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Abstract

We compare streamline statistics in stationary homogeneous isotropic turbu-
lence and in turbulence generated by a fractal square grid. We examine
streamline segments characterised by the velocity difference Au and the
distance [ between extremum points. We find close agreement between
the stationary homogeneous isotropic turbulence and the decay region of the
fractal-generated turbulence as well as the production region of the fractal flow
for small segments. The statistics of larger segments are very similar for the
isotropic turbulence and the decay region, but differ for the production region.
Specifically, we examine the first, second and third conditional mean
([Au]"|l). Noticeably, non-vanishing ([Au]"|l) for n = 1, 3 are due to an
asymmetry of positive and negative segments, i.e. those for which Au > 0
and Au < 0, respectively. This asymmetry is not only kinematic, but is also
due to dissipative effects and therefore ([Au]"|l) contains cascade information.

Keywords: turbulence, streamlines, isotropic, fractal

1. Introduction

It has been known since Simmons and Salter (1934) that grid-generated turbulence consists of
a production region at the immediate vicinity of the grid where the turbulence increases with
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streamwise distance from the grid and a decay region downstream of this production region
where the turbulence decays with streamwise distance from the grid. The grids used by
Simmons and Salter (1934) were regular. Hurst and Vassilicos (2007) confirmed their finding
for space-filling fractal square grids but also showed that for these grids the production region
is significantly extended in size and the turbulence intensity in it is significantly reduced. This
dual property of space-filling fractal square grids made the production region much easier to
access experimentally than with regular grids. Gomes-Fernandes et al (2015) and Laizet et al
(2015a) used a space-filling fractal square grid to study the production region with particle
image velocimetry (PIV) and hot wire anemometry respectively and demonstrated the pre-
sence in this region of a very well-defined —5/3 power law shape in the turbulence energy
spectrum even though the turbulence in this region is non-homogeneous, non-isotropic and
non-Gaussian as it consists of both potential and vortical flow. The turbulence in the decay
region is well mixed and the fluctuating velocities there are Gaussian and also much more
homogeneous and isotropic. The turbulence in the decay region is also out of Richardson—
Kolmogorov equilibrium and a new, non-equilibrium scaling for the turbulence dissipation
holds in a significant streamwise extent of this region (see review by Vassilicos (2015)). Hurst
and Vassilicos (2007) have shown that this non-equilibrium scaling is also present in direct
numerical simulations (DNS) of periodic unsteady turbulence (decaying turbulence being an
example of such turbulence) both for the dissipation rate and the interscale energy flux in an
intermediate range of wavenumbers.

Streamline segments and their statistics have recently been used by Schaefer et al (2012a)
and Schaefer et al (2013) as a way to characterise small-scale geometry of turbulence fluc-
tuations. They analysed a variety of turbulent flows and found the same streamline segment
statistics in all the flows they interrogated. However they did not apply their streamline
segment analysis to turbulent flows with non-equilibrium dissipation scaling and to the
production region of a grid-generated turbulence. The PIV results on the generalised Karman—
Howarth equation obtained by Gomes—Fernandes et al (2015) suggest that there is a com-
bined forward and inverse cascade in different directions in the production region. It is
therefore of interest to test the universality of streamline segment statistics in the production
region and the non-equilibrium decay region of grid-generated turbulence. In this paper we
compare streamline segment statistics obtained in a DNS of statistically stationary periodic
turbulence with streamline segment statistics obtained in the production and the decay regions
of a DNS of fractal-generated turbulence. The DNS of fractal-generated turbulence that we
use here is that of Laizet et al (2015a).

2. Streamline segments

Streamlines in a frozen flow field are lines tangent to the vector f; = u;/u where u = \/LTZZ is
the absolute value of the velocity. The curvilinear coordinate along the arc length of the
streamline is denoted by s in this paper. Streamlines are in principle infinitely long, unless
they hit a stagnation point where all three velocity components vanish. This is why Wang
(2010) has proposed to split streamlines into streamline segments which extend between local
extreme points of u along the streamline. Streamline segments are bound by two extrema, i.e.
points where the velocity derivative with respect to the arc length s vanishes. He further
characterized streamline segments as positive or negative, depending on the sign of the
gradient: within positive segments du/0s > 0; within negative segments Ju/0ds < 0. Thus
the flow along positive segments is accelerated, while it is decelerated along negative seg-
ments. Streamline segments are therefore characterised by the velocity difference Au between
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Figure 1. Projection of the velocity field «; onto a streamline. Streamline segments are
defined by the local minima [J and O maxima of the projected velocity u = #;u; and
characterised by their curvilinear length / along the streamline coordinate s and velocity
difference Au.

two local extrema and the arc distance / between them, see figure 1, where Au > 0 for
positive segments and Au < 0 for negative segments.

In this paper, we choose the fluctuating velocity field for our analysis instead of the
absolute velocity to make the statistics Galilean-invariant. For the statistically stationary
periodic turbulence dataset, (u;) = 0 by definition. For the fractal grid, this is not the case,
therefore the mean value has been subtracted. We start a streamline at every (equally spaced)
grid point. The streamline is then traced by following its unit tangent vector both in positive
and negative direction using a Runge—Kutta scheme to adapt the step-size where the step-size
is decreased when the velocity is very low. We use a tricubic interpolation scheme based on a
third-degree spline to interpolate the velocity field between grid points. The tracing is stopped
when the boundary of the domain is reached. As streamlines are not invariant with respect to
time, we keep the velocity field frozen and we study streamline segment statistics in specific
realisations of the turbulence obtained for specific times.

3. Dataset description

3.1. Fractal DNS

3.1.1. Description of the grid.  As shown in figure 2, we consider a fractal square grid with a
square pattern formed by 4 bars (see Hurst and Vassilicos (2007) for a detailed description of
fractal square grids). It is based on four fractal iterations (with 4/ patterns at iteration j) and
the ratio 7, = tax/tmin between the lateral thickness #,,,, of the bars making the largest pattern
and the lateral thickness #;, of the smallest one is equal to 8.5. L; with j =10,1,2,3
represents the length of the bars for each fractal iteration. The blockage ratio o of our
turbulence-generating grid is defined as the ratio of its total area in the transverse plane to the
area T? = Ly, X L, and is equal to 41%. Unlike regular grids, multiscale/fractal grids do not
have a well-defined mesh size. This is why Hurst and Vassilicos (2007) introduced an
effective mesh size for multiscale grids, M,y = 4T°J1 — o /LTG where Lz is the total
perimeter length in the (y — z) plane of the fractal grid. Here, we have Mz = 8.7 tyi;. Note
finally that the streamwise thickness of the bars is 3.2¢y.

3



Fluid Dyn. Res. 48 (2016) 021403 J Boschung et al

]

Figure 2. Diagram of the fractal square grid used in this study and illustration of the
computational domain where the subdomain used for this study is highlighted in blue.

3.1.2. Numerical methods. The incompressible Navier—Stokes equations are solved using
the high-order flow solver Incompact3d, adapted to parallel supercomputers thanks to a
highly scalable 2D domain decomposition library and a distributed fast Fourier transform
interface (Hurst and Vassilicos (2007)). Sixth-order compact finite-difference schemes are
used for the spatial differentiation whereas an explicit third-order Adams—Bashforth scheme
is used for the time integration. To treat the incompressibility condition, a fractional step
method requires solving a Poisson equation. This equation is fully solved in spectral space,
via the use of relevant 3D fast Fourier transforms combined with the concept of modified
wave numbers, see Lele (1992). Note that the pressure mesh is staggered from the velocity
one by half a mesh, to avoid spurious pressure oscillations. The divergence-free condition is
ensured up to machine accuracy. The modeling of the fractal grid is performed using an
immersed boundary method based on a direct forcing approach that ensures the no-slip
boundary condition at the grid walls. The idea is to force the velocity to zero at the wall of the
grid, as our particular Cartesian mesh does conform with the geometries of the grid. It mimics
the effects of a solid surface on the fluid with an extra forcing in the Navier—Stokes equations.
More details about the present code and its validation, especially the original treatment of the
pressure in spectral space, can be found in Hurst and Vassilicos (2007).

3.1.83. Numerical set-up. The computational domain in the streamwise x and the two lateral y
and z directions is L, X L, x L, = 16Ly x 2Ly x 2L, discretized on a Cartesian mesh
using n, x n, = 720 x 720 mesh nodes in lateral planes and n, = 5761 in the streamwise
direction. This high resolution was recommended by Laizet et al (2015a) especially for the
production region. The coordinate system’s origin is placed at the centre of the grid which is
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Figure 3. Streamwise evolution along the centreline for the fractal square grid of the
Taylor-based Reynolds number Re,, the Taylor microscale A and the integral scale L.
The production region (from x = 0.15xy to x = 0.35x4) and the decay region (from
x = 0.15x4 to x = 0.35x,) where the data are collected is highlighted around the
Re), peak.

located at a distance of 1.25L from the inlet of the computational domain in order to avoid
spurious interactions between the grid and the inlet condition. We assume a fluid of uniform
density and kinematic viscosity v. Inflow/outflow boundary conditions are used in the
streamwise direction and periodic boundary conditions are used in the two lateral directions.
The inflow and initial conditions for the velocity field are u = (u, u;, u3) = (Uy, 0, 0)
where U, is a constant streamwise velocity (u; is the streamwise velocity component and
(up, uz) are the two lateral velocity components corresponding to (y, z)). The outflow
condition is a standard 1D convection equation.

For this particular study, data are collected for five time-independent snapshots of a 3D
subdomain (see figure 2) of size 4.25Ly x 0.28Ly x 0.28L( with 1530 x 101 x 101 mesh
nodes. The 3D subdomain is centred around the centreline of the grid starting from a distance
0.15x4 downstream of the grid and extending to a distance 0.55xy, where xy is the wake
interaction length scale introduced by Hurst and Vassilicos (2007) and which is equal to
L02 / to. The fractal flow data used in figures 4 to 6 are taken from the production and the decay
regions explicitly shown in figure 3. For this fractal square grid simulation, the values of the
Taylor-based Reynolds number Rey = tyys \/v, the Taylor microscale A = 1,/ (Ou/0x)?
and the integral scale L vary with streamwise distance from the grid and their values as
functions of x/x4 can be seen in figure 3.

3.2. Isotropic DNS

We compare the fractal grid data to statistically stationary periodic turbulence at a
similar Taylor-based Reynolds number Rey, =184 with Rey = u,,;A/v where
A = J10v(k)/{e) = 0.166 denotes the Taylor scale and (k) = (u;u;)/2 = 11.42 the mean
kinetic energy. Furthermore (&) = 2v{(du;/0x; + Ou;/0x;)*) = 10.30 denotes the mean
energy dissipation, where v = 0.0025 is the kinematic viscosity. The dataset has been
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calculated on the JUQUEEN supercomputer at Forschungszentrum Jiilich using a pseudo-
spectral code with MPI/OpenMP parallelisation. The three-dimensional Navier—Stokes
equations were solved in rotational form, where all terms but the non-linear term were
evaluated in spectral space. For a faster computation, the non-linear term is evaluated in
physical space. The computational domain is a box with periodic boundary conditions and
length 27. For de-aliasing, the scheme of Hou and Li (2007) has been used. For the temporal
advancement, a second order Adams—Bashforth scheme is used in case of the non-linear term,
while the linear terms are updated using a Crank—Nicolson scheme. To keep the simulation
statistically steady, the stochastic forcing scheme of Eswaran and Pope (1988) is applied. The
2DECOMP&FFT library (Li and Laizet (2010)) has been used for spatial decomposition, and
to perform the fast Fourier transforms the dataset was computed on a computational mesh
with 1024° grid points. n = (13/(e))!/* = 0.0062 is the Kolmogorov length scale with
corresponding time scale 7, = (v/ (eN)/2 = 0.016. L = 0.97 is the integral length scale, here
computed using the energy spectrum and 7 = (k)/(c) = 1.11 is an estimate of the integral
time scale. The integral length scale L is small compared to the size 27 of the boxes in order
to reduce the influence of the periodic boundary condition. Our data is well resolved with
kmaxn = 2.66. We specifically chose a dataset with a Reynolds number similar to the grid
data described above. We also briefly look at the joint statistics of Au and [ for an artificial
velocity field with vanishing velocity derivative skewness. This velocity field was obtained by
randomising the phases of the Fourier-transformed velocity components of the isotropic data
set while keeping their amplitudes fixed. Continuity is then retained by projecting the Fourier-
transformed velocity in the plane normal to the wave vector. The skewness of the longitudinal
velocity gradient is then decreased to —0.00295 as compared to —0.54 for the original
isotropic velocity field.

4. Results

4.1. Joint probability density function

Figure 4 shows the joint probability density function (jpdf) P(Au, /) for statistically sta-
tionary periodic turbulence (figure 4(a)), the fractal flow in the production region close to the
grid (figure 4(b)) and in the near-field decay region further downstream (figure 4(c)) nor-
malised by their respective mean segment length /,, and standard deviation o = ([Au]?)!/2.

In the case of statistically stationary periodic turbulence (figure 4(a)), we find the same
shape as Wang (2010), namely a noticeable asymmetry. Specifically, positive segments are
longer on average than negative segments. This is consistent with their positive velocity
difference Au > 0 which stretches positive segments, while negative segments are com-
pressed by their negative velocity difference Au < 0. It follows that the absolute mean
velocity difference of positive segments (|Au||Au > 0) is necessarily smaller than that of
negative segments, as positive and negative segments along a streamline alternate and the
velocity u is finite. This is confirmed by the shape of the jpdf and in agreement with the
negative skewness of the velocity derivative (Wang 2010). As |[Au| > 0, both wings of the
jpdf should be separated. This is not the case for the jpdfs in figure 4 due to finite binning. A
model for the jpdf has been given by Schaefer er al (2013), which shows good qualitative
agreement with data from DNS.

The jpdf for the production region close to the fractal grid looks qualitatively similar,
albeit more symmetrical. Further downstream, in the near-field decay region where the tur-
bulence is out of Richardson—Kolmogorov equilibrium, the jpdf (figure 4) approaches that of
the statistically stationary periodic turbulence which is in equilibrium by virtue of the near-
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Figure 4. Jpdf P (Au, 1). (a) Periodic dataset, (b) production region, (c) decay region,
(d) vanishing skewness.

instantaneous balance between dissipation and power input required to keep it statistically
stationary.

Finally, we show the jpdf of the artificial, vanishing velocity derivative skewness data in
figure 4(d). The shape of the jpdf is symmetric, i.e. positive and negative segments have the
same statistics. As the energy cascade causes the velocity derivative skewness to be non-zero
(and negative), this result suggests that the asymmetry of the jpdf in figures 4(a)—(c) is a
reflection of the energy cascade at length-scales which are multiples /fractions but of the order
of the mean segment length /,. This is not a trivial result, in particular because [, is a
dissipative-range length-scale since /,, = \/n_)\ , where 77 is the Kolmogorov length-scale and A
is the Taylor length-scale, see Schaefer er al (2012b).

4.2. Marginal pdfs

The marginal probability density functions (pdfs) of / and Au normalised by /,, and o are
shown in figure 5 both plotted linearly and semi-logarithmically. The vanishing velocity
skewness data has been used to make the connection between the turbulence cascade and the
streamline segment statistics and is not needed any longer. Is is therefore not included in the
figures and discussion of this and the next sub-sections.

Noticeably, the normalised pdf of the segment length collapses for the three cases of
homogeneous isotropic turbulence and the production and decay region of the fractal flow.

7



Fluid Dyn. Res. 48 (2016) 021403 J Boschung et al
T T T T T T 0
B —_— periodicl dos8 3 —— periodic ' 10
- - - production - - - production ]
- ----decay lo6 ----decay 10!
3 3 f
= = 31072
A ~ 3
11073
3 \"g 1074
1 1 1 E 1 1 1 3
0 2 4 6 0 2 4 6
1l 1l
(a) (b)
T T T T T T T T T T .
—— periodic B —— periodic 1103
- - - - production 4 3 - - - production
----decay ----decay
g d
A A )
© © 1073
1 1 1 1 1 1 1 1 1 1 : 106
-6 -4 -2 0 2 4 6 -6 -4 =2 0 2 4 6
Aujo Au/o
(c) (d)

Figure 5. Normalised marginal pdfs. (a) and (b) P (1), (c) and (d) P (Au).

The pdfs peak at//1,, ~ 0.6 and show a linear behaviour for ///,, — 0 and an exponential tail
for 1/1,, — oco. This exponential tail is especially highlighted in figure 5(b) and corresponds
to a random cutting- /reconnection process acting on large segments (Schaefer et al 2012a).
Small segments [/[,, — 0 are dominated by a drift towards smaller / due to molecular
diffusion, in agreement with the linear rise observed in figure 5(a) (Schaefer er al 2012a).
Schaefer er al (2012a) derived a model for the pdf of /, which agrees very well with DNS data.
Noticeably, their model includes a small Reynolds number dependency of the cutting-/
reconnection process. Note that there are not that many segments with very high / and that
their number is even less in the case of the fractal dataset. We can therefore not rule out that
the tails may not be converged and that they would collapse if we had more data. Hence, we
cannot conclude whether the production and the non-equilibrium decay regions have the same
or different marginal distributions for segment lengths / larger than 3/,, when normalised
with [,,,.

The marginal pdf of the velocity difference Au at the end points of the segments
normalised by o = (Au)!/2 is shown in figures 5(c) and (d). We find that the normalised
P(Au) significantly deviate from a normal distribution and that they collapse for small
velocity differences Au. The tails of the pdfs however do not collapse; especially the negative
segments differ. We find the production region pdf to be more symmetric than in both the
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statistically stationary periodic turbulence and the near-field decaying turbulence, in agree-
ment with their jpdfs in figure 4. It should be mentioned that the non-normalised pdfs P (Au)
and P () of all three cases differ wildly (not shown) and that they are only similar when
normalised with [,, and o, respectively.

4.3. Conditional means

Finally, we consider the conditional means ([Au]"|l) for n = 1...3, i.e. the mean velocity
difference conditioned on the segment length. This is similar to structure functions
D, = ([Auy]"(r)) = ([w(x; + 1) — uy(x;)]") which are the velocity difference of two points
separated by the vector r; and were introduced by Kolmogorov (Kolmogorov 1941a, 1941b).

When evaluating structure functions, the separation vector r; is fixed in space, inde-
pendent of the local flow topology. This is obviously not the case for ([Au]"|l), where the
separation is equal to the segment length and orientated along the streamline. We may thus
expect that ([Au]"|l) takes the local flow into account and that the velocity along the
streamline is more correlated than along the arbitrary separation vector r;. However, we must
keep in mind that the separation vector r; is arbitrarily large whereas the streamline length /
has a maximum value which is about 5/,, where [, is the mean length of the streamline
segments. Hence we should not expect the range of / to be comparable to an inertial range.
The streamline segment statistics mostly explore the dissipation range.

The first moment ( Au|l) is shown in both figures 6(a) and (b). Note that, unlike structure
functions, the first moment does not vanish even in statistically stationary periodic turbulence
due to the characteristic differences between positive and negative segments as highlighted by
the asymmetry of the jpdfs. For statistically stationary periodic turbulence and near-field grid-
generated decaying turbulence, we find that for very small segments [/1,, < 0.5, (Au|l) ~ 0.
Intermediate segments 0.5 < [/l,, < 2 have a negative mean velocity difference, while
(Au|ly > 0 for large segments 2 < [/l,,. In agreement with the findings of Wang (2009) and
Wang and Peters (2010), we find a linear relation of the form (Aull) = a1/l for large
1/1,. Wang (2009) showed that the velocity difference along scalar trajectories (i.e. dis-
sipation elements) does scale linearly with / when [ is large. As dissipation elements and
streamline segments are conceptually related inasmuch as they depend on the flow structure,
the linear increase as seen in figure 6(a) is not completely surprising, although the theory
cannot be carried over straightforwardly. Thus, figure 6(a) implies that intermediate segments
are compressed while large segments are stretched, in agreement with the jpdfs figure 4(c)
above. In fact, there is very good agreement between the isotropic data and the downstream
fractal flow. The production region data show qualitatively similar behaviour, but with a
wider range of segment lengths with a negative mean velocity difference and a smaller slope
for large segments. This might indicate that it could be possible to collapse all three plots at
large [ if normalised with suitable quantities, as Gampert et al (2011) were able to collapse
(Aul|l) along dissipation elements for five different flow types (shear flow, forced turbulence,
decaying turbulence, channel flow and Kolmogorov flow) using the timescale 7 = k/¢ and
the strain rate ... Figure 6(b) highlights the region for which (Au|l) < 0. We find a
remarkably good agreement between all our data for intermediate segment lengths.

The second moment {[Au]?|I) is shown in figures 6(c) and (d). Obviously, {[Au]*|I} > 0
for all 1. For small /, one should not necessarily expect a I* scaling of ([Au]?|l) as [ is also a
random variable and one cannot apply a Taylor expansion argument in the same way that one
can apply it on structure functions ([Aw]1?) ~ ([Auy]?) ~ ([Auz)?) ~ r? for r — 0. Hence,
([Au]?|l) does not necessarily scale as I for | — 0. In fact we find for / — 0 a larger scaling
exponent for all datasets.
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Figure 6. Conditional means of ([Au]"|l) normalised with o and the mean length /,,.
(a) and (b) n =1, (c) and (d) n = 2, (e) and (f) n = 3.

For large I, we find a linear increase of ([Au]?|l) with [. Similarly to the first moment, the
statistically stationary periodic turbulence data and the grid-generated turbulence decay data
agree very well, while the production region data close to the grid exhibits a different slope
for large segments. Curiously, for small //1,,, the periodic turbulence data agrees better with
the production region data than with the decay region data. However, for I/1, = 0.5, the



Fluid Dyn. Res. 48 (2016) 021403 J Boschung et al

periodic and the decay data agree very well, see figure 6(d). We note that ([Au]?l) starts with
a scaling larger than /* and then scales linearly with / for large segments.

The third moment {[Au]?|l) is presented in figures 6(e) and (f). As expected, we find a
similar behaviour as in the case of the first moment. However, the range of ///,, for which
([AuP|ly < 0 is larger than the corresponding range for the first moment. This agrees with
the jpdfs inasmuch as large values of Au for a certain / are now higher weighted and that | Au|
was found to be higher for negative segments than for positive segments. Again, we find that
the statistically stationary periodic turbulence and the grid-generated decaying turbulence data
agree very well and collapse for all //1,,,, while the production region data shows qualitatively
similar behaviour. The region ([Au]’|l) < 0 is of particular interest, as the asymmetry in
the jpdf of figure 4 is related to the turbulence cascade process (see end of section 4.1) and
one might ask whether the negative sign of ([Au]|l) reflects the forward nature of this
process at dissipative scales in the same way that the negative sign in Kolmogorov’s
([Aw Py = —4/5(e)r reflects the forward nature of the cascade process in inertial scales. We
cannot answer this question in this paper but we do investigate the scaling with r of
—{[AuP?|l) in figure 6(f). There is no such power-law scaling range for the periodic and the
decaying turbulence data, but there may be a very short one with exponent 1 for the highly
non-Gaussian data in the production region of the grid-generated turbulence exhibits.

This observation is consonant with the finding of Laizet er al (2013), Gomes-Fernandes
et al (2015) and Laizet er al (2015b) that the best —5/3 power law spectrum over the entire
grid-generated turbulence is found in the production region. It may be that the non-Gaus-
sianity in the production region has the same cause as these well-defined power laws, namely
the sharp interfaces between alternating potential and vortical flow patches. The cause of
these well-defined power laws has nothing to do with Kolmogorov’s theory as already noted
by Laizet et al (2013), Gomes-Fernandes et al (2015) and Laizet et al (2015b). Similarly,
Keylock et al (2012) found that both the energy spectrum as well as classical velocity
structure function exponents in the wake of fractal fences are in better agreement with
homogeneous isotropic turbulence than flows with regular fences.

It could be possible that this very small scaling range (if it really is one) in the production
region would slowly increase with the Reynolds number. This would imply that the jpdfs in
figure 4 are not universal and depend on the Reynolds number as well. Examining this
dependency would therefore be a good starting point for further studies of ([Au]"|l).

5. Conclusion

The asymmetry in figure 4 which shows that there are longer streamline segments with
positive than with negative velocity difference Au is a dynamic effect reflecting inertial
cascade processes at dissipative scales. The turbulence cascade mechanism is expressed in
terms of structure functions and their power-law dependence on two-point separation distance
in the so-called inertial range of length-scales. The statistical quantities ([Au]"|l) studied in
this paper are defined over a range of streamline segment lengths which extend up to no more
than an order of magnitude higher than /,, = \/777)\ . Hence, the range of scales sampled by the
streamline segments statistics ([Au]"|l) is mostly dissipative. Nevertheless, the asymmetry in
the jpdf underlying these statistics is an asymmetry between strain and compression and can
only reflect the time-irreversible energy cascade from large to small scales. Hence, the
streamline segment statistics ([Au]"|[) are capable of picking up cascade information but at
the dissipation range level. They are also capable of displaying approximate linear depen-
dencies on [ if / is not much smaller than one or two /,, depending on the case.
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The comparison we have made between our three DNS data sets suggests that, even if
sensitive to the average direction of the cascade, streamline statistics are not very sensitive to
the difference between equilibrium and non-equilibrium cascades. Indeed, the grid-generated
decaying turbulence and the statistically stationary periodic turbulence have very similar such
statistics. However, these statistics do seem to be sensitive to the difference between Gaussian
and non-Gaussian turbulence given that the turbulence in the production region of our grid-
generated flow is highly non-Gaussian (see Hurst and Vassilicos (2007) and Laizet et al
(2015b)) whereas the turbulence in the other two DNS data sets is Gaussian.
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