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The energy dissipation rate coefficient of statistically stationary homogeneous isotropic turbulence
depends on the external force sustaining the turbulence irrespective of Reynolds number. This
nonuniversality is established by proving that the Taylor length is proportional to the mean distance
between stagnation points and thereby relating the energy dissipation rate coefficient to the
stagnation point structure of the turbulence which is shown to depend on the structure of the large
eddies. Confirmation of these relations is obtained at moderate Reynolds numbers by a series of
direct numerical simulations where the large-scale forcing is systematically varied.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3085721�

I. THEORY

Taylor stated in 1935 �Ref. 1� that the rate � of turbulent
kinetic energy dissipation �per unit mass� is determined by
the rms velocity u� and some spatial linear dimension L de-
fining the scale of the system, i.e.,

� = C�

u�3

L
, �1�

where C� is a constant for high Reynolds number turbulence
produced by geometrically similar boundaries. We follow the
convention of the past half century,2 and adopt for L the
integral length of the longitudinal velocity correlation func-
tion. Since the early 1950s when Batchelor2 plotted experi-
mental data of C� in his textbook, the following questions
have remained open and at the center of all strands of turbu-
lence research:3–8 �i� whether C� is or is not independent of
the Reynolds number in the high Reynolds number limit, �ii�
whether C� is or is not independent of the boundary/initial
conditions and/or forces which generate the turbulence, and
�iii� what determines the value of C�. These questions are
both of fundamental physical importance and engineering
turbulence modeling relevance: indeed, C� is directly related
to one of the model parameters of the K-� model, and to the
eddy viscosity in large-eddy simulations.

In the present article, by further developing the view-
point proposed in Ref. 8 and carrying out a series of direct
numerical simulations �DNS�, we show that C� is determined
by the distribution of stagnation points of the turbulent ve-
locity field u�x , t�. This result suggests that C� cannot be
universal even in the high Reynolds number limit because
the stagnation point distribution is determined by the exter-
nal forcing or boundary conditions irrespective of the Rey-
nolds number. It may be worth mentioning that the fluctuat-
ing velocity field u�x , t� is Galilean invariant because it is
obtained by removing the mean flow from the actual fluid
velocity field. Also, stagnation points where u= �u ,v ,w�=0

can be expected to be numerous because they are intersec-
tions of the instantaneous line u�x , t�=v�x , t�=0 with the in-
stantaneous surface w�x , t�=0.

As predicted theoretically9–11 and confirmed
experimentally,8,12 the mean distance between zero crossings
of a component of the turbulent velocity u is proportional to
the Taylor length,

� =
u�

�
, �2�

where � is the rms value of the longitudinal velocity deriva-
tive. It is important that this property of zero crossings can
be generalized �see Appendix A� to the stagnation points of u
which are more fluid dynamically meaningful than the zero
crossings. More precisely, as we show in Appendix A under
relatively weak assumptions, the number density ns per unit
volume of the stagnation points of u is related to � by

� = Bns
−1/3, �3�

where B is a constant �unless the Reynolds number is too
small or small-scale intermittency effects are taken into ac-
count in which case B may be a very weak function of the
Reynolds number; see Appendix A�.

On the other hand, it has been shown13,14 that the num-
ber density ns

�c� of stagnation points in the coarse-grained
velocity field u�c� at the cutoff length scale �c obeys the fol-
lowing formula:

ns
�c���c� = �Cs

1

L�
3�L�

�c
�Ds

for � � �c � L ,

Cs
1

L�
3�L�

�
�Ds

�=ns� for �c � � .� �4�

Note that, in practice, the coarse-grained velocity field u�c�

and therefore ns
�c� do not depend appreciably on the type of

low-pass filter if it is sufficiently high order.8 Here, the inner
cutoff � is proportional to the Kolmogorov length �K, i.e.,
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� = A�K = A��3/��1/4 �5�

�A and � being a dimensionless constant and the kinematic
viscosity of the fluid, respectively� and L� is a reference
length such that ��L��L. In our previous studies, we set
L�=L for simplicity, but the introduction of the reference
length L� is essential for Sec. III where we set �c=L� in order
to numerically estimate Cs, a procedure which is not possible
without the introduction of a reference length L� smaller than
L. In Eq. �4�, Cs and Ds are constants, and Ds is related to the
exponent p of the energy spectrum E�k�	k−p �in the range
��k−1�L� of the velocity field u by

Ds =
3�3 − p�

2
. �6�

A simple schematic derivation of the fractal dimension �6� is
given in Appendix B. Note that the inner cutoff � of scaling
�4� may not actually be proportional to the Kolmogorov
length as shown experimentally in Ref. 8 for zero crossings
where A in Eq. �5� turned out to be an increasing function of
log R�. However, for simplicity, we do not take into account
this small correction here and assume A to be independent of
Reynolds number. We return to this point in the last section.

From �=15�u�2 /�2 in conjunction with Eqs. �3�–�5� we
obtain

� = �15u�2A−2Ds/3B−2Cs
2/3L�

−2+2Ds/3�1−Ds/2�1/�1−Ds/6�. �7�

Then, using the Reynolds number independence of A and B
as �→0 �or, more generally, assuming the Reynolds number
independence of BADs/3 as �→0�, it follows that the energy
dissipation � is independent of � in that limit provided that
Ds=2 which corresponds to

p = 5
3 �8�

in Eq. �6�. The Taylor relation �1� then follows with the
coefficient

C� =
153/2Cs

A2B3

L

L�

. �9�

Note that Eq. �8� corresponds to the well-known �5/3 power
law spectrum15 which we have derived here using the gener-
alized Rice theorem �Appendix A�. Since we have made the
same assumption about � as was made by Kolmogorov in the
high Reynolds number limit,15 it may not be too surprising
that we reach the same conclusion on the energy spectrum.
However, it is not trivial that the dissipation coefficient C� is
related to a constant Cs which characterizes the large-scale
spatial distribution of stagnation points and therefore one
basic aspect of large-scale flow topology. It may be worth
noting that this relation �9� can also be derived without any
assumptions on the Reynolds number dependencies of A and
B if use is made of Ds=2 on account of p=5 /3 and Eq. �6�.
In this case, both sides of Eq. �9� are Reynolds number de-
pendent, in principle, as is undoubtedly the case when the
Reynolds number is not large enough. In Sec. III we provide
DNS support for Eq. �9� at Reynolds numbers where both
sides of Eq. �9� are Reynolds number dependent.

Note that the reference length L� in Eq. �4� is arbitrary as
long as it lies in the scaling range ��L��L. However, our
conclusions do not depend on the choice of L�. Although the
reference length L� appears on the right-hand side of Eq. �9�,
C� does not depend on L� because Cs also depends on the

choice of L�. If we choose another reference length, say L̃�,

the coefficient in Eq. �4� is C̃s= L̃�
3ns

�c���c= L̃�� which equals

Cs�L̃� /L��3−Ds. Then, setting Ds=2 for Eq. �9� to hold, both
choices of L� lead to the same dissipation coefficient C�.

An important consequence of Eq. �9� is that the coeffi-
cient C� in the Taylor relation �1� may not be universal. This
is because Cs is the number of stagnation points in a cube of
side L� in the coarse-grained velocity field at the reference
scale L�, i.e., L�

3ns
�c��L��, and because it depends on the large-

scale structures. Note that L� can be as large as the integral
length. This conclusion may seem to be in conflict with a
recent report5 based on the currently highest Reynolds num-
ber DNS available, but this is not so because these DNS were
carried out with a common large-scale structure. The nonuni-
versality of C� has already been reported from comparisons
of DNS with different external forcings �although with lim-
ited Reynolds numbers� �Ref. 4� and from analyses of ex-
perimental data �see Refs. 3 and 8 and references therein�.

The purpose of what follows is to demonstrate the non-
universality of C� and of �CsL� / �B3L��, but also the propor-
tionality between them, by a systematic series of DNS with
different large-scale structures.

II. DIRECT NUMERICAL SIMULATIONS

Statistically homogeneous isotropic turbulence is simu-
lated by numerically integrating the Navier–Stokes equations
for an incompressible fluid in a periodic box �with period
2	� using the fourth-order Runge–Kutta method. Spatial de-
rivatives in the equations are estimated by a dealiased Fou-
rier spectral method. We report results based on the analysis
of such turbulence simulated using 10243 grid points.

The initial condition of each DNS is taken from a lower
resolution �5123� velocity field in statistically stationary
state. This lower resolution field has been obtained from a
DNS with an initially random velocity field with prescribed
spectrum

E�k� = �CEkq exp
−
q

2
� k

k0
�2� for k 
 k0,

CEkq exp
−
q

�
� k

k0
��

+
q

�
−

q

2
� for k0 
 k .�

�10�

Here, the coefficient CE is chosen such that the total kinetic
energy in the 5123 simulation is unity; the exponent q in the
small wavenumber range is either 2 or 4; the wavenumber k0

where the energy spectrum peaks is either 5, 10, or 15; and
the other exponent � in the exponential function is chosen
��=1 for q=2, and 1/2 for 4� such that the energy spectrum
of the 10243 simulation is a smooth function at the border
wavenumber �kf, see below� between forced and unforced
wavenumber ranges. We have carried out 24 different runs
for 24 different combinations of the large-scale structure
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�q ,k0� and the kinematic viscosity �. Numerical parameters
adopted in our DNS are given in the first three columns of
Table I.

The external large-scale forcing is implemented numeri-
cally by keeping the magnitudes of the Fourier components
of velocity fixed in the low wavenumber range k�kf

=2.4k0. The value 2.4 has been chosen for the energy spec-
trum to be as smooth as possible at kf. Note, however, that
the phases of these Fourier components evolve temporally,
and that the large-scale velocity field is therefore not steady.

After several large-eddy turnover times T=L /u�, turbu-
lence reaches a statistically stationary state. The temporal
averages of the Reynolds number

R� =
�u�

�
�11�

and the Taylor length �=�15�u�2 /� in this state are shown in
Table I together with the temporal averages of the integral
length L, the Kolmogorov length �K, the rms velocity u�, the
energy dissipation rate � and the large-eddy turnover time T.
Here, we estimate the integral length L by integrating the
energy spectrum E�k� as follows:

L =
3	

4



0




E�k�k−1dk�

0




E�k�dk . �12�

As seen in Fig. 1, E�k� exhibits two power laws in the
statistically stationary state: E�k�	kq for k�k0 and
E�k�	k−5/3 for k0�k ��2	 /�K�. We plot eight curves, in
each figure of Fig. 1, which correspond to different combi-
nations of the exponents q and the kinematic viscosities �.
For the same q, the behavior of E�k� in the energy containing
range is identical for different values of �, whereas for the
same �, the behavior in the dissipation range seems almost
identical for different values of q in these logarithmic plots.

III. VERIFICATION OF EQ. „9…

We plot in Fig. 2 the temporal evolution of the dissipa-
tion coefficient C� for each simulation where �=6�10−4.
�Other � cases have similar behaviors.� Here, � is estimated
from �=�Q where Q is the enstrophy. Probably because we
fix the energy spectrum at the lower wavenumbers, there are
only very small temporal fluctuations on this coefficient in
the statistically stationary state. These temporal fluctuations,
if at all perceptible, are negligible compared to the very sig-
nificant differences in C� which result from different large-

TABLE I. Numerical parameters of the DNS, and statistics �time-averaged values in the statistically stationary state� of simulated turbulence. Note that the
index kmax�K, where kmax= ��2 /3��1024�482 is the largest wavenumber of the DNS dealiased by the phase shift method, is smaller than 1 in some of our
simulations. This suggests that the smallest scale motions might not be fully well resolved in those simulations with small �. However, the dependence of C�

on R� appears smooth in Fig. 3 suggesting that our values of kmax�K are suitable for this paper’s purposes which are concerned with C�.

q k0

�
��10−4� R� L

�
��10−2�

�K

��10−3� u� � T kmax�K

2 5 6.250 117 0.313 7.35 3.45 0.995 1.71 0.314 1.66

2 5 5.000 131 0.311 6.60 2.92 0.996 1.70 0.312 1.40

2 5 3.750 152 0.310 5.75 2.36 0.995 1.68 0.311 1.13

2 5 3.125 168 0.308 5.27 2.06 0.996 1.67 0.309 0.99

2 10 6.250 81.7 0.165 5.27 2.96 0.969 3.16 0.171 1.42

2 10 5.000 91.9 0.162 4.69 2.48 0.979 3.27 0.165 1.19

2 10 3.750 107 0.159 4.04 1.99 0.988 3.35 0.161 0.95

2 10 3.125 117 0.158 3.70 1.73 0.991 3.36 0.159 0.83

2 15 6.250 65.2 0.116 4.34 2.73 0.938 4.36 0.124 1.31

2 15 5.000 73.8 0.113 3.86 2.28 0.956 4.60 0.118 1.09

2 15 3.750 86.3 0.109 3.32 1.81 0.974 4.83 0.112 0.87

2 15 3.125 95.1 0.107 3.02 1.57 0.981 4.92 0.109 0.75

4 5 6.250 110 0.267 7.11 3.44 0.969 1.74 0.275 1.65

4 5 5.000 123 0.265 6.37 2.91 0.971 1.74 0.273 1.40

4 5 3.750 144 0.263 5.56 2.35 0.972 1.71 0.270 1.13

4 5 3.125 158 0.263 5.10 2.05 0.971 1.69 0.271 0.99

4 10 6.250 76.5 0.141 5.06 2.94 0.944 3.26 0.149 1.41

4 10 5.000 86.2 0.138 4.50 2.46 0.956 3.37 0.144 1.18

4 10 3.750 100 0.135 3.89 1.97 0.965 3.45 0.140 0.95

4 10 3.125 110 0.133 3.55 1.72 0.968 3.47 0.138 0.82

4 15 6.250 60.7 0.0992 4.15 2.70 0.913 4.53 0.108 1.30

4 15 5.000 69.0 0.0961 3.69 2.26 0.932 4.76 0.103 1.08

4 15 3.750 80.8 0.0929 3.18 1.79 0.951 5.02 0.0976 0.86

4 15 3.125 89.2 0.0914 2.90 1.56 0.959 5.12 0.0952 0.75
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scale parameters. These differences are clear and unambigu-
ous throughout the time of our simulations, and it therefore
makes sense, as we do in Fig. 3�a�, to plot the value of C� at
the final instant of each simulation as a function of Reynolds
number R�. It is clearly observed that the coefficient C� de-
pends not only on the Reynolds number R� but also on the
exponent q of the energy spectrum E�k�	kq in the low
wavenumber range k�k0. The fact that, for different values
of q, there are distinct C��R�� curves which appear to asymp-
tote toward different constants as the Reynolds number in-
creases supports the view that C� is not universal and de-
pends on the large-scale structure even asymptotically
�R�→
�.

In order to verify Eq. �9�, we need to estimate Cs /B3.

However, since our simulations possess only limited inertial
ranges, it is hard to estimate the coefficient Cs in Eq. �4� by
fitting data for ns

�c� with the scaling form �4�. Instead, we
estimate Cs by the relation

Cs = L�
3ns

�c���c = L�� . �13�

The number density of the stagnation points in the coarse-
grained field at the length scale L� may be counted numeri-
cally, but the number of such points is not large enough if we
choose L� too close to L. We therefore use an alternative
estimation of ns

�c� which proceeds by introducing the coarse-
grained field’s Taylor scale

��c� =�5

0

2	/L�

E�k�dk�

0

2	/L�

k2E�k�dk . �14�

The number density ns
�c� is then obtained by application of

the generalized Rice theorem to the coarse-grained field
which gives

ns
�c� = � B

��c��3

. �15�

From Eqs. �13� and �15� we obtain

Cs

B3 = � L�

��c��3

, �16�

which we use to estimate Cs /B3 from our simulations.
Because of the assumptions under which the generalized

Rice theorem is derived �see Appendix A�, B in Eqs. �15� and
�16� may be considered constant if L /L� and R� are large
enough. In our DNS, however, R� is not so large and B can
therefore be expected to have a residual dependence on it.
This is confirmed in Fig. 3�b� where we plot Cs /B3 as a
function of R�. In this plot, Cs /B3 is estimated from �16� by
choosing L�=0.2L so as to make sure that L� is within the
inertial range, and that L /L� is as large as possible in our
DNS.

One of the interesting observations in Figs. 3�a� and 3�b�
is that both C� �Fig. 3�a�� and Cs /B3 �Fig. 3�b�� are clearly
dependent on R� and q. We use Eq. �9� to define the normal-
ized dissipation coefficient
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FIG. 1. Energy spectra at the final time of each simulation for the three
different peak wavenumbers: �a� k0=5, �b� 10, and �c� 15. In each figure, we
plot eight curves for all combinations of the four different kinematic vis-
cosities and the two different low wavenumber exponents �q=2 or 4� of the
energy spectrum �E�k�	kq for k�k0�. The dotted lines indicate power laws
with exponents �5/3, 2, and 4.
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FIG. 2. Temporal evolution of the dissipation coefficient C�. �a� �q ,��
= �2,6.25�10−4�, �b� �q ,��= �4,6.25�10−4�. Solid curves, k0=5; dotted
curves, k0=10; dashed curves, k0=15.
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C̃� =
C�

�153/2CsL�/�B3L��
�=

1

A2� , �17�

which we plot in Fig. 3�c� as a function of R�. This plot
clearly shows that C� and Cs /B3 have the same dependence
on the large-scale structure �i.e., q� even at low R�, and it
strongly supports the validity of Eq. �9� because A depends

only on R�. The plot seems also to suggest that C̃� tends to a
constant with increasing R�, thus implying that the depen-
dence of C� on the large-scale structures and the indepen-

dence of C̃� on these structures survive even in the limit
R�→
.

However, it is not conclusive from Fig. 3�a� whether, for
a fixed q, C� does or does not become a constant in the limit
R�→
. Also, we are unable to determine A independently
and directly from Eq. �4� with the kind of accuracy which

would allow to fully validate Eq. �9� quantitatively. Never-
theless, Fig. 3�c� suggests that A�10 at high R�, which is
consistent with the experimental data8 on zero crossings, and
with the well-known fact that the inertial range of the energy
spectrum is bounded by about one tenth of the Kolmogorov
wavenumber. Figure 3 also suggests that much, although not
all, of the Reynolds number dependence of C� is accountable
to the Reynolds number dependence of A, in agreement with
the conclusions in Ref. 8.

Incidentally, the coefficient B can be expected to have a
residual dependence on L� if L� is not small enough. We
have checked that the coincidence observed in Fig. 3�c� is
preserved even if we adopt a different L�, although the ab-

solute value of C̃� depends on its choice particularly if L� is
not small enough because of the residual dependence of B on
L�.

As a final point, we use Eq. �16� to show that Eq. �9� can
yield the relation �22� between C� and q which is similar to
the one recently derived and used in Ref. 7. If we assume
that E�k� has the high R� model functional form

E�k� = �CEkq for k 
 k0,

CEk0
q+5/3k−5/3 for k0 
 k ,

� �18�

the integral length �12� becomes

L =
3	

4

1

q
+

3

5

1

q + 1
+

3

2

k0
−1. �19�

Defining k�=2	 /L� and assuming it to be in the inertial
range �i.e., k��k0�, the Taylor scale ��c� defined by Eq. �14�
takes the form

��c� =�10�3q + 5�
3�q + 1�

k0
−1/3k�

−2/3. �20�

Therefore, from Eq. �16�, we obtain

Cs = �2	B�3
 3�q + 1�
10�3q + 5��3/2k0

k�

. �21�

Then, Eq. �9� leads to

C� =
3	3

A2 
 9�q + 1�
2�3q + 5��3/2

1

q
+

3

5

1

q + 1
+

3

2

, �22�

which implies that C� depends on q, the exponent of E�k� in
the low wavenumber range, even in the high Reynolds num-
ber limit �i.e., L /�→
�. Note that C� in Eq. �22� depends
only on q �but is independent of k0�, and is a decreasing
function of q. These points are consistent with Fig. 3�a�.
Furthermore, the ratio C��q=2� /C��q=4� predicted by Eq.
�22� is about 1.071, which is almost identical to the ratio
0.525 /0.490�1.071 at the highest Reynolds number of our
DNS plotted in Fig. 3.
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FIG. 3. Plots as functions of R� of �a� the energy dissipation coefficient C�;
�b� the stagnation point coefficient Cs /B3; �c� and the normalized dissipation
coefficient. Open symbols, q=2; solid symbols, q=4. Squares, k0=5;
circles, k0=10; triangles, k0=15.
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IV. CONCLUSION

By considering the statistics of the spatial distribution of
stagnation points, we can suggest answers to two �ii and iii�
of the three open questions mentioned in the first section.
That is, the dissipation coefficient C� is not universal, and it
depends on the internal stagnation point structure of the tur-
bulence, which itself depends on the structure of the large
eddies.

However, we have not answered the question �i� whether
C� is asymptotically independent of the Reynolds number.
Instead we have shown that if we assume it is, we can then
use the generalized Rice theorem and Eq. �4� to derive the
Kolmogorov wavenumber form of the energy spectrum and
relation �9� between C� and Cs /B3. Incidentally, this relation
�9� can also be obtained without an assumption on the Rey-
nolds number dependence of C�: assuming a Kolmogorov
shaped energy spectrum, i.e., p=5 /3, and using Eq. �6� to
derive Ds=2 also leads to Eq. �9�. As observed in Fig. 3�a�,
for a common large-scale structure, C� is a monotonically
decreasing function of R�, but the dependence seems to be
weaker for higher R� in this linear-linear plot. In order to
determine the subtle asymptotic R� dependence or indepen-
dence of C�, we must carefully consider small-scale intermit-
tency effects and the resulting R� dependence of the constant
B in the generalized Rice theorem �3� �see Appendix A� as
well as the R� dependence of A, the ratio of the inner cutoff
length to the Kolmogorov length �recall the statements below
Eq. �6��. However, as experimentally suggested8 for zero
crossings, these dependencies on R� may be logarithmic and
the verification of such weak dependencies is beyond the
scope of the present paper which is based on DNS carried
out over a narrow R� range.

Another important work which must be left for future
much larger DNS is the extension of this paper’s arguments
to decaying turbulence so as to shed some light on the so-
called permanence of large eddies. This seems a natural di-
rection to follow because the spatial distribution of stagna-
tion points in the turbulence is determined by the large-scale
eddies and because the permanence of large eddies is there-

fore likely to be related to the permanence of a statistical
property of stagnation points.
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APPENDIX A: THE GENERALIZED RICE THEOREM

The generalized Rice theorem states that, for large
enough Reynolds number, the average distance between
stagnation points of an incompressible statistically isotropic
and homogeneous turbulent velocity field is proportional to
the field’s Taylor scale provided that the velocity field and its
spatial derivatives are statistically independent and provided
that the shapes of the probability density functions �PDF� of
the velocity components on the one hand and the velocity
derivatives on the other are independent of Reynolds number
and can be scaled, respectively, with u� and �= �ux

2�1/2. Here
ux=�u /�x. It is also required that the PDF of velocity deriva-
tives decays fast enough at infinity. The generalization is
twofold: The assumptions have been relaxed, and the state-
ment is about stagnation points rather than zero crossings.
We now prove this statement.

The number Ns of stagnation points u= �u ,v ,w�=0 in a
given volume can be expressed as an integral over that
volume:

Ns =
 dV��H�u�x�����H�v�x�����H�w�x��� , �A1�

where H is the Heaviside function. This formula leads to

Ns =
 dV���u�x������v�x������w�x�����u���v���w� ,

�A2�

where � is the delta function. Statistical homogeneity allows
us to replace this volume integral by an average weighted by
the joint PDF P�u ,�u�. We therefore obtain the following
expression for the number density ns per unit volume

ns =
 duduxduyduzdvxdvydvzdwxdwydwz��u���v���w�P�u,�u��ux
2 + uy

2 + uz
2�vx

2 + vy
2 + vz

2�wx
2 + wy

2 + wz
2, �A3�

=
 duxduyduzdvxdvydvzdwxdwydwzP�u = 0,�u��ux
2 + uy

2 + uz
2�vx

2 + vy
2 + vz

2�wx
2 + wy

2 + wz
2. �A4�

Following Rice9–11 we assume statistical independence between u and �u, specifically P�u=0 ,�u�= Pl�u=0�Ps��u� �where
the suffixes l and s stand for large scale and small scale, respectively�, which leads to

ns = Pl�u = 0�
 duxduyduzdvxdvydvzdwxdwydwzPs��u��ux
2 + uy

2 + uz
2�vx

2 + vy
2 + vz

2�wx
2 + wy

2 + wz
2. �A5�

At this stage we assume statistical isotropy but we need to do this within the constraints of incompressibility. As demonstrated
by Taylor,1 a statistically isotropic velocity gradient tensor field resulting from an incompressible velocity field obeys
the following relations between averages of velocity gradient products: �uxvy�= �vywz�= �wzux�= �uyvx�= �uzwx�= �wyvz�
=− 1

2 �ux
2�=− 1

2 �vy
2�=− 1

2 �wz
2�, 2�ux

2�= �uy
2�= �uz

2�, 2�vy
2�= �vx

2�= �vz
2�, 2�wz

2�= �wx
2�= �wy

2�, and the averages of all other products of
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two velocity gradients vanish. These relations are satisfied if we make the assumption that the nondimensional form of the PDF
Ps can be written in terms of the single strain rate �= �ux

2�1/2. Specifically,

Ps��u�duxduyduzdvxdvydvzdwxdwydwz = Ps��u/��d�ux

�
�d�uy

�
�d�uz

�
�d�vx

�
�d�vy

�
�d�vz

�
�d�wx

�
�d�wy

�
�d�wz

�
� . �A6�

This assumption replaces and is more general than Rice’s
assumption of Gaussianity of velocity derivatives. A similar
assumption can be made for Pl�u� which was also assumed
by Rice to be Gaussian. Here we only assume Pl�u�du
= Pl�u /u��du /u�3 in agreement with our assumption of isot-
ropy which demands that u�2= �u2�= �v2�= �w2�. Clearly, ap-
propriate Gaussian forms for the large-scale and small-scale
distributions are particular cases which satisfy our scaling
assumptions on Ps and Pl.

It follows that Pl�u /u�=0�	u�−3 and therefore that

ns 	 u�−3�3. �A7�

Hence,

ns
−1/3 = B

u�

�
= B� , �A8�

where B is a dimensionless constant determined by the actual
value of Pl�u /u�=0� and by the details of the probability
distribution Ps. If we finally assume this value and this dis-
tribution to be independent of Reynolds number, then the
generalized Rice theorem is established as it then follows
that B is also independent of Reynolds number. �The benign
assumption that the PDF of velocity derivatives decays fast
enough at infinity ensures that the integral in Eq. �A5�, and
therefore B, are finite.�

While it is reasonable to expect that Pl�u=0� is indepen-
dent of Reynolds number, it is well known that the PDF of
turbulence velocity derivatives become increasingly non-
Gaussian with increasing Reynolds number because of
small-scale intermittency. There may therefore be a resulting
dependence of B on Reynolds number, but the results on zero
crossings presented in Ref. 8 suggest that this dependence
might be as weak as logarithmic. If the Reynolds number is
too small, then the PDF of turbulence velocity derivatives
can have a residual Reynolds number dependence caused by
insufficient development of inertial range dynamics. Our as-
sumption is that the Reynolds number is large enough for
this not to happen and that small-scale intermittency effects
are negligible in this limit, so that B is asymptotically inde-
pendent of the Reynolds number as a result.

In pages 26 to 29 of a recent book by Joseph et al.16 a
relation is found between dissipation and number of stagna-
tion points in a Taylor vortex array. This relation corresponds
to a Rice theorem and a relation such as Eq. �9� for the
particular flow considered by these authors.

APPENDIX B: A SIMPLE SCHEMATIC DERIVATION
OF EQ. „6…

We estimate the fractal dimension Ds of the set of veloc-
ity stagnation points of a velocity field where the energy
spectrum E�k� obeys

E�k� 	 k−p �B1�

in the scaling range,

1

L
� k �

1

�
. �B2�

Note that the second-order structure function of the
x-components of the velocity has the scaling

��u�x + r� − u�x��2� 	 rp−1. �B3�

First, let D be the fractal dimension of the surface where
the component u=0. Assuming isotropy, the surface where
v=0 and the surface where w=0 have the same dimension D.
The formula of codimensions for intersections of surfaces
yields

Ds = 3�D − 2� �B4�

because all three components of the velocity vector vanish at
a stagnation point.

Second, the dimension D1 of the graph of u�x� is

D1 = D − 1. �B5�

�This is also derived by the formula of the codimensions.
That is, the dimension of the zero crossings of u�x� is 3
− ��3−D�+ �3−1��=D−2. Therefore, from �2−D1�+ �2−1�
=2− �D−2�, we obtain Eq. �B5�.� This means that the length
��r� of the graph at a scale r is, by definition of the fractal
dimension,

��r� 	 r1−D1 = r2−D. �B6�

The length ��r� can also be estimated as

��r� 	 r−1�r2 + ��u�x + r� − u�x��2� �B7�

if we assume that every part of the graph within a segment of
size r along the x-axis is statistically similar to all the others
and use the fact that the number of these segments is propor-
tional to r−1. Using Eq. �B3�, Eq. �B7� reduces to

��r� 	 r−1+�p−1�/2 = r�p−3�/2. �B8�

Then, the comparison of the exponents of Eqs. �B6� and �B8�
leads to
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D =
7 − p

2
. �B9�

Orey14 proved this relation Eq. �B9� rigorously for Gaussian
stochastic functions.

Substituting Eq. �B9� into Eq. �B4�, we arrive at Eq. �6�.
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