr

Fig. 4. Mean flow profile: U/Us in y direction, at x = 2.24m at x = 4.25m for the experimental
data (left) and for the numerical data (Tight).

In their experimental measurements, Hurst and Vassilicos'® observed that frac-
tal cross grids generate non-zero values of %—g on the tunnel’s centreline whereas
classical grids do not (U is the local mean flow velocity in the streamwise direction).
This particular behaviour is also observed in our direct numerical simulations which
agree qualitatively with the wind tunnel experiments at the large enough stream-
wise distances where the hot wire measurements were taken (see Fig. 3). It must be
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stressed again that the Reynolds number in the experiment is much higher than in
our simulations and therefore no exact quantitative agreement should be expected.
Our simulations reveal a significantly large recirculation region with negative values
of U near the grid (see Fig. 3). This recirculation region was clearly identified in
a movie of the numerically simulated centreline streamwise velocity near the grid
and represents a clear prediction for future experimental measurements to be made
closer to the grid and at lower Reynolds numbers. As mentioned by Hurst and
Vassilicos'®, these gradients of U along 2 must be offset by lateral gradients of U in
the y, z plane. Fig. 4 shows the mean flow profile inhomogeneity in the y direction
and establishes that it is qualitatively very similar in our DNS and in the wind
tunnel measurements, even though they are taken at different distances from the
grid and different Reynolds numbers.

Expe: u/U —— b gngﬁd’;ﬂ T
b Expe: V'/U ----x--- 4 i PRV — ]
% P 50 i DNS,:w/U
) DNS,:v’/U —— |
2% ] 45 DNSa: v/U
29 L < 40 DNS,: w'/U -
S
e 200 Y 2 35
2 H
S 18 . S5 3
S 6l - 2
2 . . 5 25
14 - . S 20+
.
2r T 5L
_____________
o T S, 10t :
8 L L L L L L T 5 L L L L L L L L
1 15 2 2.5 3 35 4 45 1 12 14 16 18 2 22 24 26 28 3
X (m) x (m)

Fig. 5. Turbulence decay on the centreline for experimental data (left) and numerical data (right).

In Fig. 5, we plot the centreline streamwise decay of turbulence intensities.
Our numerical simulations confirm the high turbulence intensities returned by frac-
tal turbulence actuation. Whilst the streamwise decay is also qualitatively simi-
lar between experiment and simulation, the actual turbulence intensity values are
very different close to the grid (by a factor of 2 at @ = 1m). Nevertheless, at dis-
tances = 2m and beyond the turbulence intensities are quantitatively similar. The
Reynolds numbers are significantly different between simulation and experiment and
it may well be possible that the recirculation bubble observed in our simulation is
a low Reynolds number feature which diminishes in size as the Reynolds number
increases so that 55% turbulence intensities might be observed at higher Reynolds
numbers only at that diminished distance from the grid where the recirculation
bubble might still exist, if it exists at all. These are relevant and interesting ques-
tions raised by our DNS for experimental wind tunnel measurements which might
not have been raised otherwise.

In Fig. 6 we compare the large-scale turbulence anisotropy obtained experimen-
tally and from our DNS. Whilst our DNS statistics are clearly not as well converged
as the wind tunnel statistics, one can make out a general agreement. For example,
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the two symmetric peak anisotropies are located roughly at the same values of y
and are close to 1.5 both in the DNS and the wind tunnel. This comparison is made
at a value of x large enough to expect, perhaps, minimal Reynolds number effect
on the turbulence intensity ratios which measure turbulence anisotropy.

Finally, we point out that all the DNS; and all the DNS, statistics presented
here are in good agreement with each other. Hence, the spatial mesh resolution
employed is good enough for these statistics.

E‘xpe: wN —— DNS1: unN
DNS{: /W -eeeeees
[ 1 3 DNS,: UV v |
" '8 DNSZ: U'/W'
4
16 |
g
g 14} e
z E]
5 12} 3
S
1}
08 |
-0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4
yr yr

Fig. 6. Turbulence anisotropy profiles. Left: experimental data at t=4.25m. Right: Numerical data
at x=2.24m.

6. Conclusions

The general fields of the non linear physics and engineering of multiscale objects, and
in particular, non linear fluid mechanics of multiscale flow actuation are extremely
promising emerging new fields of investigation. This paper establishes IBM-based
DNS as a valid tool for the study of multiscale-generated turbulence. Current teras-
cale and future petascale high performance computing capabilities make the use
of this tool viable for the investigation of this new field. It should be used in con-
junction with novel developments in turbulence measurement techniques such as
state-of-the art Stereoscopic and high speed Particle Image Velocimetry (SPIV)®®,
Particle Tracking Velocimetry and Accelerometry (PTVA)% and Multi-Hot/Cold

Wire Anenometry (MHCWA)57.
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