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The recently discovered non-equilibrium turbulence dissipation law implies the existence of
axisymmetric turbulent wake regions where the mean flow velocity deficit decays as the inverse
of the distance from the wake-generating body and the wake width grows as the square root of
that distance. This behaviour is different from any documented boundary-free turbulent shear flow
to date. Its existence is confirmed in wind tunnel experiments of wakes generated by plates with
irregular edges placed normal to an incoming free stream. The wake characteristics of irregular
bodies such as buildings, bridges, mountains, trees, coral reefs and wind turbines are critical in
many areas of environmental engineering and fluid mechanics.

As described in many turbulence textbooks, mean
turbulence spatial profiles (e.g. mean flow and turbulence
intensity profiles) are self-similar/self-preserving in far
enough regions of many boundary-free turbulent shear
flows, such as various turbulent wakes, jets and
plumes. Turbulent flows are also archetypal dissipative
phenomena and another property central to their
understanding and modelling is the dissipation rate ε of
turbulence kinetic energy K at high Reynolds number
(a number representing the ratio between inertial and
viscous forces). Tennekes & Lumley [1] refer to the widely
known and used high Reynolds number assumption ε ∼
K3/2/L (where L is an appropriate correlation length-
scale giving a measure of the large turbulent eddies)
as "one of the cornerstone assumptions of turbulence
theory". Other authors refer to this cornerstone
assumption as the "zeroth law of turbulence” [2]. In
particular, it is central to mean field theories of turbulent
flows called Reynolds Averaged Navier-Stokes (RANS)
models [3] and to coarse-graining approaches called Large
Eddy Simulations (LES) [4]; and it is also an integral
part of the Kolmogorov-Richardson phenomenology of
turbulent spectral equilibrium [5] which has been a
centrepiece in our understanding and modelling of small-
scale turbulence since the 1940s (e.g. the estimate
that the number of turbulent degrees of freedom is
proportional to the 9/4 power of Reynolds number relies
on ε ∼K3/2/L).

One important way in which the zeroth law is key is
its pivotal role in determining the scaling laws of self-
similar/self-preserving free shear turbulent flow profiles.
As shown by George [6], these profiles are obtained from
the average momentum equation (with neglected viscous
force as the Reynolds number is high), the kinetic energy
equation and an assumption on dissipation. These two
equations determine the streamwise evolutions of the
self-similar/self-preserving mean flow and kinetic energy
profiles in the plane normal to the streamwise direction.
Whilst the mean flow U is shaped by the turbulence

via the turbulent (Reynolds) stress R, also assumed
self-similar/self-preserving, the spatial dependence of
the kinetic energy K is shaped by the effects of
turbulent production P, transport T and dissipation ε,
all of which are assumed self-similar/self-preserving too.
This procedure is not conclusive, however, without an
assumption on the dissipation, and this is where the
zeroth law is key [6].

Work over the past six years has revealed the existence
of regions in the lee of both fractal and regular grids
where a new high Reynolds number dissipation law holds
[7–12], different from ε = CεK3/2/L with Cε independent
of Reynolds number. In these regions, Cε ∼ RemG /RenL
where n and m are both close to 1, ReG is a global
Reynolds number based on inlet/boundary conditions
and ReL is a local Reynolds number based on local
velocity and length scales. ReL decays with streamwise
distance from the turbulence-generating grid in these
regions which were termed non-equilibrium regions by
[10] in the expectation that the rate of nonlinear energy
transfer across length-scales does not balance dissipation
as the new dissipation law strongly suggests a non-
Richardson-Kolmogorov cascade [8].

In most boundary-free turbulent shear flows (plane
wakes, mixing layers, jets and plumes) the local Reynolds
number does not decrease with increasing streamwise
distance from the source [1]. A notable exception of great
engineering, environmental, geophysical and scientific
importance is the axisymmetric turbulent wake [1]. As
the non-equilibrium regions discovered to date are regions
where the local Reynolds number decreases with distance
from various types of grids, we make the assumption
in this work that the non-equilibrium dissipation law
may also exist in some regions of some axisymmetric
wakes generated by objects which, like grids, combine
wake-like with jet-like behaviours. Examples of such
objects are the plates in figures 1(c), 1(d) and 1(e).
We may expect such non-axisymmetric plates to have
axisymmetric mean wakes far enough downstream as
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any average non-axisymmetry will be erased by the
accompanying non-axisymmetric turbulent (Reynolds)
stresses [13].

Adopting cylindrical coordinates (x, r,ϕ) where x
is the streamwise distance from the object causing
the turbulent wake, r is the radial distance from the
streamwise axis and ϕ is the azimuthal angle, and
assuming axisymmetry (i.e. no dependence on ϕ),
we can write the following self-similar/self-preservation
functional forms in terms of a length-scale δ(x) which
can be taken to be the wake’s integral width: U∞ − U =
u0(x)f(η), where f(0) = 1 and η = r/δ, and where
U and U∞ (the constant upstream flow velocity) are
both in the streamwise direction; R = R0(x)g(η);K =
K0(x)h(η);T = T0(x)τ(η) and ε = D0(x)e(η). The
wake’s integral width is defined by u0δ

2 = ∫
∞

0 (U∞ −
U)rdr. One can then introduce these forms into the
average momentum and kinetic energy equations for
the axisymmetric wake exactly as done in [6] (i.e.
U∞

∂
∂x
(U∞ −U) = − 1

r
∂
∂r
(rR) and U∞ ∂K

∂x
= −R∂U

∂r
+T − ε)

with the following resulting five solvability conditions:
dδ/dx ∼ R0/(U∞u0), dδ/dx ∼ T0/(U∞K0), dδ/dx ∼
D0δ/(U∞K0), K0 ∼ u20 and u0δ

2 ∼ U∞θ2 where θ is the
momentum thickness defined by πU2

∞
θ2 = 2π ∫

∞

0 U∞(U −
U∞)rdr which is a constant independent of x (because
of momentum balance) in the absence of a free-stream
pressure gradient in the wind tunnel. As there are six
variables involved in these five solvability conditions,
an extra relation is required to close the system and
obtain the scaling laws for the streamwise decay of the
mean flow defect u0(x) and the streamwise growth of
the local wake width δ(x). Whilst this extra relation is
usually taken to be D0 ∼ K3/2

0 /L ∼ u30/δ in accordance
with the usual "zeroth law", we take it to be D0 ∼
(U∞`/ν)m(u0δ/ν)−nu30/δ where ` is the size of the bluff
body generating the wake. The usual zeroth law is
recovered when n = m = 0, and the new non-equilibrium
dissipation law is recovered when n and m are both close
to 1. The resulting scaling laws are (in terms of a virtual
origin x0 which comes out naturally from the analysis):

u0(x)/U∞ ∼ (x − x0
θ
)
−

2
3−n

Re
2(n−m)

3−n
G (`/θ)− 2n

3−n (1)

δ(x)/θ ∼ (x − x0
θ
)

1
3−n

Re
m−n
3−n
G (`/θ) n

3−n (2)

where the global Reynolds number ReG ≡ (U∞`)/ν.
For n = m = 0 one recovers the well-known scalings
u0(x)/U∞ ∼ (x−x0

θ
)−

2
3 and δ(x)/θ ∼ (x−x0

θ
)

1
3 , which

can be found in textbooks such as Townsend [13] and
Tennekes & Lumley [1]. For n =m = 1 the new prediction
based on the assumption that non-equilibrium regions
may exist in axisymmetric turbulent wakes is that

u0(x)/U∞ ∼ (x − x0
θ
)
−1

(θ/`) (3)

and

δ(x)/θ ∼ (x − x0
θ
)
1/2

(`/θ)1/2 (4)

in such regions. Both these scalings are valid in the fully
turbulent regime and the coefficients multiplying them
are independent of Reynolds number ReG. The new
scalings should not be confused with the low Reynolds
number scalings u0(x)/U∞ ∼ ReG(x−x0

θ
)−1(θ/`) and

δ(x)/θ ∼ Re
−1/2
G (x−x0

θ
)1/2(`/θ)1/2 of [6] obtained by

setting m = 0 and n = 1. These are low Reynolds number
scalings because they result from the low Reynolds
number dissipation form D0 ∼ νu20/δ2 which is not valid
in fully developed turbulent shear flows. They differ from
the new scalings by their dependence on ReG.

Studies of axisymmetric wakes go back more than sixty
years and the bluff bodies which were used as wake
generators are mostly spheres and disks placed normal
to the incoming stream [14–17]. The new scaling laws
(3) and (4) suggest significantly more rate of mixing of
momentum than usual and we must therefore chose wake
generators accordingly. Nedić et al [18] showed that the
plates in figures 1(c),1(d) and 1(e) generate significantly
more drag than disks (figure 1(a)), square plates (figure
1(b)) and many other plates of equal surface area when
placed normal to a free stream. For this reason and
because they combine wake-like with jet-like behaviours,
we use the high-drag plates in figures 1(c),1(d) and 1(e)
to demonstrate the existence of scaling laws (3) and (4),
our first task being to establish that, far enough from the
plates, the wakes are statistically axisymmetric.

Two sets of the five flat plates shown in figure 1 were
used to generate turbulent wakes. The frontal area A of
the plates is the same in each set thus defining one same
size ` ≡

√
A. However, ` = 64mm with thickness 1.25mm

in one set whereas ` = 128mm with thickness 2.5mm in
the other, thus doubling the Reynolds number ReG from
one set to the other without changing U∞ which was
kept at 10m/s in all our experiments. Each plate was
suspended in the centre of the wind tunnel normal to
the laminar free stream and 0.5m from the start of the
working section using four 0.2mm diameter piano wires.
The wind tunnel has a closed recirculating loop with a
9:1 contraction ratio, a working cross-section of 0.91m x
0.91m and a working length of 4.25m. The background
turbulence level at the freestream velocity U∞ = 10m/s
is 0.05%. Hot wire anemometry measurements were
taken downstream of the wake generators using a Dantec
Dynamics 55P51 X-wire, driven by a Dantec StreamLine
CTA system. The wires were 5µm in diameter, 3mm
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(a)Disk (b)Square

(c)Df1.5(1) (d)Df1.5(2) (e)Df1.5(3)

FIG. 1. Drawings of (a) a disk, (b) a square plate and three
high-drag plates with irregular edges. The self-similar process
leading from (b) to (c) to (d) to (e) leads, if continued ad
infinitum, to a plate with a fractal perimeter of infinite length
and fractal dimension Df = 1.5 but same surface area. All
drawings are to scale so that the areas of the disk and all
the plates are the same. For the ` = 64mm set of plates, the
normalised perimeter P /` and the momentum thickness θ are
(a) 2

√

π, 19.08mm; (b) 4, 18.91mm; (c) 8, 20.69mm; (d) 16,
20.89mm; (e) 32, 20.87mm.

long Pt-W wire with a sensing length of 1.25mm and
connected to a 55H24 6mm probe holder.

To obtain mean turbulent wake profiles, the probe was
traversed at each one of the positions x/` = 5, 10, 15,
20, 25, 30, 35, 40, 45, 50 in 15mm horizontal intervals
normal to the streamwise x-axis, covering a distance of
390mm from the centre-line. For the smaller plates with
` = 64mm at the two closest distances x/` = 5 and 10,
the X-wire was traversed in 10mm steps up to a distance
of 260mm from the centre-line as these particular wake
widths were considerably smaller and more data points
were required to get good spatial resolution. Data was
sampled using a 16-bit National Instruments NI-6229
(USB) data acquisition card, at a rate of 20kHz for
30 seconds, which was sufficient to obtain converged
statistics of the mean and fluctuating velocities for both
velocity components.

To ascertain the statistical axisymmetry of our wakes
we investigated the azimuthal variations of the mean and
fluctuating flow profiles. These variations were obtained
by rotating the plate and taking measurements at various
azimuthal angles, in particular ϕ = 0○, 15○, 30○ ... 90○. In
table I we list the coefficients of variance with ϕ of various
wake statistics. The conclusion is that the wake statistics
are indeed axisymmetric to a good approximation at
x/` ≥ 10 and increasingly so for increasing x/`. At x = 10`
there is already less than 2% variation in all statistics

TABLE I. Given a data set S(r, φ) where S stands for mean
flow profile U/U∞, turbulence intensity profiles <u

′2
x >0.5
U∞ and

<u′2r >0.5
U∞ or Reynolds stress profile <u′xu′r>

U2∞
, the coefficient of

variance is cv(r) ≡ 100
√

1
Nϕ
∑ϕ(S(r,ϕ) − S(r))

2
/S(r) where

S(r) ≡ 1
Nϕ
∑ϕ S(r,ϕ) and Nϕ is the number of different

azimuthal measurements. This table lists values of the
average and maximum (in brackets) coefficients of variance
cv ≡

1
Nr
∑r cv(r) and cmaxv ≡ max

r
cv(r) where Nr is the

number of radial data points. Note that these coefficients
of variance are given as percentages.

Plate x/` U
U∞

<u′2x >
0.5

U∞
<u′2r >

0.5

U∞
<u′xu

′
r>

U2∞

Disk 10 0.38 (0.53) 1.47 (2.38) 1.26 (2.29) 4.63 (8.31)
Square 10 0.27 (0.57) 1.38 (2.83) 1.65 (3.66) 5.76 (13.10)
1.5(2) 10 0.47 (0.66) 1.88 (4.59) 1.56 (3.72) 4.55 (9.55)
1.5(2) 20 0.27 (0.45) 1.57 (5.62) 1.65 (3.25) 4.19 (8.42)
1.5(2) 30 0.16 (0.33) 1.37 (3.32) 1.10 (2.85) 4.11 (6.98)

for all plates, with only the Reynolds stress showing a
variation of less than 6% (see table I). Finally, it is also
worth mentioning that we verified the constancy of θ with
x and that u0δ2 ∼ U∞θ2.

The self-similarity/self-preservation of the streamwise
mean flow profiles and the Reynolds stresses was
thoroughly tested for all our wake-generators and found
to hold for x ≥ 15`. Some of the results demonstrating
this self-similarity are plotted in figure 2. On the basis of
the mean flow profiles we can calculate the wake integral
width δ(x) and the centreline velocity deficit u0(x). In
figure 3 we plot (δ(x)/θ)2 and (u0(x)/U∞)−1 as functions
of x/θ for all three high-drag plates in figures 1(c),1(d)
and 1(e). In agreement with predictions (3) and (4), our
data demonstrate clear well-defined linear relationships
between (δ(x)/θ)2 and x/θ and between (u0(x)/U∞)−1
and x/θ for all three high-drag plates over the streamwise
range sampled. We also checked that the disk and
square return wakes with the expected well-known linear
dependencies of (u0(x)/U∞)−3/2 and (δ(x)/θ)3 on x/θ
[1, 13].

In Table II we report the best fit values for the
coefficients A and B, the exponents α and β and
the virtual origins in u0/U∞ = A(x−x0

θ
)−α and δ/θ =

B(x−x0

θ
)β for all plates in figure 1. Our fitting method is

immune to the usual virtual origin problem and in fact
returns actual values for these origins as explained in the
caption of Table II. The fits are for 10 data points over
the range x/` = 5 to x/` = 50 for all plates. Note how the
values of α and β are close to 2/3 and 1/3 respectively for
the disk and square, in agreement with classical studies
of axisymmetric wakes behind regular objects. Note also
how very close these exponents are, respectively, to the
new scaling values 1 and 1/2 predicted by (3) and (4) for
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FIG. 2. Mean flow and Reynolds stress profiles at different
streamwise distances collapsed using similarity scalings for
the ` = 64mm, Df1.5(2) high-drag plate for downstream
distances of (#)−5`; (◻)−10`; (▷)−15`; (◁)−20`; (△)−25`;
(▽)− 30`; (+)− 35`; (×)− 40`; (⋆)− 45`; (◇)− 50`. Note that
R0 = u0U∞(dδ/dx) here.

TABLE II. Best fits to u0/U∞ = A(x−x0
θ
)
−α and δ/θ =

B(x−x0
θ
)
β obtained by, first, calculating d

dx
(u0/U∞)−1/α and

d
dx
(δ/θ)1/β for a range of values of α and β and estimating

their respective linear fits C1x/θ + A
−1/α and C2x/θ + B

1/β ,
then choosing α and β such that C1 = C2 = 0 and deriving
corresponding estimates for A−1/α and B1/β . Having A, α,
B and β, we then obtain the virtual origin. In the table we
list the values of the virtual origins x0A and x0B obtained
independently for u0/U∞ and δ/θ respectively.

Plate A −x0A/θ α B −x0B/θ β
Disk 0.78 -12.78 0.68 1.14 -12.88 0.34

Square 0.47 -20.23 0.59 1.46 -20.34 0.29
1.5(1) 7.67 13.65 1.03 0.36 13.56 0.52
1.5(2) 6.53 12.13 1.01 0.39 11.96 0.51
1.5(3) 3.61 2.62 0.89 0.53 2.53 0.44

the irregular plates of figures 1(c,d) and closer to the new
scalings than the classical ones for the irregular plate of
figure 1(e). Of particular note is the fact that the virtual
origins obtained independently from the wake deficit and
the wake width data are very close to each other, as
should indeed be the case.

At equal ReG and frontal area A, the local Reynolds
number u0δ/ν of the high-drag plates (figures 1(c),1(d)
and 1(e)) is about 50% higher than for the square and the
disk (see figure 4(a)). This agrees with the higher values
of A by factors between 4.6 and 16.3 and the lower values
of B by factors between 2.1 and 4 for the high-drag plates
compared to the regular ones (see Table II), consistent
with the increase in drag. When doubling ReG by going
from ` = 64mm to ` = 128mm no significant changes
were recorded in the values of δ(x)/θ and u0(x)/U∞. We
are therefore clearly far from the low-Reynolds number
regime obtained by setting m = 0 and n = 1 [6]. The
similarity scalings which we observe are all high Reynolds
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FIG. 3. (u0/U∞)−1 versus x/θ (top a, b, c plots) and (δ/θ)2

versus x/θ (bottom d, e, f plots) for ` = 64mm high-drag
plates. Left plots, Df1.5(1); centre plots, Df1.5(2); right
plots, Df1.5(3).
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FIG. 4. (a) Local Reynolds number (u0δ/ν) versus x/θ for
disk - ( ), square - (∎), Df = 1.5(1) - (▲), Df = 1.5(2) -
(▶), Df = 1.5(3) - (▼). (b) Energy spectra of radial velocity
component for all ` = 64mm plates on the centre-line; solid
lines at x = 5` and dashed lines at x = 50`

number scalings. In fact, the energy spectra are broad
and continuous with power-law regions which extend over
one to two decades both at x = 5` and at x = 50` and for
all plates including the disk and the square - figure 4(b).

We have presented a very extensive set of hot
wire anemometry measurements which demonstrate the
existence of axisymmetric wakes with the new non-
equilibrium similarity scalings (3) and (4). These scalings
imply that the local Reynolds number u0δ/ν decreases
while the “memory", i.e. the ratio of the eddy turnover
time δ/u0 to the advection time x/U∞, increases with
x, unlike any documented free shear flow [19]. High-
drag wake-generators resembling aspects of those of
figures 1(c),1(d) and 1(e) can be expected to prevail in
the natural and the built environments, e.g. bridges,
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buildings and roof-tops, mountains, islands, trees, etc.
Their wake properties may be much closer to those of our
wakes than to any documented boundary-free turbulent
shear flow.
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