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The spectral model of Perry, Henbest & Chong (1986) predicts that the integral length-
scale varies very slowly with distance to the wall in the intermediate layer. The only
way for the integral length scale’s variation to be more realistic while keeping with the
Townsend-Perry attached eddy spectrum is to add a new wavenumber range to the model
at wavenumbers smaller than that spectrum. This necessary addition can also account
for the high Reynolds number outer peak of the turbulent kinetic energy in the inter-
mediate layer. An analytic expression is obtained for this outer peak in agreement with
extremely high Reynolds number data by Hultmark, Vallikivi, Bailey & Smits (2012,
2013). Townsend’s (1976) production-dissipation balance and the finding of Dallas, Vas-
silicos & Hewitt (2009) that, in the intermediate layer, the eddy turnover time scales
with skin friction velocity and distance to the wall implies that the mean flow gradient
has an outer peak at the same location as the turbulent kinetic energy. This is seen in
the data of Hultmark, Vallikivi, Bailey & Smits (2012, 2013). The same approach also
predicts that the mean flow gradient has a logarithmic decay at distances to the wall
larger than the position of the outer peak. This qualitative prediction is also supported
by the aforementioned data.

1. Introduction

Considering turbulent pipe/channel and turbulent boundary layer flows, Townsend
(1976) developed his well-known attached-eddy model to predict the profile with distance
from the wall of the turbulent kinetic energy. This model is operative in the intermediate
range where the wall distance is much larger than the wall unit §, and much smaller
than, say, the pipe radius 6. In this intermediate range the turbulent kinetic energy
scales with the square of the wall friction velocity w, and decreases logarithmically with
distance to the wall. However, measurements in turbulent boundary layers dating from
about twenty years ago (see Fernholz & Finley (1996)) as well as more recent turbulent
pipe flow measurements from the Princeton Superpipe (Morrison et al. (2004), Hultmark
et al. (2012), Hultmark et al. (2013)) show that an outer peak appears in the mean square
fluctuating streamwise velocity at distances from the wall between about 1004, and 8000,
when the turbulent Reynolds number Re, = ¢/d, is larger than about 20 000. Such non-
monotonic behaviour in regions where the mean velocity is monotonically increasing is
hard to account for in current turbulence models and theory, and inconceivable within
the current framework of Townsend’s attached eddy model.

Starting with the spectral model of Perry et al. (1986) there have been numerous
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developments and extensions of the attached eddy model (see the review by Smits et al.
(2011) and references therein) but none has accounted for the outer peak in turbulent
kinetic energy. Here we start from the observation (given in section 3) that the Perry
et al. (1986) attached edddy model has a basic shortcoming to do with the integral
length-scale it predicts. There is only one way to repair this model without removing its
attached eddy part, and this way naturally leads to an outer peak in turbulent kinetic
energy.

In section 2 we provide some basic background on the type of turbulent pipe/channel
flow considered in this paper and in section 3 we briefly describe the Townsend-Perry
attached eddy model and its consequences on the integral scale. Section 4 is on the mod-
ification to the Townsend-Perry attached eddy model that we are forced to implement to
remedy the integral scale problem. This section contains comparisons between the pre-
dictions of this modified attached eddy model and the Nano Scale Thermal Anemometry
Probe (NSTAP) data obtained in the Princeton Superpipe by Hultmark et al. (2012,
2013). In section 5 we explain how intermittency in wall shear stress fluctuations could
modify the attached-eddy ki ! spectrum and make it slightly steeper. In section 6 we
predict that the mean flow gradient must have an outer peak at the same distance from
the wall where the turbulent kinetic energy has its outer peak and report that the data
of Hultmark et al. (2012, 2013) show clear evidence of this. We end the paper with a list
of main conclusions in section 7. The words “turbulence intensity” appear in the title of
this paper because it is concerned primarily with the mean square fluctuating streamwise
velocity (sections 3 to 5) but also with the streamwise mean flow (section 6).

2. Turbulent pipe/channel flow

We consider a flow in a long enough smooth pipe/channel operating at high enough
Reynolds number and steadily driven by a constant (in space and time) pressure gradient
so that a turbulent region exists far enough from the inlet where turbulence statistics are
independent of streamwise spatial coordinate x and of time ¢. The mean flow is (@, 0, 0)
and the fluctuating velocity field is (v/,v’,w’) where W and ' are along the streamwise
axis and v’ is parallel to the coordinate y normal to the wall. In the rest of the paper we
refer to pipe flow only but our discussion applies to channel flow too.

The mean balance of forces along z, i.e. —%%? = u2/§ where ¢ is the half-width of
the channel or the radius of the pipe, allows determination of the skin friction velocity
u, from measurements of the mean pressure gradient —%P (p is the mass density of the
fluid.

The wall unit is 6, = v/u,. It is well known that if the Reynolds number is large
enough then §, < §, e.g. see Pope (2000). In such flows, one often uses the Reynolds
number Re, = §/§, as reference. High Reynolds number then trivially implies wide
separation of outer/inner length-scales and an intermediate layer 0, < y < § where y is
the wall-normal spatial coordinate with y = 0 at the wall.

For a given channel/pipe (i.e. a given ¢), a given fluid (i.e. a given kinematic visosity
v), a given driving pressure drop (i.e. a given u,) and at a given distance y from the wall,
a streamwise wavenumber k; could be comparable to 1/8, 1/y, 1/nor 1/6, (n = (v /e)'/*
is the Kolmogorov microscale which is a function of y via its dependence on kinetic energy
dissipation rate per unit mass €).

The argument which shows that §, is smaller than 7 is based on the log-law of the
wall and on the direct balance between production and dissipation which one classically
expects in the y-region where the Prandtl-von Kdrman law of the wall holds, e.g. see
Townsend (1976), Pope (2000). At extremely high Re,, this balance may be written as
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Reynolds shear stress is approximately equal to u2 in the range 6, < y < . This follows
from the turbulent pipe flow axial momentum balance and a very mild extra assumption,
see section III in Dallas et al. (2009).

This equilibrium argument implies that € ~ u2/y (assuming that the log-law %ﬂ ~

u,/y holds) in §, < y < 6. It is now possible to compare n = (v3/¢)'/* and 6, = v/u,
and it follows from §, < y that 1/n < 1/, in the range ¢, < y < 4. It is worth stressing
that 1/n < 1/§, and € ~ u3 /y were obtained on the basis that the range §, < y < § is
an equilibrium log-law range in a pipe flow. We revisit this assumption in section 6.

From the above arguments, where y is much larger than J§, but much smaller than
0, the axis of wavenumbers k; is marked by wavenumbers 1/§, 1/y, 1/ and 1/, in
this increasing wavenumber order. This order of cross-over wavenumbers is important
in the spectral interpretation given by Perry et al. (1986) of Townsend’s attached eddy
hypothesis.

u2 27 ~ € where we have replaced the Reynolds stress by u2. It can be proved that the

3. The Townsend-Perry attached eddy model

Townsend (1976) assumed “that the main, energy-containing motion is made up of
contributions from ‘attached’ eddies with similar velocity distributions” and developed a
physical space argument based on the notion of a constant Reynolds shear stress which
led to
S @2 )/~ oo + Oy (3/y) (3.1)
in the range §, < y < 0. The two constants Csg and Cy; are independent of y and Re..

Perry et al. (1986) developed a spectral attached eddy model and argued that where
0, € y < 9, the streamwise energy spectrum FE1q(k1,y) has three distinct ranges:

(i) k1 < 1/6 where Ey1(k1) ~ u26g,(k18) which must be Eiq(k1) ~ Coou2d with a
constant Cy, at small enough wavenumbers;

(ii) 1/ < k1 < 1/y where Ey (k1) = CouZk; ' (the ‘attached eddy’ range);

(iii) 1/y < k1 where E11 (k) has the Kolmogorov form Eq1(k1,y) ~ 62/3k1_5/3g]( (k1y, k1m),
see Pope (2000), Frisch (1995).

By integration of Ej1(k;1) they obtained for §, < y < ¢

S ()12 ~ Cec 4 CyIn(5/) (3.2)

where the constants C, and Cy are independent of y and Re.. Application of a strict
matching condition for the energy spectra at k; = 1/§ gives Cy = Cs but this is of
course not necessary. In fact, the constant Cy, in equation (3.2) is not the same as the
constant C', in the spectral model if we allow for the wavenumber dependency of the
outer function g,(k1y) and for the fact that this constant has a small contribution from
the high wavenumber Kolmogorov range (iii). The detail of this Kolmogorov contribution
has been neglected in equation (3.2) as it only adds a term proportional to 1 — (y)~1/2
to the right hand side (y* = y/d,) which is of little effect in the considered range.

A consequence of the Perry et al. (1986) model is that the integral scale L;; is propor-
tional to 0 and very weakly dependent on y in the intermediate layer §, < y < 6. This
follows from wE11 (k1 = 0,y) = v'2(y)L11(y) (e.g. see Tennekes & Lumley (1972)) which
leads to

TCod

Li(y) = Coo + CoIn(d/y)

(3.3)
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FIGURE 1. Schematic log-log plot of Eii(ki1)/u? versus ki according to the modified
Townsend-Perry attached eddy model for the region ¢, < y < J§. Given an ansatz such as
(4.1) with p,q > 0 and p > ¢ set by the physics described in the second and third paragraphs of
section 4, the new range (ii) exists where y < y., in which case 0. < do, but does not exist where
y > y. in which case the original Townsend-Perry model remains unaltered and d. = doo = ¢

where §, < y < §. However, one expects that Lq; may depend on y much more steeply.
For example, the turbulent boundary layer measurements of Tomkins & Adrian (2003)
suggest that Li; ~ y.

The only way for the Towsend-Perry attached eddy wavenuber range to be viable,
i.e. the only way to have an integral scale which depends more substantially on y while
keeping with the Townsend-Perry attached eddy wavenumber range (where, in particular,
the constant Cj is independent of y and Re;) is to modify the model of Perry et al.
(1986) by inserting a fourth range to Eq1(k1) between the very low-wavenumber range
where Fi1 (k1) =~ Coougé and the ‘attached eddy’ range. We develop such a model in the
following section.

4. A modified Townsend-Perry attached eddy model

We now consider a model of the energy spectrum Fi;(kq,y) with the following four
ranges (see figure 1)
(i) k1 < 1/800 where Eq (k1) &~ Coou2d with a constant C, independent of wavenumber;
(i) 1/6s < k1 < 1/6, where E11(k1) ~ C1u28(k10)™™ where 0 < m < 1 and C is also
a constant independent of wavenumber;
(iil) 1/6, < k1 < 1/y where E1; (k1) ~ Cou2k; " where Cj is a constant independent of
wavenumber, y and Re, (the ‘attached eddy’ range);
(iv) 1/y < ky where E11 (k1) has the Kolmogorov form Fy1 (k1,y) ~ 62/3k1_5/3g1((k1y, k1m).
The new range which is dictated by the requirement of an integral scale significantly
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dependent on y is range (ii) and it lies, as is necessary for this requirement, between ranges
(i) and the ‘attached eddy’ range (iii). This range therefore corresponds to rather large
length-scales which may naturally be expected to be the large and very large scale motions
first discovered by Tomkins & Adrian (2003) and confirmed for a range of Reynolds
numbers by Hutchins & Marusic (2007) (see also Bailey & Smits (2010) in the present
pipe flow context and the review of Smits et al. (2011)). Indeed, such long regions of
momentum deficit elongated in the streamwise direction should introduce long-range
correlations in this direction. These long-range correlations will appear as a range of
reduced rate of decline at the higher separation distances of the streamwise fluctuating
velocity autocorrelation function which, when Fourier transformed, will give rise to a
range such as range (ii) in the energy spectrum.

The bounds of the new range (ii) are determined by the two new length-scales do, and
0. The only physics that we impose on them is the expectation that this range grows as
y approaches the wall and distances itself from the centre of the pipe within §, < y < 9.
The range (1/04)/(1/0) = 0s0/0x can only depend on y, ¢, v and u,. Without loss of
generality, it is therefore a function of y/d and Re, or, equivalently, y* and Re,. At
fixed Re,, 00o/dx must be a decreasing function of /6 and also a decreasing function of
yT. At fixed y/0, 600/ must be a decreasing function of Re, as this implies that y™
increases. And at fixed yT, 0.0/« must be an increasing function of Re, as this means
that y/d decreases.

An arbitrary but not impossible functional dependence is

0o0/0x = A (y/8) PRe-1 ~ A(yt) "Re, P71 (4.1)

where A is a dimensionless constant. The qualitative physics which we described in the
previous paragraph impose p,q > 0 and p > ¢q. We adopt equation (4.1) indicatively in
what follows as the aim of this work is to show the possibilities which open up with the
adoption of the extra wavenumber range 1/d,, < k1 < d. for the purpose of reconciling
the Townsend-Perry attached eddy hypothesis with a more realistic integral length-scale.
We limit the values of the exponents p and ¢ to p,q > 0 and p > ¢ without further
constraints.

Matching of the energy spectral forms at k1 ~ 1/, gives Coo = C1(6/do0) ™™ and at
k1~ 1/, gives C1 = Co(8/6,)™ 1. Tt is not strictly necessary to impose these matching
conditions as they unnecessarily restrict the cross-over forms of the energy spectra, but
they do indicate that we need an expression for d. /0 if we are to proceed with or without
them. Given that in all generality, 6, /¢ is a function of y/§ and Re,, we again assume a
power-law form

6./0 = B (y/6)*Re? (4.2)

where, like A, B is a dimensionless constant.

There are also two requirements for the viability of our spectra: y < 0, and 0, < 0.
The former is met provided that § > a — 1 for y > 4,. The latter is met if y < y, =
SAYPRe; VP,

We therefore adopt the new range (ii) for y < y. but keep the Perry et al. (1986)
model unaltered for y > y,. Their model can indeed remain unaltered if doo = 0, = §
at y >y, = (5A1/pRe;q/p. The continuous passage from (4.1) and (4.2) t0 doo = 0 =0
requires = agq/p and BA*/P = 1.

By integration of Ej;(k1) we obtain for §, < y < y.

S )02 % Co — CarIn(6/y) — Cinly /570 Rt (13)
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where Cyo = €2+ Coln B+ Coalln Re, , Coy = Co(a—1) and Cyp = 2GA™— (Note

1-m 1-m
that Cyp is a weak function of Re, whereas Cs; and Cys are independent of Re,.) These
new constants have been calculated by taking into account the perhaps over-constraining
matching conditions Ciy = C1(6/800) ™™ and Cy = Co(§/5.)™ L.

The integral length scale is now
L /8 =7 Co A™ B (y/8)* "™ Rell=™ [ (u(y) [u?) (4.4)

clearly more strongly dependent on y than in equation (3.3).
Equation (4.3) can be compared with the Townsend-Perry form which remains valid
here for y, < y < 0 and which is (taking Co, = Cp)

S ()12 ~ Co+ Coln( /) (4.5)

The two profiles (4.3) and (4.5) match at y = y, = §AYPRez P and so do also the
integral length-scale forms (4.4) and (3.3) if Cox = Cp. Our approach does not modify
the Townsend-Perry form of Li; at large distances from the wall, i.e at y > y., but it
does return a siginificant dependence of Ly; on y which, however, is arbitrarily set by
equations (4.1) and (4.2). Even so, the possibility is now open for a stronger dependence
of Ly; on y. This possibility has been opened by the adoption of an extra wavenumber
range 1/0 < k1 < 1/0, which, in turn, returns a form of the w/2(y) profile which allows
for a maximum value (a peak) inside the intermediate region §, < y < ¢. No such
peak is allowed by the Townsend-Perry forms (3.1) and (3.2) although such a peak has
been observed in measurements of both turbulent boundary layers and turbulent pipe
flows over the past 20 years or so, see Fernholz & Finley (1996), Morrison et al. (2004),
Hultmark et al. (2012), Hultmark et al. (2013). It has been suggested that this peak is
associated with the large and very large motions (see Smits et al. (2011) and references
therein) which is consistent with the view that the wavenumber range 1/o, < k1 < 1/6.
results from these very elongated streamwise structures.

Straightforward analysis of (4.3) shows that a maximum streamwise turbulence inten-
sity does exist in the range §, < y < 0if 0 < a—1 < pm (i.e. if Cs; > 0 and @ < pm+1)
and that the position ¥peqr of this maximum is

ypeak/5 ~ Re;q/p (4.6)
which decreases with increasing Re. and , equivalently,
ypeak/(su ~ Re}_—q/p (47)
which increases with increasing Re, as ¢ < p. It also follows from (4.3) that
d 1—
a2 2 ~ _
I Re. (2u (ypeak)/uT> Co(ap/q —aq/p +aq/p) > 0. (4.8)

The maximum value of w2(y)/u at y = Ypear therefore grows logarithmically with
increasing Re..

We now compare our functional dependence of %W(y) Ju2 on y and Re, with smooth
wall turbulent pipe flow data obtained recently with a new Nano Scale Thermal Anemom-
etry Probe NSTAP by Hultmark et al. (2012, 2013). Below we refer to this data as NSTAP
Superpipe data.

We start by fitting the data with (4.5) in the range y. < y < ¢ and

S (w)/u = Cao — Ca (6/y) — Canl/0)" R (19)
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FIGURE 2. Plots of u'2(y)/u2 versus y ™ (left) and y/§ (right) obtained from the NSTAP Super-
pipe data of Hultmark et al. (2012, 2013) for different values of Re,. The circles are calculated

from equations (4.5) and (4.9) with Cy = 1.28, y. = 6Re; /" for all Reynolds numbers and
the values of di and d2 and the constants in (4.9) given in figure 3.

instead of (4.3) in the range 6, < y < y,. where y, = 5Re;d2/d1. This is a model where

we ignore the various matching conditions which led to (4.3) with the specific relations
between Cyp, Cs1 and Cyo and the parameters Cy, m, p, ¢, A, a and Re,. It is also a
model where we just set A =1, dy = p(1—m) and dy = ¢(1 —m) so that y. = 5Re:d2/d1.
In figure 2 we show the result of this fit against the NSTAP Superpipe data and in figure
3 we show the fitting values of Cyy, Cs1, Cso and d; and dy and their dependence on Re,
in a lin-log plot.

First note in figure 2 the clear presence when Re, is larger than about 20000 of a
logarithmic region at the higher y-values in agreement with the Townsend-Perry equation
(4.5) which fits it quite well (the fit is much better if we allow Cs to be different from
Cy as in equation (3.2)). This was of course already noted by Hultmark et al. (2012,
2013). Secondly note the gradual development as Re, increases of a peak of turbulence
intensity inside the intermediate region ¢, < y < . This outer peak is distinct from
the well known near-wall peak at y™ ~ 15 and starts appearing clearly at Re, larger
than about 20000. Of course this was also noted in Hultmark et al. (2012, 2013) who
pointed out that the position ypeqr of the outer peak depends on Reynolds number as
Ypeak /0y ~ 0.23Re%%7. In terms of our model this means da/d; = q/p ~ 1/3. As predicted
by the physics instilled in our model (see the paragraph containing equation (4.1) and
the paragraph preceding it) ypeqr /0 decreases and yYpeqkr /0, increases with increasing Re.
(see figure 2). As also predicted by the physics of our model, the value of u/2/u? at the
outer peak slowly increases with increasing Re, and the fits in figure 2 which we discuss
in the following paragraph indicate that this increase is indeed only logarithmic as in
equation (4.8).

The point y = y, is clearly seen in figure 2 because we did not adopt matching condi-
tions to ensure a continuous passage from (4.9) to (4.5). Nevertheless the new equation
(4.9) returns a satisfactory fit of the outer peak, including its shape, intensity and loca-
tion. In figure 3 we plot the Reynolds number dependence of the constants Cyg, Cs; and
Cso, di and ds involved in these fits. Note how the parameters Cy1, Cyo, di and do do
not deviate much from a constant value except for Csy which grows slowly with Re., in
fact approximately linearly with In Re, as in prediction (4.3).

In figure 4 we fit the NSTAP Superpipe data with (4.5) in the range y. < y < § and
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FIGURE 3. Model parameters Cso, Cs1, Cs2, di and d2 appearing in equation (4.9). Plotted as
functions of Re,.

(4.3) in the range 8, < y < y, where y, = 6AY/PRe; /P and with Cyo, Cy; and Cy given
by

Coo= —" 4 Gy B+ Caln Re,, (4.10)
1—-m p
Ca = Cola— 1), (4.11)
. mCoAm_l
G = A (4.12)

where B = A®/P as obtained above in the text between equations (4.2) and (4.3). The
fits in figure 4 are obtained for A = 0.2, Cy = 1.28, m = 0.37, ¢ = 0.79, p = 2.38 and
a = 1.21. It works rather well, though not perfectly, for Re, larger than about 30000.
Note that we did not optimise the choice of our fitting parameters to obtain the best
possible fit. As things stand, equation (4.9) fits better the outer peak than equation
(4.3) with (4.10), (4.11), (4.12) and B = A°®/?. However, as of course expected, the
latter over-matched model returns a continuous transition to (4.5) at y = y.. Note that
Ypeak = 045y, (from Ypear /0, ~ 0.23 ReV57 and y, = (5A1/pRe;q/p).

Indicatively and only for illustrative purposes, we mention that the fits in figure
4 correspond, approximately (we have rounded off the exponents to make them look
like fractions without any intention to suggest a deeper level of theory), to doo/dx ~
O.2(y/6)_7/3Re;4/5 and 0, ~ 2.265(3//6)6/5]%63/5 given that § = aq/p. The model lead-
ing to these particular fits also effectively assumes that the longitudinal spectra in the

region 0, K y < Y. & 0.50Re; /? have a range of wavenumbers 1/0,, < k1 < 1/6, which

are lower than the usual attached eddy ones and where F11 (k1) = %u%yRei/g(kld)_l/?’ =

2u2y(k16,) /3. Note the presence of both y and 6, in these particularly low-wavenumber
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FIGURE 4. Plots of u'2(y)/u2 versus y (left) and y/§ (right) obtained from the NSTAP Super-
pipe data of Hultmark et al. (2012, 2013) for different values of Re,. The circles are calculated

for all Reynolds numbers from equations (4.5) and (4.3) with y. = 6A'/?Re;"/? and A = 0.2,
Co=1.28, m =0.37, ¢ =0.79, p=2.38 and o = 1.21.
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FIGURE 5. NSTAP Superpipe energy spectra Fi1(ki,y) at various distances from the wall

for Re; = 98190. At this Reynolds number, y./d, ~ 2130. The spectra are normalised by
u'2(y)L11(y) where L11(y) are the integral scales obtained from these spectra.

spectra. Note also that d, < 0.2§ and d» > 55/100 given that y < y. ~ 0.55Re;1/3.
Finally, y. > 154, as long as Re, > 165.

In the region y, ~ 0.56Re;1/3 < y < J no such spectral range exists; only the attached
eddy form Ej; ~ 1.28u2k; ! is present in the usual range 1/§ < ki < 1/y. The constant
Cp = 1.28 is the one used to fit the data in both figures 4 and 2.

Figure 5 shows spectra plotted indicatively as wavenumber spectra at many distances
from the wall for a value of Re, equal to 98190 and y. /d, = 2130. These spectra are really
frequency spectra as we cannot expect the Taylor hypothesis to be accurate enough at the
lower wavenumbers and at the closer positions to the wall. With this serious caveat firmly
in mind it is nevertheless intriguing to see in figure 5 that very high Reynolds number
spectra do indeed have an extra low-frequency range at y < y. where the spectrum
is much shallower than ki ! yet not constant; and that this range is absent at higher
positions from the wall where y > y.. At distances y from the wall larger than ¥, one sees a
spectral wavenumber dependence which is close to ki ! (perhaps a little steeper) between
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a very low-wavenumber constant spectrum and a very high-wavenumber spectrum which
is much steeper than k; ', perhaps close to k1_5/3. Even the deviation from the k!
spectrum which makes it look a little steeper could be a frequency domain signature
which does not quite correspond to ki ! because of Taylor hypothesis failure, see del
Alamo & Jimenez (2009) but also Rosenberg et al. (2013).

Our initial motivation for modifying the Perry et al. (1986) model and adding an
extra spectral range to it was the y-dependence of the integral scale. The values of
the exponents «, ¢, p and m used in the fits of figure 4 combined with the constraint
B = aq/p are such that Li1/6 ~ (y/5)*/3Re%! if we neglect the logarithmic dependence
of u2(y)/u2 in (4.4). In figure 6 we plot L11/d versus y/d as obtained from the lowest
frequencies of the NSTAP Superpipe spectra (see for example figure 6) for different
Reynolds numbers. Again, the integral scales plotted in figure 6 should be taken with
much caution and only very indicatively as they are really integral time scales and the
Taylor hypothesis cannot be invoked at these low frequencies. In that same figure we
nevertheless plot the Townsend-Perry formula (3.3) where Coo = Cj as per the fitting
constants for figure 4 (i.e. L11 ~ 14—%&/;/)) and formula (4.4). In (4.4) we used the fitting
constants that we also used for the fits in figure 4. Note that (4.4) is defined for y in the
range 0, < y < Yx = O.56Re:1/3 and that, even in the modified model, L1, is given by
(3.3) in the range y, < y < J. The points in figure 6 where the modified model curves
meet the Townsend-Perry curve are at y = y, for the different Re,. It is clear that the
modified model succeeds in steepening the y-dependence of L7 in the range §, < y < y.
and that it keeps the original y-dependence of Ly in the range y. < y < d. It is also
clear, though, that formulae (4.4) and (3.3) do not match the NSTAP Superpipe integral
scales well with the fitting constants used for figure 4. We repeat that the integral scales
obtained from the NSTAP Superpipe data are really integral time scales and it is not clear
that they should be proportional to Lq;. If such a proportionality could be established,
however, then the data would indicate that L1/ ~ (y/d)'/3 for all Reynolds numbers
in some agreement with our modified model’s L1/ ~ (y/8)*/3Re%!, but the constants
of proportionality are different.

Finally, we draw attention to the fact that the integral scale Li; is not proportional
to y in the range 0, < y < J as one might have expected (see Tomkins & Adrian (2003)
who found several spanwise length scales, including L1, to be proportional to y in a
turbulent boundary layer).

5. Intermittent attached eddies

We now address the possibility brought up by experimental results such as figure 5
that, in the appropriate Townsend-Perry attached eddy range of wavenumbers, the energy
spectra may not scale as k; ! but as a slightly steeper power of k1. As pointed out by del
Alamo & Jimenez (2009), observed deviations from k; ! could result from a failure of the
Taylor hypothesis, a point which we do not dispute. However, we show in this section
that slightly steeper powers of k1 can also arise because of intermittent fluctuations of
the wall shear stress, as observed for example by Alfredsson et al. (1988) and Orlii &
Schlatter (2011).

One way to argue, in the region 6, < y < d, that Ey;(k1,y) ~ u2k; " in the wavenum-
ber range 1/6 < y < 1/y is by hypothesizing that the attached eddies dominate the
spectrum in that range independently of y and that these eddies are themselves domi-
nated by the wall shear stress, i.e. the skin friction, at the wall. Hence E1q(k1,y) can only
depend on w2 and k; in the region §, < y < &, which implies that Eyq(ky,y) ~ u2k; '
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We now show how this argument can be modified to take into account the intermittency
in the wall shear stress. To do this we adopt the way that Kolmogorov (1962) took into
account the inertial-range intermittency of kinetic energy dissipation in homogeneous
turbulence and adapt it to the intermittency of wall shear stress in wall turbulence. We
therefore define the scale-dependent filter averages

1 [t g
(e t) = / u

) z/d—y (x,t) du. (5.1)

wall

Following Kolmogorov’s (1962) approach we assume that the statistics of u2(z,r, t) are
lognormal at scales r large enough for u2(z,r,t) to be reasonably presumed positive. It
may be reasonable to assume scales r much larger than y to be such scales if §, < y < 0.
For such scales we therefore define &. = In(u?/u?) and assume &, to be a gaussian-
distributed random variable, i.e. its PDF is

1

P(E.) — ¢~ (&r—mr)?/207 5.2
€)= 75 (52)
The constraint < u?(z,r,t) >= u2 implies m, = —c2/2 (the angular brackets signify an

average over time or over x or both). The exact form of this PDF does not really matter
as we are only concerned with low order moments.

We now hypothesize that, in the appropriate Townsend-Perry attached eddy range of
wavenumbers, the average of (u'(x + r,y) — u'(x,y))? conditioned on a given value of
u?(x,7,t) depends only on that value and r (u’ is the streamwise fluctuating turbulence
velocity component). By dimensional analysis the dependence on r drops out, and as the
structure function < (u/(z + 7,y) — u/(z,y))? > is the average over all these conditional

averages, we are left with < (v/(z + r,y) — v/(z,y))? >~< u2(z,7,t) >. Using (5.2) to
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calculate this average, we obtain
3
< (e +ry) — o (2,y))? >~ u? / de e T e (59)
O,

A logarithmic dependence of o2 on 7, for example 02 = const + 9ulIn(5/r) where u > 0,
returns < (u'(z 4+ r,y) — v/ (2, y))? >~ uZ(r/d)", ie.

E11(k?1,y) ~ U;E(S(k‘l(S)_l_”. (54)

This demonstrates that the attached eddy hypothesis suitably modified to take into
account the intermittent fluctuations of the wall shear stress can lead to spectra that are
slightly steeper than ki ! The statistics of the intermittently fluctuating wall shear stress
can therefore have some bearing on energy spectra and, in turn, on vertical profiles of the
turbulent kinetic energy. One can readily see that replacement of Fy(k1,y) ~ CouZk; "
by E11(k1,y) ~ Coud(k15)~1~# in range (ii) of the Perry et al. (1986) model (section 3)
and in range (iii) of our modified model (section 4) would lead to profiles such as (4.5)
and (4.9) where the In(d/y) terms would be replaced by weak power laws of y/6. However,
for very small exponents p this difference would be very hard to detect experimentally.

6. The mean flow profile
As already noted by Townsend (1976), the attached eddy hypothesis is incompatible

with the assumption that fl—ﬂ is independent of §. This assumption is required to argue
Yy

that % depends only on y and u, in the range §, < y < §. As Re, — oo an inter-
mediate layer §, < y < § does emerge, however, where something may nevertheless be
independent of v and ¢. Dallas et al. (2009) presented evidence from DNS of turbulent
channel flow which shows that the eddy turnover time 7 = E/e (where E is the total
turbulent kinetic energy) is proportional to y/u, in the range 6, < y < 0 for a variety
of moderate values of Re..

Here we make the reasonable extrapolation that the observation of Dallas et al. (2009)
is not limited to moderate Reynolds numbers and that 7 is independent of v and ¢ at all
large enough Reynolds numbers. Hence, 7 ~ % in the range 6, < y < 9§ for turbulent
pipe flows.

Following Townsend (1976) we also assume local balance between production and
dissipation, i.e. — < u'v’ > % ~ ¢ = E/7, but only in a region yp. < y < § where
0, < ype. Making use of the well-known axial momentum balance in turbulent pipe
flow, see Pope (2000),

d
Vd—ﬂ— < v >=u2(1 —y/d), (6.1)
Y
and introducing the constant C in 7 ~ C’sui, we are led to

@) du+
dyt dlnyt

(1—y/s— ~ C,E/u =C,E". (6.2)
in the region yp. < y < 4.

We know from the Townsend-Perry attached eddy model and also from this paper’s
modified model that ET ~ My + M;In(5/y) in the range y. < y < § where My and
M; are constants different from Cy, and Cj in (3.2) because one needs to also take into
account $w2(y)/u? and $v'2(y)/u?. Hence the first prediction of our approach based on
T~ O and — < u'v' > Z—Z ~ ¢ is that the left hand side of (6.2) is approximately
equal to CsMy + CsMq1In(0/y) in y. < y < 0.
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Re, obtained from the NSTAP Superpipe mean flow data of Hultmark et al. (2012, 2013).

If E* has an outer peak at the same y = Ypeak lOcation as %W(y)/uf and if ype < Ypeak
then the second prediction of our approach is that the left hand side of (6.2) has an outer
peak at Y = Ypeak-

Figure 7 is a plot of the left hand side of (6.2) based on the NSTAP Superpipe data of
Hultmark et al. (2012, 2013). This plot suggests that there is indeed an outer peak in the
functional dependence on y of the left hand side of (6.2). It is also not inconsistent with
the prediction that the left hand side of (6.2) is a logarithmically decreasing function of
y for much of the region where y is greater than the location of this outer peak. Figure 8
shows this left hand side for the higher Re, NSTAP Superpipe data (Re, between 20 000
and 100 000) There is no evidence that the left-hand side of (6.2) decreases logarithmically
with y for the lower Reynolds numbers in figure 7, in agreement with (6.2) and figures
2 and 4 which show that there is no such logarithmic decrease in u’?(y)/uZ either
at Re, < 10000. However such a y dependence is not inconsistent with much of the
y-dependence for the Re, > 20000 data at the right of the outer peak in figure 8.

In figure 9 we replot the high Re, data of figure 8 but as functions of y/d in one plot
and of ¥/Ypeqr in the other. These plots demonstrate that the position of the outer peak
in the left-hand side of (6.2) is the same as the position of the outer peak in u'2(y)/u.
And they also demonstrate that the left hand side of (6.2), if indeed logarithmically
decreasing, is approximately equal to Cs My + CsM; In(d/y) in y. < y < ¢ (though the
data in our disposal do not permit us to check that the constants CsMy and CsM; are
indeed the products of Cy with My and M; respectively).

In figure 10 we use the NSTAP Superpipe data to plot (1 —y/d —
of y/J in one case and yT in the other. As these are pipe data, the plots in figure 10
are effectively plots of the normalised Reynolds stress — < u/v’ > /u?. It is clear that
— < u'v' >~ u? only if Re, > 40000 and for distances from the wall such that 100 < y*
and y/0 < 0.01. (See also Zhao & Smits (2007) who showed that the viscous contribution
to the total stress is less that 1% at y* > 250.) It of course remains perfectly true that
— < uwv' > /u? is a linear function of y/§ at a distance of a few hundred wall units

du,. .
7, +) as a function
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from the walls but it is also true that this linear dependence is small compared to 1 (the
leading term) for y/d smaller than O(1072). The resulting intermediate range of wall
distances y where — < u/v' >~ u2 is a good approximation requires Re, to be larger
than O(10%) to exist. At values of y larger than §/10 the normalised Reynolds stress
decreases abruptly towards 0 which explains why the left hand side of (6.2) does the
same in figures 7 to 9 at these values of y.
Figure 10 makes it clear that equation (6.2) simplifies to
duy

dlny*
in turbulent pipe flow only if Re, > 40000 and only in the range 1004, < y < ¢/100.
Using the attached eddy model’s ET =~ My + M;In(§/y) in the range y. < y < § we
obtain the following asymptotic form of the mean flow profile in y,. < y < 0.016 (as y, is
larger than 1000, ):

~ C,ET (6.3)

M
Uy ~ CyMyIn(y/8) — Cs My

[(n(y/6)]* + Mo (6.4)

in terms of an extra integration constant M,. We stress again the limited y-range of
validity of this high Reynolds number mean flow profile (to the right of the outer peak)
and that it can only be expected at Re, > 40000. This y-range can be made longer if
we do not use — < u'v’ >~ u2 which leads to (6.3) but — < v/v' >~ u2 ~ 1 —y/§ which
holds for y/d, larger than O(100) and leads to (1 —y/d) dcllf;; ~ CsE™ in place of (6.3).

As shown in section 5, ET ~ Mo+ M In(6/y) and therefore also (6.4) are based on the
additional assumption that any intermittency which might exist in the fluctuating wall
shear stress is of such a nature that the Townsend-Perry spectral scalings F11(ky,y) ~
u2k; ! remain intact. Otherwise one can expect power laws of y/§ instead of logarithms
of y/§ in the formula for the mean flow profile (6.4).

We close this section with a comment on the mesolayer, a concept introduced by Long
& Chen (1981) and most recently discussed by Vallikivi et al. (2014) who also provide
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location of the outer peak in the streamwise turbulent energy plotted in figures 2 and 4. The

superposed dotted line suggests a logarithmic dependence of (1 — y/§ — ZZi ) d(f; on y/d at
the right of the peak.

a list of relevant references. In the present paper, profiles have been obtained for W(y)
in the range §, < y < ¢ and for u(y) in the range yp. < y < 0.01§ where production
has been assumed to balance dissipation. George & Castillo (1997) argued that the
mesolayer is a region from y* ~ 30 to ¥ ~ 300 where, owing to low turbulent Reynolds
number y* values, the dissipation does not have its high Reynolds number scaling and the
Kolmogorov range (iv) of our spectral model in section 4 is effectively absent. This has
no bearing on our calculations of sections 4 and 5 because the energy in the Kolmogorov
range (iv) is small compared to the other ranges and the outer peak comes from the new
small wavenumber range (ii). (In fact it is easy to check that the Kolmogorov range in
the Townsend-Perry model cannot, by itself, lead to an outer turbulent energy peak.)
However, it might be that we cannot use the scaling 7 ~ y/u, at y= < 300 and that our
approach for obtaining the mean flow gradient profile might therefore be valid only in
the region max(3000,,yp.) < y < 0.016. Note that the value of ypeqr in the Princeton
NSTAP data is about 3009, at Re, =~ 40000 and about 5006, at Re, ~ 100000, which
means that the mesolayer is indeed under ypeqr for Re, > 40000. The prediction that
the mean flow gradient has an outer peak at the same distance from the wall where the
streamwise turbulence intensity has an outer peak has been based on the assumption that
YpPe < Ypeak- Lhe region where production and dissipation balance and where turbulent
transport has negligible effects may or may not be expected to have an overlap with the
mesolayer. The task of working out the scalings of yp. and how it compares with 3000,
must be left for a future study which will have the means to address these questions.

7. Conclusion

In way of conclusion we list the main points made in this paper.

1. For the Townsend-Perry ki L gpectrum to be viable, i.e. to be compatible with
a realistic integral scale dependence on y, we need to add to the Perry et al. (1986)
spectral model an extra wavenumber range at wavenumbers smaller than those where
Ell(khy) ~ ugkfl

2. Simple modelling of this range (see section 4) implies the existence of an outer
peak in the streamwise turbulence kinetic energy at a y-position ypeqr Which grows with
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respect to §, and decreases with respect to § as Re, increases. The streamwise kinetic
energy at that peak grows logarithmically with Re..

3. The functional form which results from our modified Townsend-Perry model and
which may be useful as a starting point in future investigations is the following: in the

range 0, K y < Yy ~ 6Re;1/3

1— .
F02(W)/u7 = Coo — Carn(8/y) — Can(y/0)"Re/? (7.1)
where all the constants are independent of y, §, v and Re, except for Csy which may be
a logarithmically increasing function of Re.; in the range y, < y < §

S ) /02 % Cs + Caln(5/y) (7.2)
as predicted by Townsend (1976) and Perry et al. (1986).

4. The very high Re, Princeton Superpipe NSTAP data used here and the turbulent
channel flow DNS of Dallas et al. (2009) support the view that it is the eddy turnover
time 7 = E/e that is independent of v and ¢ in the range §, < y < ¢ rather than the
mean flow gradient. This implies 7 ~ y/u, in that range, a relation which can serve as a
unifying principle across Reynolds numbers in turbulent pipe/channel flows. Of course,
further research is needed to fully establish such a unifying principle.

5. The mean flow profile and scalings can be obtained from 7 ~ y/u, if enough is
known about the production-dissipation balance/imbalance. Here we have assumed that
production and dissipation balance in a range yp. < y < 0 where yp. is smaller than
Ypeak- Due to this balance, a profile for ET similar to that of w/2/u2 implies that (1 —

y/d — ZZ%) df} (i) has an outer peak at the same position y = y,ear Where u/2/u2 has

an outer peak, and (ii) decreases with distance from the wall as a function of In(d/y)

where y. < y < 4. In the intermediate range of wall-distances where — < u/v" >~ u?2

is a good approximation (see point 6 below), these two conclusions hold for d‘f}r. The
very high Re; NSTAP Princeton Superpipe data show clear evidence in support of these
conclusions.

6. The same data also show that the Reynolds stress < u/v’ > is approximately equal to
—u?2 only if Re, > 40000 and for distances from the wall such that 100 < y*, y/§ < 0.01.
The balance — < u/v" > % ~ ¢ and the kinetic energy profile E* &~ My + M;In(d/y)
(where My and M; are dimensionless constants) in y,. < y < ¢ therefore imply in terms
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of an integration constant Ms that
Cle

Ty ~ CyMyln(y/s) — [In(y/8))* + My (7.3)

in y, <y < 0.016 provided that Re, > 40000. This is the modified log-law of the wall.
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