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We investigate experimentally wind tunnel turbulence generated by multiscale/fractal grids
pertaining to the same class of low-blockage space-filling fractal square grids. These grids are not
active but nevertheless produce very much higher turbulence intensities u'/U and Reynolds
numbers Re, than higher blockage regular grids. Our hot wire anemometry confirms the existence
of a protracted production region where turbulence intensity grows followed by a decay region
where it decreases, as first reported by Hurst and Vassilicos [“Scalings and decay of
fractal-generated turbulence,” Phys. Fluids 19, 035103 (2007)]. We introduce the wake-interaction
length scale x, and show that the peak of turbulence intensity demarcating these two regions along
the centerline is positioned at about 0.5x,. The streamwise evolutions on the centerline of the
streamwise mean flow and of various statistics of the streamwise fluctuating velocity all scale with
X,. Mean flow and turbulence intensity profiles are inhomogeneous at streamwise distances from the
fractal grid smaller than 0.5x,, but appear quite homogeneous beyond 0.5x,. The velocity
fluctuations are highly non-Gaussian in the production region but approximately Gaussian in the
decay region. Our results confirm the finding of Seoud and Vassilicos [“Dissipation and decay of
fractal-generated turbulence,” Phys. Fluids 19, 105108 (2007)] that the ratio of the integral
length-scale L, to the Taylor microscale A remains constant even though the Reynolds number Re,
decreases during turbulence decay in the region beyond 0.5x,. As a result, the scaling L,/\ ~Re,,
which follows from the u’3/L, scaling of the dissipation rate in boundary-free shear flows and in
usual grid-generated turbulence, does not hold here. This extraordinary decoupling is consistent with
a noncascading and instead self-preserving single-length scale type of decaying homogeneous
turbulence proposed by George and Wang [“The exponential decay of homogeneous turbulence,”
Phys. Fluids 21, 025108 (2009)], but we also show that L,/\ is nevertheless an increasing function
of the inlet Reynolds number Re,,. Finally, we offer a detailed comparison of the main assumption

and consequences of the George and Wang theory against our fractal-generated turbulence data.
© 2010 American Institute of Physics. [doi:10.1063/1.3453708]

I. INTRODUCTION

Which turbulence properties are our current best candi-
dates for universality or, at least, for the definition of univer-
sality classes? The assumed independence of the normalized
turbulence kinetic energy dissipation rate on Reynolds num-
ber Re in the high Re limit is a cornerstone assumption on
which Kolmogorov’s phenomenology is built and on which
one-point and two-point closures and large eddy simulations
rely, whether directly or indirectly.l_5 This cornerstone as-
sumption is believed to hold universally (at least for rela-
tively weakly strained/sheared turbulent flows). It is also re-
lated to the universal tendency of turbulent flows to develop
sharp velocity gradients within them and to the apparently
universal geometrical statistics of these gradients,6 as to the
apparently universal mix of vortex stretching and compres-
sion (described in some detail by Tsinober’ who introduced
the expression ‘“qualitative universality” to describe such
ubiquitous qualitative properties).
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Evidence against universality has been reported since the
1970s, if not earlier, in works led by Roshko, Lykoudis,
Wygnanski, Champagne, and George (see, for example, Ref.
8 and references therein as well as the landmark work of
Bevilaqua and Lykoudis9 and more recent works such as
Refs. 10 and 11, to cite but a few) and has often been ac-
counted for by the presence or absence of long-lived coher-
ent structures. Coherent/persistent flow structures can actu-
ally appear at all scales and can be the carrier of long-range
memory, thus implying long-range effects of boundary/inlet
conditions.

In summary, kinetic energy dissipation, vortex stretching
and compression, geometrical alignments, coherent struc-
tures, and the universality or nonuniversality of each one of
these properties are central to turbulent flows with an impact
which includes engineering turbulence modeling and basic
Kolmogorov phenomenology and scalings.

Is it possible to tamper with these properties by system-
atic modifications of a flow’s boundary and/or inlet/upstream
conditions? To investigate such questions, new classes of tur-
bulent flows have recently been proposed which allow for
systematic and well-controlled changes in multiscale bound-
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ary and/or upstream conditions. These new classes of flows
fall under the general banner of “fractal-generated turbu-
lence” or “multiscale-generated turbulence” (the term “frac-
tal” is to be understood here in the broadest sense of a geo-
metrical structure which cannot be described by any
nonmultiscale way, which is why we refer to fractal and
multiscale grids interchangeably). These flows have such un-
usual turbulence propertieslz’13 that they may directly serve
as new flow concepts for new industrial flow solutions, for
example conceptually new energy-efficient industrial
mixers.'*

These same turbulent flow concepts in conjunction with
conventional flows such as turbulent jets and regular grid
turbulence have also been used recently for fundamental re-
search into what determines the dissipation rate of turbulent
flows and even to demonstrate the possibility of renormaliz-
ing the dissipation constant so as to make it universal at
finite, not only asymptotically infinite Reynolds numbers
(see Refs. 15 and 16). These works have shown that the
dissipation rate constant depends on small-scale intermit-
tency, on dissipation range broadening, and on the large-
scale internal stagnation point structure which itself depends
on boundary and/or upstream conditions. In the case of at
least one class of multiscale-generated homogeneous turbu-
lence, small-scale intermittency does not increase with Rey-
nolds number'” and the dissipation constant is inversely pro-
portional to turbulence intensity even though the energy
spectrum is broad with a clear power-law shaped intermedi-
ate range.lz’13 In this paper, we investigate this particular
class of multiscale-generated turbulent flows: turbulent flows
generated by low-blockage space-filling fractal square grids.

Grid-generated wind tunnel turbulence has been exten-
sively investigated for more than 70 ye:ars18 and is widely
used to create turbulence under well controlled conditions.
This flow has the great advantage of being nearly homoge-
neous and isotropic downstream.'® However, its Reynolds
number is not large enough for conclusive fundamental stud-
ies and industrial mixing applications. Several attempts have
been made to modify the grid so as to increase the Reynolds
number while keeping as good homogeneity and isotropy as
possible; for example, jet grids by the groups of Mathieu’
and Corrsin®' (who may have been inspired by Betchov’s
porcupinezz), nonstationary, so-called active, grids by
Makita® followed by the group of Warhaft** and others, and
most recently, passive grids with tethered spheres attached at
each mesh corner.” Jet grids and active grids have been very
successful in increasing both the integral length scale and the
turbulence intensity while keeping a good level of homoge-
neity and isotropy. The three different families of fractal/
multiscale grids introduced by Hurst and Vassilicos'? gener-
ate turbulence which becomes approximately homogeneous
and isotropic considerably further downstream than jet grids
and active grids, but achieve comparably high Reynolds
numbers even though, unlike jet grids and active grids, they
are passive. However, the most important reason for studying
fractal/multiscale-generated turbulence is that it can have
properties which are clearly qualitatively different from
properties which are believed to be universal to all other

Phys. Fluids 22, 075101 (2010)

grid-generated turbulent flows and even boundary-free shear
flows for that matter.

In this paper, we report the results of an experimental
investigation of turbulent flows generated by four low-
blockage space-filling fractal square grids. The grids used in
our study are described in the next section and the experi-
mental setup (wind tunnels and anemometry) is presented in
Sec. III. Our results are reported in Sec. IV. Specifically, in
Sec. IV A, we introduce the wake-interaction length scale x,
and use it to derive and explain the scaling of the down-
stream peak in turbulence intensity which was first reported
in Ref. 12. We also show in this subsection that the stream-
wise dependence of the streamwise turbulence intensity is
independent of inlet velocity and fractal grid parameters if x,
is used to scale streamwise distance. In Sec. IV B, we con-
firm the far-field statistical homogeneity first reported in Ref.
13 and, for the first time, present near-field profiles illustrat-
ing the evolution from near-field inhomogeneity to far-field
homogeneity. Section IV C contains a detailed report on the
skewness and flatness of the fluctuating velocities illustrating
how they become Gaussian in the far field, following a
clearly non-Gaussian near-field behavior which peaks at
0.2x,. Finally, in Sec. IV D, we report a significant improve-
ment and generalization of the single-scale self-preservation
theory of George and Wang26 which shows that there are
many more single-scale solutions to the spectral energy
equation than originally thought. Sections IV E-IV H make
use of this multiplicity of solutions for an analysis of our
data that is significantly finer than in previous studies of
fractal-generated turbulence and which confirms the self-
preserving single-scale nature of the far-field decaying
fractal-generated turbulence in terms of the behaviors of the
integral scale, the Taylor microscale, the energy spectrum,
and the turbulence intensity. Finally, in Sec. V, we conclude
and discuss some of the issues raised by our investigation.

Il. THE SPACE-FILLING FRACTAL
SQUARE GRIDS

Turbulent flows are generated in this study by the planar
and space-filling multiscale/fractal square grids first intro-
duced and described in Ref. 12. The main characteristics of
those grids are summarized as follows. In general,
multiscale/fractal grids consist of a multiscale collection of
obstacles/openings which may be all based on a single spe-
cific pattern that is repeated in increasingly numerous copies
at smaller scales. For the present work, the pattern used is an
empty square framed by four rectangular bars as shown in
Fig. 1(a). Each scale iteration j is characterized by a length
L; and a thickness t of these bars. At iteration j, there are
four times more square patterns that at iteration j—1 (1=
=N, where N is the total number of scales) and their dimen-
sions are related by L;=R;L; ; and #;=R;; ;. The scaling
factors R; and R, are independent of j and are smaller or
equal than 1/2 and 1, respectively. As explained in Ref. 12,
the fractal square grid is space filling when its fractal dimen-
sion takes the maximum value 2, which is the case when
R;=1/2.

A total of four different planar space-filling fractal
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FIG. 1. (a) Space-filling multiscale/fractal square grid generating pattern.
Examples of planar multiscale/fractal square grids used in the present work
with N=4 scales (b) and N=5 scales (c).
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square grids have been used in the wind tunnel experiments
reported here. The complete planar geometry of these grids is
detailed in Table I. Scaled-down diagrams of two of these
grids are displayed in Figs. 1(b) and 1(c). Multiscale/fractal
grids are clearly designed to generate turbulence by directly
exciting a wide range of fluctuation length scales in the flow
rather than by relying on the nonlinear cascade mechanism
for multiscale excitation. The latter approach is the classical
one and is exemplified by the use of regular grids as homo-
geneous turbulence generators.

As explained in Ref. 12, the complete design of space-
filling grids requires a total of four independent parameters
such as

* N, the number of scales (N—1 being the number of
scale iterations).

e L, the biggest bar length of the grid.

* 1o, the biggest bar thickness of the grid.

* fy_1, the smallest bar thickness of the grid.

Phys. Fluids 22, 075101 (2010)

TABLE I. Geometry of the space-filling fractal square grids.

Grid

SFG8 SFG13 SFG17 BFG17
Ly (mm) 237.5 237.7 237.8 471.2
L; (mm) 118.8 118.9 118.9 235.6
L, (mm) 59.4 59.4 59.5 117.8
Ly (mm) 29.7 29.7 29.7 58.9
L, (mm) 295
to (mm) 142 17.2 19.2 23.8
t; (mm) 6.9 7.3 7.5 11.7
t, (mm) 3.4 3.1 2.9 5.8
t3 (mm) 1.7 1.3 1.1 2.8
t, (mm) 14

The smallest bar length Ly_; of the grid is determined by
R;=1/2 and N. Note also that the fractal grids are manufac-
tured from an acrylic plate with a constant thickness
(5 mm) in the direction of the mean flow.

Hurst and Vassilicos'? introduced the thickness ratio
t,=ty/ty_; and the effective mesh size

47> ——
Meff:?\“‘l_a-’ (l)

where P is the fractal perimeter length of the grid, 77 is the
tunnel’s square cross section, and o is the blockage ratio of
the grid defined as the ratio of the area A covered by the grid
to T?

A L0t02£514j+1 RIRI - tgzzl}i—l 19241 g2i-!
7= T2 - T2 .

()

These quantities are derivable from the few independent
geometrical parameters chosen to uniquely define the grids.
When applied to a regular grid, this definition of M returns
its mesh size. When applied to a multiscale grid where bar
sizes and local blockage are inhomogeneously distributed
across the grids, it returns an average mesh size which was
shown in Ref. 12 to be fluid mechanically relevant.

A total of four space-filling fractal square grids have
been used in the present work. They all have the same block-
age ratio 0=0.25 (low compared to regular grids where, typi-
cally, o is about 0.35 or 0.4 or 50)19,27 and turn out to have
values of M which are all very close to 26.4 mm.

Three of these grids, referred to as SFG8, SFG13, and
SFG17, differ by only one parameter, f,, and as a conse-
quence, also by the values of #; (0=j=N-1) as t, was cho-
sen to be one of the four all-defining parameters along with
the fixed parameters N=4, [;=29.7 mm, and 0=0.25. The
fourth grid, BFG17, has one extra iteration, i.e., N=5 instead
of N=4, but effectively the same smallest length, i.e.,
L,=29.5 mm, and a value of #, very close to that of SFG17.
It is effectively very similar to SFG17 but with one extra
fractal iteration. The main characteristics of these grids are
summarized in Tables I and II, which also includes values for
L.=Ly/Ly_;.
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TABLE II. Main characteristics of the fractal square grids.

Ly Iy Mg
Grid N (mm) (mm) L, t, s (mm)
SFG8 4 237.5 14.2 8 8.5 0.25 26.4
SFG13 4 237.7 17.2 8 13.0 0.25 26.3
SFG17 4 237.8 19.2 8 17.0 0.25 26.2
BFG17 5 471.2 23.8 16 17.0 0.25 26.6

In addition to the fractal grids, we also performed a com-
parative study of turbulence generated by a regular grid, re-
ferred to as SRG hereafter, made of a biplane square rod
array. Table III presents the main properties of this grid. Its
blockage ratio is higher than that of our fractal grids and
closer to the usual values found in literature for regular grids
(see, e.g., Refs. 18 and 27). The regular grid SRG also has
slightly higher mesh size.

lll. THE EXPERIMENTAL SETUP
A. The wind tunnels

Measurements are performed in two air wind tunnels,
one which is open circuit with a 5 m long and 7=0.46 m
wide square test section and one which is recirculating with
a 54 m long and 7=0.91 m wide square test section. A
generic sketch of a tunnel’s square test section is given in
Fig. 2 for the purpose of defining spatial coordinate notation.
The arrow in this figure indicates the direction of the mean
flow and of the inlet velocity U.. The turbulence-generating
grids are placed at the inlet of the test section.

The fractal grids SFGS8, SFG13, SFG17, and the regular
grid SRG were tested in the open circuit tunnel, whereas the
fractal grid BFG17 was tested in the recirculating tunnel. The
maximum flow velocity without a grid or any other obstruc-
tion is 33 m/s in the 7=0.46 m open-circuit tunnel.
Turbulence-generating grids were tested with three values of
the inlet velocity U, in this tunnel: 5.2, 10, and 15 m/s. The
uniformity of the inlet velocity at the convergent’s outlet,
checked with Pitot tube measurements, is better than 5%.
The residual turbulence intensity in the absence of a
turbulent-generating grid is about 0.4% along the axis of the
tunnel.

In the 7=0.91 m recirculating tunnel, the maximum
flow velocity without a grid or any other obstruction is
45 m/s. The inlet velocity U, was fixed at 5.2 m/s in this
facility when testing the turbulence generated by the BFG17
grid. The entrance flow uniformity is better than 2% and a
very low residual turbulence intensity (=0.05%) remains in
the test section in the absence of a turbulence-generating grid
or obstacle.

TABLE III. Main characteristics of the regular grid.

Ly lo Mg
Grid N (mm) (mm) L, t, o (mm)
SRG 4 460 6 8 1 0.34 32

Phys. Fluids 22, 075101 (2010)

FIG. 2. Wind-tunnel sketch and coordinate notation.

In both tunnels, the temperature is monitored during
measurement campaigns thanks to a thermometer sensor lo-
cated at the end of the test section. The inlet velocity U, is
imposed by measuring the pressure difference in the tunnel’s
contractions with a micromanometer Furness Controls
MCD1001.

B. Velocity measurements

A single hot wire, running in constant-temperature
mode, was used to measure the longitudinal velocity compo-
nent. The DANTEC 55P01 single probe was driven by a
DISA 55M10 anemometer and the probe was mounted on an
aluminum frame allowing three-dimensional displacements
in space. A systematic calibration of the probe was per-
formed at the beginning and at the end of each measurement
campaign and the temperature was monitored for thermal
compensation. The sensing part of the wire (PT-0.1Rd) was
5 wm in diameter (d,,) and about 1 mm in length /,, so that
the aspect ratio /,,/d,, was about 200. Our spatial resolution
l,,/ m ranges between 2 and 9 for all the measurements. The
estimated frequency response of this anemometry system is
1.5 to nine times higher than the Kolmogorov frequency f,
=U/2m. The spatially varying longitudinal velocity compo-
nent iZ(x) in the direction of the mean flow was recovered
from the time-varying velocity i(z) measured with the hot-
wire probe by means of local Taylor’s hypothesis as defined
in Ref. 28.

The signal coming from the anemometer was compen-
sated and amplified with a DISA 55D26 signal conditioner to
enhance the signal to noise ratio which is typically of the
order of 45 dB for all measurements. The uncertainties on
the estimation of the dissipation rate € due to electronic noise
occurring at high frequencies (wavenumbers) is lower than
4% for all our measurements. The conditioned signal was
low-pass filtered to avoid aliasing and then sampled by a
16 bits National Instruments NI9215 USB card. The sam-
pling frequency was adjusted to be slightly higher than twice
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TABLE IV. Main flow characteristics. 7 is the wind tunnel width, L, is
the longitudinal integral length scale, A is the Taylor microscale, 7 is the
Kolmogorov scale, and Re, is the Taylor based Reynolds number.

T U. L, A
(m) (m/s) (mm) (mm) (mm) Rey
0.46 5.2/10/15 43-52 4-7.4 0.11-0.32 140-370
0.91 5.2 50-70 7-10 0.3-0.45 60-220

the cutoff frequency. The sampled signal was then stored on
the hard drive of a computer. The signal acquisition was
controlled with the commercial software LABVIEW™, while
the postprocessing was carried out with the commercial soft-
ware MATLAB™,

The range of Reynolds numbers and lengths scales of the
turbulent flows generated in both tunnels by all our grids are
summarized in Table IV. The longitudinal integral length
scale L, was obtained by integrating the autocorrelation
function of the fluctuating velocity component u(x) [obtained
by subtracting the average value of ii(x) from i(x)],

L “ (u(x)ulx + A))
o )
where the averages are taken over time, i.e., over x in this

equation’s notation, where x is obtained from time ¢ by
means of the local Taylor hypothesis. In this paper we use

dA, (3)

the notation u’ = \/{u(x)?).
The Taylor microscale A was computed via the following
expression:

W)
h= ((duldx)*)’ @

Finally, using the kinematic viscosity v of the fluid (here, air
at ambient temperature) we also calculate the length scale

V2 1/4
o= (5amms) ®

which is often referred to as Kolmogorov microscale. We
estimated from the turbulent kinetic energy budget that the
uncertainties in the computation of A and # are lower than
10% and 5%, respectively, for all our measurements.

IV. RESULTS

Hurst and Vassilicos'? found that the streamwise and
spanwise turbulence velocity fluctuations generated by the
space-filling fractal square grids used here increase in inten-
sity along x on the centerline until they reach a point
X=Xpeax beyond which they decay. Thus they defined the pro-
duction region as being the region where x <X, and the
decay region as being the region where x> Xx,.,.. They also
found that various turbulence statistics collapse when plotted
as functions of x/x,., and they attempted to give an empiri-
cal formula for x,, as a function of the geometric param-
eters of the fractal grid. It was also clear in their results that
the turbulent intensities depend very sensitively on param-
eters of the fractal grids even at constant blockage ratio, thus
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generating much higher turbulence intensities than regular
grids. An understanding and determination of how xp.,, and
turbulence intensities depend on fractal grid geometry mat-
ters critically both for achieving a fundamental understand-
ing of multiscale-generated turbulence and for potential ap-
plications such as in mixing and combustion. In such
applications, it is advantageous to generate desired high lev-
els of turbulence intensities at flexibly targeted downstream
positions with as low blockage ratios and, consequently,
pressure drop and power input, as possible. An important
question left open, for example, in Ref. 12, is whether xpc,¢
does or does not depend on U...

This section is subdivided in eight subsections. In Sec.
IV A, we study the steamwise profiles of the streamwise
mean velocity and turbulence intensity and, in particular, de-
termine X, In Sec. IV B, we offer data which describe how
homogeneity of mean flow and turbulence intensities is
achieved when passing from the production to the decay re-
gion. In Sec. IV C, we present results on the turbulent veloc-
ity skewness and flatness. Sections IV D and IV H are a care-
ful application of the theory of George and Wang26 to our
data and Secs. IV E-IV G are an investigation of the single-
length scale assumption of this theory and its consequences,
in particular, the extraordinary property first reported in Ref.
13 that the ratio of the integral to the Taylor length scales is
independent of Re, =u’\/v in the fractal-generated homoge-
neous decaying turbulence beyond xpeq-

A. The wake-interaction length scale x,

The dimensionless centerline mean velocity U/ U, and
the centerline turbulence intensity u_/ U are plotted in Figs.
3(a) and 3(b) for all space-filling fractal square grids as well
as for the regular grid SRG. For the latter, we fitted the
turbulence intensity u./ U with the well-known power law
A(x—xy/ M ;)™ where the dimensional parameter A, the ex-
ponent n, and the virtual origin x, have been empirically
determined following the procedure introduced by Mohamed
and LaRue.” Our results are in excellent agreement with
similar results reported in the literature for regular grids, e.g.,
n=1.41, is very close to the usually reported empirical expo-
nent (see Ref. 29 and references therein).

Figure 3(b) confirms that a protracted production region
exists in the lee of space-filling fractal square grids, which it
extends over a distance which depends on the thickness ratio
t, and that it is followed by a region (the decay region first
identified in Ref. 12) where the turbulence decays. The exis-
tence of a distance xp.,c wWhere the turbulence intensity peaks
is clear in this figure. Figure 3(a) shows that the production
region where the turbulence increases is accompanied by sig-
nificant longitudinal mean velocity gradients which progres-
sively decrease in amplitude until about after x=x,, where
they more or less vanish and the turbulence intensity decays.

Our data show that the centerline mean velocity is quite
high compared to U.. on the close downstream side of our
fractal square grids and remains so over a distance which
depends on fractal grid geometry before decreasing toward
U. further downstream. This centerline jetlike behavior
seems to result from the relatively high opening at the grid’s
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FIG. 3. Streamwise evolution of (a) the centerline mean velocity Uc/U.. and of (b) the turbulence intensity u_/ U for all fractal grids with respect to the
streamwise distance x scaled by M. Streamwise evolution of (c) the centerline mean velocity U/ U, and of (d) the turbulence intensity u /U normalized
by its value at x=x,,, for all fractal grids with respect to the streamwise distance x scaled by x4y =75%s T/ Ly (Ref. 12) (U..=5.2 m/s). For reference, data
obtained with the regular grid SRG and U..=10 m/s are also reported [ symbols in (a) and (b)]. The power law (u/U¢)*=A(x—xo/ M) ~"#! which is also

shown [solid line in (b), A=0.129, x,=0] fits this SRG data very well.

center where blockage ratio, which is inhomogeneously dis-
tributed on the grid, seems to be locally small compared to
the rest of the grid. The initial plateau is therefore character-
ized by a significant velocity excess (Up/U,>1.35). One
can also see in Fig. 3(a) that the mean velocity remains larger
than U, even far away from the grids. We checked that this
effect is consistent with the small downstream growth of the
boundary layer on the tunnel’s walls.

The space-filling fractal grids SFG8, SFG13, and SFG17
are identical in all but one parameter: the thickness ratio ¢,. It
is therefore clear from Figs. 3(a) and 3(b) that 7, plays an
important role because even though the streamwise profiles
of Uc/U, and u./U are of identical shape for SFGS,
SFG13, and SFG17, U,/ U, decreases, uc’_/Uc increases, and
Xpeak decreases when increasing 7, while keeping all other
independent parameters of the grid constant.

However, the parameter ¢, cannot account alone for the
differences between the SFG17 and BFG17 grids. These two
grids have the same blockage ratio o and very close values
of ¢, and effective mesh size M. What they do mainly differ

by are their values of L, (by a factor of 2), the number of
fractal iterations (N=4 for SFG17, N=5 for BFG17), and the
largest thickness f,. Figures 3(a) and 3(b) show clearly that
when ¢, is kept roughly constant and other grid parameters
are varied (such as L), then x,., and the overall streamwise
profiles of Uq/U,. and of u /U, change in ways not ac-
counted for by the changes between SFGS8, SFGI13, and
SFG17.

Comparing data obtained downstream from different
space-filling fractal square grids, Hurst and Vassilicos'?
suggested that the streamwise evolution of turbulence
intensity, i.e., Xy can be scaled by the length scale
Xy =75t minT/ Linin)- Their empirical formula might appear
to account for the difference between the SFG17 and BFG17
grids in Fig. 3(b) because T is double and t,,, is larger by a
factor 1.3 for BFG17 compared to SFG17. However, Hurst
and Vassilicos'? did not attempt to collapse data from differ-
ent wind tunnels, and we now show how such a careful col-
lapse exercise involving both the mean flow and the turbu-
lence intensity leads to a different formula for xpeay.
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FIG. 4. (a) Schematic of wake interactions resulting from the fractal grid’s
bars. (b) Centerline mean streamwise velocity vs distance normalized by the
wake-interaction length scale x*=L§/tO(Ux=5.2 m/s).

In Figs. 3(c) and 3(d), we plot the streamwise evolution
of Uc/U., and of u;/ U (scaled by its value at xey) using
the scaling x/xyy introduced by Hurst and Vassilicos.'> One
can clearly see that while use of xyy collapses the data ob-
tained in the 7=0.46 m tunnel, a large discrepancy remains
with the 7=0.91 m tunnel data. In particular, x,, differs for
BFG17 and SFG17.

The turbulence generated by either regular or multiscale/
fractal grids with relatively low blockage ratio results from
the interactions between the wakes of the different bars. In
the case of fractal grids, these bars have different sizes and,
as a result, their wakes interact at different distances from the
grid according to size and position on the grid (see direct
numerical simulations of turbulence generated by fractal
grids in Refs. 30-32). Assuming that the typical wake width
€ at a streamwise distance x from a Wake-geﬂerating bar of
width/thickness #;(j=0, ... ,N-1) to be € ~ \e"tjx,33 the largest
such width corresponds to the largest bars on the grid, i.e.,
€ ~\tyx. Assuming also that this formula can be used even
though the bars are surrounded by other bars of different
sizes, then the furthermost interaction between wakes will be
that of the wakes generated by the largest bars placed

Phys. Fluids 22, 075101 (2010)

furthermost on the grid [see Fig. 4(a)]. This will happen at a

streamwise distance x=x,, such that L,~{~fyx,. We
therefore introduce

12
Xo=—2 (6)
)

as a characteristic length scale of interactions between the
wakes of the grid’s bars which might bound x,. We stress
that the assumptions used to define x, are quite strong and
care should be taken in extrapolating this presumed bound on
Xpeak to any space-filling fractal square grid beyond those
studied here, let alone any fractal/multiscale grid.

Figure 4(b) is a plot of the normalized centerline mean
velocity U,/ U, as a function of dimensionless distance x/x,
for all our four space-filling fractal square grids. All the data
from the 7-0.46 m tunnel collapse in this representation.
However the BFG17 data from the larger wind tunnel do not.
They fall on a similar curve but at lower values of U/ U...
This systematic difference can be explained by the fact that
the air flow causes the BFG17 grid in the large wind tunnel
to bulge out a bit and adopt a slightly curved but steady
shape. The flow rate distribution through this grid must be
slightly modified as a result. To compensate for this effect,
we introduce the mean velocity U, characterizing the con-
stant mean velocity plateau in the vicinity of the fractal grids.
In Fig. 5(a), we plot the normalized centerline mean velocity
Uc/U, as a function of x/x, for all fractal grids and both
tunnels and find an excellent collapse onto a single curve.

In Fig. 5(b), we plot u./ U normalized by its value at
Xpeak a8 @ function of x/x,. We also find an excellent collapse
onto a single curve irrespective of fractal grid and tunnel. It
is also clear from Figs. 5(a) and 5(b) that the longitudinal
mean velocity gradient dU/dx becomes insignificant where
x=0.6x, and that the streamwise turbulence intensity peaks
at

2

L
Xpear = 0.45x, = o.4sl—o. (7)
0

The wake-interaction length scale x, appears to be the appro-
priate length scale characterizing the first and second order
statistics of turbulent flows generated by space-filling fractal
square grids, at least on the centerline and for the range of
grids tested in the present work.

In Figs. 6(a) and 6(b), we plot the streamwise evolutions
of the dimensionless centerline velocity U/ U.. and the cen-
terline turbulence intensity u_/ U for various inlet velocities
U... These particular results have been obtained for the frac-
tal grid SFG17 but they are representative of all our space-
filling fractal square grids. One can clearly see that X, is
independent of U.. Moreover, our data show that the entire
streamwise profiles of both U/ U., and u./ U are also inde-
pendent of the inlet velocity U., in the range studied.

Hurst and Vassilicos'?> have shown that the centerline
turbulence intensity decays exponentially in the decay region
X>Xpeqx and that the length scale x,., can be used to col-
lapse this decay for different space-filling fractal square grids
as follows:
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FIG. 5. Streamwise evolution of (a) the centerline mean velocity U nor-
malized by the initial mean velocity plateau U, and (b) centerline turbulence
intensity normalized by its value at x=x.,. Both plots are given as func-
tions of x scaled by the wake-interation length scale x,:L(Z,/to
(U,=5.2 m/s). In (b), the dashed line represents Eq. (9) with B=2.06 and
A=282.

12 12
u. u. \X X — X
%:#exp{—B’(—o)}, (8)
UC UC(XO) xpeak

where x is a virtual origin and B' an empirical dimension-
less parameter. We confirm this scaling decay form, specifi-
cally by fitting

12
ULZC:A exp{—B(x—*ﬂ 9)

to our experimental data with a slightly modified dimen-
sional parameter B and an extra dimensionless parameter A
which does not have much influence on the quality of the fit
except for shifting it all up or down. We have arbitrarily set
xo=0, which we are allowed to do because the virtual origin
does not affect the value of B. It only affects the value of A.
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FIG. 6. (a) Streamwise evolution of the centerline (y=z=0) mean velocity
in the 7—0.46 tunnel for the fractal grid SFG17. (b) Streamwise evolution of
the turbulence intensity for the same grid and in the same tunnel.

As shown in Fig. 5(b), the exponential decay law (9) is
in excellent agreement with our data for all the space-filling
fractal square grids used in the present work. In particular,
the parameter B seems to be the same for all the fractal
square grids we used. Using a least-mean square method, we
find B=2.06 and A=2.82.

Evidence in support of the idea that the decay region
around the centerline downstream of x,c, is approximately
homogeneous and isotropic was given in Ref. 13. The expo-
nential turbulence decay observed in this regionlz’13 is there-
fore remarkable because it differs from the usual power-law
decay of homogeneous isotropic turbulence. We have already
reported in this subsection that the mean flow becomes ap-
proximately homogeneous in the streamwise direction where
x>0.6x,, i.e., in the decay region. In Sec. IV B, we investi-
gate the spanwise mean flow and turbulence fluctuation pro-
files downstream from space-filling fractal square grids and
show how a highly inhomogeneous flow near the fractal grid
morphs into a homogeneous one beyond 0.6x,.
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(i.e., x/x,~0.15).

B. Homogeneity

Like regular grids, the flow generated in the lee of space-
filling fractal square grids is marked by strong inhomogene-
ities near the grid which smooth out further downstream un-
der the action of turbulent diffusion. This is evidenced in
Figs. 7(a) and 7(b) which show scaled mean velocity U/ U,
and turbulence intensity u’/U profiles along the diagonal
in the y—z plane, i.e., along the line parametrized by
(y*+2z%)"? in that plane. Close to the grid, the mean velocity
profile is very irregular, especially downstream from the
grid’s bars where large mean velocity deficits are clearly
present. These deficits are surrounded by high mean flow
gradients where the intense turbulence levels reach local
maxima as shown in Fig. 7(b). Further downstream, both
mean velocity and turbulence intensity profiles become much
smoother, supporting the view that the turbulence tends to-
ward statistical homogeneity. Note that Figs. 7(a) and 7(b)

Phys. Fluids 22, 075101 (2010)

show diagonal profiles at x/M =7 and 53 in the lee of the
BFG17 grid which is a long way before x,,, [see Fig. 3(b)].
The profiles are quite uniform in the decay region as shown
by Seoud and Vassilicos."> Our evidence for homogeneity
complements theirs in two ways: they concentrated only on
the decay region whereas we report profiles in the production
region and how they smooth out along the downstream di-
rection; and we report diagonal profiles whereas the profiles
in Ref. 13 are all along the y coordinate.

To evaluate the distance from the grid where the inlet
inhomogeneities become negligible, we introduce the ratios
U,/ Uy and u./u), where subscripts ¢ and d denote, respec-
tively, the centerline (y=z=0) and the streamwise line cut-
ting through the second iteration corner (y=z=6 cm in the
SFG17 case) as shown in Fig. 8(a). These two straight lines
meet the inlet conditions at two different points, their differ-
ence being representative of the actual inhomogeneity on the
fractal grid itself: one point is at the central empty space
while the other is at the corner of one of the second iteration
squares.

The streamwise evolutions of U./U, and u./u), are re-
ported in Fig. 8(b). As expected, large differences are observ-
able in the vicinity of the space-filling fractal square grid for
both the mean and the fluctuating velocities. One can see that
the mean velocity ratio U,./ U, is bigger than unity. This re-
flects the mean velocity excess on the centerline where the
behavior is jetlike because of the local opening compared to
the mean velocity deficit downstream from the second itera-
tion corner where the behavior is wakelike because of the
local blockage. This difference between jetlike and wakelike
local behaviors also explains why the fluctuating velocity
ratio u,/u), is almost null close to the grid where the center-
line is almost turbulence free. Further downstream, both ra-
tios U./U, and u/u) tend to unity as the flow homogenizes.
One can see that inhomogeneities become negligible by
these criteria beyond x/x,=0.6, which is quite close t0 xpea-

A main consequence of statistical homogeneity is that
the small-scale turbulence is not sensitive to mean flow gra-
dients. For this to be the case, the time scales defined by the
mean flow gradients must be much larger than the largest
time scale of the small-scale turbulence. From our measure-
ments and those in Ref. 13 (see Fig. 3 in Ref. 13), (9U/ dx)™!
and (9U/dy)~" are always larger than about 1 and 0.15 s,
respectively, at and beyond x., where the time scale of the
energy-containing eddies is well below 0.07 s. The ratios
between the smallest possible estimate of a mean shear time
scale and any turbulence fluctuation time scale are therefore
well above 2 (in the worst of cases) at X, and far larger (by
one or two orders of magnitude typically) beyond it for all
three fractal grids SFG8, SFG13, and SFG17 and all inlet
velocities U, in the range tested. By this time-scale criterion,
from X, onward, the small-scale turbulence generated by
our fractal grids, including the energy-containing eddies, is
not affected by the typically small mean flow gradients
which are therefore negligible in that sense.

We close this subsection with Fig. 9 which illustrates in
yet another way the homogeneity of the turbulence intensity
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FIG. 8. (a) The measurements in (b) are taken in the 7—0.46 m tunnel along the straight lines which run in the x-direction and cut the plane of the pictured
SFG17 grid at points ¢ and d. (b) Streamwise evolution of the ratios U./U, (O) and u/u), (*) measured for the SFG17 grid in the T—0.46 m tunnel

(U,,=5.2 m/s). The horizontal dashed lines represent the range +10%.

at x=0.5x, and suggests that Eq. (9) can be extended beyond
the centerline in the y—z plane in that homogeneous region
x=0.5x,, i.e.,

u'? X
?=A exp|:—B<x—*>], (10)

with the same values A=~2.82 and B=2.06 independently of
U.. and space-filling fractal square grid. It is worth pointing
out, however, that Fig. 9 also shows quite clearly that x,c.
can vary widely across the y—z plane and that a very pro-
tracted production region does not exist everywhere. For-
mula (7) gives X, on the centerline but x,., can be very
much smaller than 0.45x, at other y—z locations. This is a
natural consequence of the inhomogeneous blockage of frac-
tal grids and the resulting combination of wakelike and jet-
like regions in the flows they generate.

C. Skewness and flatness of the velocity fluctuations

Previous wind tunnel investigations of turbulence gener-
ated by space-filling fractal square gridslz’]3 have not re-
ported results on the gaussianity/nongaussianity of turbulent
velocity fluctuations. We therefore study here this important
aspect of the flow, mostly in terms of the skewness
S,=?)/{(u*)*? and flatness F,={(u*)/{u*)* of the longitudi-
nal fluctuating velocity component u along the centerline.
This skewness is also a measure of one limited aspect of
large-scale isotropy, namely, mirror symmetry, as it vanishes
when statistics are invariant to the transformation u to —u,
but not otherwise. Isotropy was studied in much more detail
in Refs. 12 and 13 where x-wires were used. These previous
works reported good small-scale isotropy in the decay
region'3 and levels of large-scale anisotropy before and after
Xpeak ON the centerline'? which, for the turbulence generated
by the grids SFG13, SFG17, and BFG17 in particular, are
very similar to the levels of large-scale anisotropy in turbu-
lence generated by active grids.23’24

We first check that both S, and F, do not depend on the
inlet velocity U, and this is indeed the case as shown in
Figs. 10(a) and 10(b). These plots are particularly interesting
in that they reveal the existence of large values of both S,
and F, at about the same distance from the grid on the cen-
terline. This distance scales with the wake-interaction length
scale x, as shown in Figs. 11 and 12. Indeed, the profiles of
both S, and F, along the centerline collapse for all four
fractal square grids (SFG8, SFG13, and SFG17 in the
T-0.46 m tunnel and BFG17 in the T-0.91 m tunnel)
when plotted against x/x,. The alternative plots against
x/ My clearly do not collapse [see Figs. 11(a) and 12(a)].

For comparison, Fig. 11(a) contains data of S, obtained
with the regular grid SRG, which are in fact in good agree-
ment with usual values reported in the literature (see, e.g.,
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FIG. 9. Streamwise turbulence intensities as functions of x/x, along the
centerline and along the straight streamwise line which crosses point d in
Fig. 8(a). SFG17 grid in the 7-0.46 m tunnel with U..=15 m/s. This plot
remains essentially the same for the other values of U.. that we tried.
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Refs. 34 and 29). It is well known that regular grids generate
small, yet nonzero, positive values of the velocity skewness
S, and Maxey35 explained how their nonvanishing values are
in fact a consequence of the free decay of homogeneous
isotropic turbulence. While the velocity skewness S, gener-
ated by fractal grids takes values which are also close to zero
yet clearly positive in the decay region, S, behaves very
differently in the production region on the centerline.

The behaviors of S, and F, in the production region
on the centerline are both highly unusual as can be seen in
Figs. 10—12. Clearly, some very extreme/intense events occur
at x=~0.2x, and it is noteworthy that the location of these
extreme events scales with x, even though it is clearly dif-
ferent from Xpe,=~0.45x,. The scatter observed at and
around this location is due to lack of convergence because
these intense events are quite rare as clearly seen in time
traces such as the one given in Fig. 13(a). These intense
events are so high in magnitude (|S,|~ 1) that they cannot be
attributed to experimental uncertainties. The negative signs
of S, and of these intense events on the time traces demon-

Phys. Fluids 22, 075101 (2010)

0.5
X - % -SRG
0 __|-0-sFGs
o %—M%%**%%*é:f%‘:ﬁ}gfi—g - m-SFG13
g i o ~-sFa17
" \ /V,/ o - ¢ -BFG17
]
0] 1 A A
. it ‘\V / //
™ / / o) ¢
o o/ K
ul -
w1 ﬁ v ¥ % i
1\ -
o
o /v/ LI /‘
150 W p 4
" [ *
\ [ ] i s
\:\ // /¢ \\ /’/
=2+ + ke
2 “ n o/ ¢
o
R
)
-25 : :
50 100 150
(a) X/ Mg
05
| ]
M v
oy vm
of ¥ Jo 4
o Wl
v 4
o
—0.5F z-
" “
CD: -1r v VQQ
O
. o % O SFG8
15l g © = SFG13 i
¢ v SFG17
. o) * BFG17
_ob -
(XS =
o
25 ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2
(b) X/ X,

FIG. 11. Velocity skewness S, as function of (a) x/M.s and (b) x/x,.

U.=5.2 m/s. Data corresponding to all fractal grids and to the regular grid
SRG as per inset.

strate clearly that these extreme events correspond to locally
decelerating flow. We leave their detailed analysis for future
study.

These extreme decelerating flow events are also reflected
in the probability density function (PDF) of u which is
clearly non-Gaussian and skewed to the left (i.e., toward
negative u-values) at x=0.2x,, whereas it is very closely
Gaussian in the decay region [see Fig. 13(b)]. The flatness F,
takes values close to the usual Gaussian value of 3 in the
decay region and remains close to 3 for all x=Xx, [see
Figs. 10(b) and 12(b)].

Note, finally, that Eq. (10) and F,~3 in the homoge-
neous region x=0.5x, imply that

4
<Z—4>z3Az exp{—ZB(f)] (11)

in that region, with the same values A=2.82 and B~=2.06
independently of U, and space-filling fractal square grid.
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D. Spectral energy budget in the decay region

In the region beyond xp., where the turbulence is ap-
proximately homogeneous and isotropic, the energy spec-
trum has been reported in previous studies'*" to be broad
with a clear power-law shaped intermediate range where the
power-law exponent is not too far from —5/3. For this region
we can follow George and Wang26 who found a solution of
the spectral energy equation

%E(k,t) =T(k,t) - 2vk*E(k,1), (12)

which implies an exponential rather than power-law turbu-
lence decay. In this spectral energy equation, E(k,7) is the
energy spectrum and T(k,7) is the spectral energy transfer at
time 7. The energy spectrum, if integrated, gives (3/2)u’?,

i.e.,
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éu’zz r E(k,t)dk. (13)

2 0

The correspondence between the time dependencies in these
equations and the dependence on x in our experiments is
made via Taylor’s hypothesis.

George and Wang®® showed that Eq. (12) admits solu-
tions of the form

E(k,t) = E()fkI(1), ], (14)

T(k.1) = T,(1)g[kl(2), *], (15)
where the functions f and g are dimensionless, and that such
solutions can yield an exponential turbulence decay. These
solutions are single-length scale solutions [the length scale
[()] and therefore differ fundamentally from the usual
Kolmogorov picture2 which involves two different length
scales, one outer and one inner, their ratio being an increas-
ing function of Reynolds number. The argument * in Egs.
(14) and (15) represents any dependencies that there might
be on boundary/inlet/initial conditions.

The exponential decay reported by George and Wang26
exists provided that the length scale I(r) is independent
of time, ie., (d/df)l=0, and takes the form u’?
~exp[—10wt/1%]. Unless I* v, this form does not obviously
compare well with the exponential decay (10) because Eq.
(10) is independent of the Reynolds number. We now care-
fully apply the approach of George and Wang26 to our data
by making explicit use of all potential degrees of freedom
and confirm that an exponential decay which perfectly fits
Eq. (10) can indeed follow from their approach.

Consider

E(k,t) = E((t,U..,Reg, *)f1kl(t),Reg, *], (16)

T(k7 t) = T&‘(tv UocyRe(), *)g[kl(t), Re(), *], (17)

where Rey= U..ty/ v is the Reynolds number which charac-
terizes the thickest bars on the fractal grid, 1(r)=1(z,Rey, *),
and the argument * includes various dimensionless ratios of
bar lengths and bar thicknesses on the fractal grid, as appro-
priate. The functions f and g are again dimensionless. The
conditions for Egs. (16) and (17) to solve Eq. (12) are (see
Ref. 26 for the solution method)

d 2v

—E.=—a—E.,, 18
dr’ alz s (18)
d
T.=b—E,, 19
s=b E; (19)
dl dE,
— [/ l=c E,, (20)
dt dt

where a, b, and ¢ are dimensionless functions of Re, and *
(note that a>0). Under these solvability conditions, the
spectral energy equation (12) collapses onto the dimension-
less form
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FIG. 13. Normalized velocity samples recorded downstream of the SFG17 fractal grid at (a) x=~0.2x, and (b) x=~0.7x,. (c) PDF computed from signals
corresponding to the SFG17 grid such as those shown on the left. The dashed line is the Gaussian distribution. U,.=5.2 m/s for all the plots on this figure.

d
f(KvRe()» *) + C(RCO’ *)Kd_f(K’Re()’ *)
K

Kzf( K, ReO’ *)

= b(Re, * ,Req, *) +
(Rey, *)g(x,Reg, *) a(Reg, *)

, (21)
where k=kl(t,Re,*).

Two different families of solutions exist according to
whether ¢ vanishes or not. If ¢ #0, then ¢ must be negative

and
4valc| 12
1) —1(7'0){1 + (- To)} ; (22)
(1)
|C| 1/2¢
E(1)=E(7) 1+ 21,) ———(t— 1) , (23)
in terms of a virtual origin 7,. However, if ¢=0, then dl/dt
=0 and
t
E(f) ~ exp(— 2a’l’—2> . (24)

It is this second set of solutions, the one corresponding to
¢=0, with which George and Wamg26 chose to explain the
form (10).

From Egs. (24), (16), and (13) and making use of
t=x/U,, it follows that

rx

)

U

u/2

(25)

12
=U exp(—

where u)=u)(U,Rey,*), a=a(Rey,*), and I(Rey, *) is inde-
pendent of x. Our wind tunnel measurements in Sec. IV A
and those leading to Eq. (10) and its range of validity suggest
that Egs. (24) and (10) are the same provided that u/,/ U, is a
dimensionless function of the geometric inlet parameters
and nothing else, and that

a=1.03 Rey *(Rey, *)/L2, (26)

if use is made of Eq. (6) and B~2.06. In other words, the
single-scale solution of George and Wang26 fits our data,
provided that the single length scale /(Re,, *) is independent
of x (i.e., ¢=0), that the dimensionless coefficient a in Eq.
(18) depends on Rey and * as per Eq. (26), and that u/ scales
with U,. Under these conditions, it follows from Eq. (21)
that the dimensionless spectral functions f and g satisfy

f(kl,Re(), *) = b(Reo, *)g(kl,Re(), *)

—1 L )2 2 %
+2 Rep <—'BI(R o) (kD)"f(kl,Req, *),

(27)

where B=~2.06. Integrating this dimensionless balance over
k=kl yields

2
(—) ReaI
\’Bl(Reo, *)

X\f
0

because the spectral energy transfer integrates to zero. This
equality can be used in conjunction with Egs. (16), (13), and
(6) to obtain a formula for the kinetic energy dissipation rate
per unit mass, e=2v[ k*E(k,)dk

JfKReo, *)dk =2

K*f(k,Rey, *)dK (28)

(29)

This is an important reference formula which we have
been able to reach by applying the George and VVang26
theory and by confronting it with new measurements which
we obtained for three different yet comparable fractal grids
and three different inlet velocities U,. These are the new
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measurements reported in Secs. IV A and IV B and summa-
rized by Egs. (10) and (6) along with the observation that A
and B in Eq. (10) do not depend on U, and on the different
parameters of the space-filling fractal square grids used.

E. Multiscale-generated single-length
scale turbulence

No sufficiently well-documented boundary-free shear
flow'? nor wind tunnel turbulence generated by either regu-
lar or active gridsz“’29 has turbulence properties comparable
to those discussed here, namely, an exponential turbulence
decay (10), a dissipation rate € proportional to u'? rather than
the usual #'3, and spectra which can be entirely collapsed
with a single length scale. It is therefore important to subject
our data to further and more searching tests.

The downstream variation of the Reynolds number
Re=u'L,/v is different for different boundary-free shear
flows. However, it is always a power-law of the normalized
streamwise distance x—x,/Lp, where Lp is a length charac-
terizing the inlet and x, is an effective/virtual origin. For
example, Re~(x—xy/Lg)""® for axisymmetric wakes,
Re~ (x—x,/L)° for plane wakes and axisymmetric jets, and
Re ~ (x—xo/Ly)"? for plane jets." The turbulence intensity’s
downstream dependence on x—xy/Lg is ~(x—xy/Lg)~>* for
axisymmetric wakes, ~(x—x,/Lg)~""? for plane wakes and
jets, and ~(x—x,/Lg)™" for axisymmetric jets."” In wind tun-
nel turbulence generated by either regular or active grids, the
downstream turbulence also decays as a power law of
x—xo/Lg and so does Re.”*% In all these flows, as in fact in
all well-documented boundary-free shear flows, the integral
length scale L,, and the Taylor microscale N grow with in-
creasing x, and in fact do so as power laws of x—x,/Lg. Their
ratio L,/ is a function of x—x,/Lg and of an inlet Reynolds
number Rey= U..Lg/ v, where U., is the appropriate inlet ve-
locity scale. Estimating N from vu'2/\2~e~u'3/L,." 30t
follows that L,/\ ~Reé/2(x—x0/ Lg)~"® for axisymmetric
wakes, L,/ \ ~Re}*(x—xy/Lp)° for plane wakes and axisym-
metric jets, L,/\~Rey*(x—xy/Lg)"* for plane jets, and
L,/ N~Re)*(x=x/Lg)™ with p>1/2 for wind tunnel
turbulence. These downstream dependencies on Re, and
x—xo/Lg can be collapsed together as follows:

L
_“NR , 30
L~ Rey (30)

where Rey, =u'N/v. This means that values of L,/\ obtained
from measurements at different downstream locations x but
with the same inlet velocity U, and values of L,/\ obtained
for different values of U, but the same downstream location
fall on a single straight line in a plot of L,/ \ versus Re,. This
conclusion can in fact be reached for all sufficiently well-
documented boundary-free shear flows' as for decaying ho-
mogeneous isotropic turbulence™ if the cornerstone assump-
tion e~u'3/L, is used.

The relation L,/\A~Re, is a direct expression of the
Richardson—-Kolmogorov cascade and, in particular, of the
existence of inner and outer length scales, which are decou-
pled, thus permitting the range of all excited turbulence
scales to grow with increasing Reynolds number. This rela-
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tion is therefore in direct conflict with the one-length scale
solution of George and Wang.26 Seoud and Vassilicos"
found that L,/\ is independent of Re, in the decay region of
the turbulent flows generated by our space-filling fractal
square grids (in which case Rey is defined in terms of the
wind tunnel inlet velocity U.,, and Lg=1,). Here we investi-
gate further and refine this claim and also show that it is
compatible with the theory of George and Wang.26

The essential ingredient in Sec. IV D considerations is
the single-length scale form of the spectrum (16). Our hot
wire anemometry can only access the one-dimensional (1D)
longitudinal energy spectrum E,(k,) of the longitudinal fluc-
tuating velocity component u. The single-length scale form
of E,(k,) is E,(k)=E,f,kl,Rey,*) which can be rear-
ranged as follows if use is made of %u'zzngu(kx)dkx:

E,(k,)=u"’IF (k] Rey,*), (31)

where F,(k,l,Reg, *):%fu(kxl,Reo,*)/fdkxlfu(kxl,Reo,*). In
the case where u'>=u'?(x,U.,,*) decays exponentially [Eqs.
(24)—(29)], the length scale [ is independent of the stream-
wise distance x from the grid.

An important immediate consequence of the single
length-scale form of the energy spectrum is that both the
integral length scale L, and the Taylor microscale N\ are pro-
portional to 1.13:2¢ Specifically,

L,=I f dr,k;'F, (k. Reg, *) = al (32)

and
N=1 / \/ J dic F, (k. Reg, ) = B, (33)

where a and B are dimensionless functions of Re, and *.
This implies, in particular, that both L, and N should be
independent of x (as was reported in Refs. 12 and 13) if [ is
independent of x in the decay region. Using Eq. (29) and
vu'?/N>~u'?U,/x,, we obtain

N~ Ly Rey"?, (34)

which is fundamentally incompatible with the usual
e~u'3/L,. As noted in Ref. 13, e~u'?/L, is in fact straight-
forwardly incompatible with an exponential turbulence de-
cay such as Eq. (10) and an integral length scale L, indepen-
dent of x.

We now report measurements of L,, A, and E,(k,), which
we use to test the single-length scale hypothesis and its con-
sequences. These measurements also provide some informa-
tion on the dependencies of L, and A on Re; and *.

First, we test the validity of Eq. (34). In Figs. 14(a) and
14(b), we plot N/Vwx,/U versus x/x, along the centerline.
These figures do not change significantly if we plot
NV ux,/ Um:()\/LO)Re(l)/2 versus x/x,. It is clear that Eq. (34)
and scaling x with x, offers a good collapse between the
different fractal grids where x>0.2x,, and that \ does indeed
seem to be approximately independent of x/x, in the decay
region as reported in Refs. 12 and 13 and as predicted by
Egs. (33) and (34). However, the collapse for different values
of U.. is not perfect and there seems to be a residual depen-
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FIG. 14. N/\vx,/U vs x/x, along the centerline. (a) Data for the four
different fractal grids and U,=5.2 m/s. (b) Data for the fractal grid SFG17
and three different inlet velocities U.,.

dence on Re;, which is not taken into account by Eq. (34). It
is worth noting here that our centerline measurements for the
regular grid SRG with U,=5.2 m/s produced data which
are very well fitted by (N/M4)>=3 X 107%x/ M in agree-
ment with previous results'®* and usual expectations.36
Before investigating Reynolds number corrections to Eq.
(34), and therefore Eq. (29) which Eq. (34) is a direct ex-
pression of, we check that the turbulence generated by low-
blockage space-filling fractal square grids is indeed funda-
mentally different from other turbulent flows. For this, we
plot L,/\ versus Re, in Fig. 15(a). While Eq. (30), which
follows from e~u'?/L,, is very well satisfied in turbulent
flows not generated by fractal square grids, it is clearly vio-
lated by an impressively wide margin in the decay region of
turbulent flows generated by low-blockage space-filling frac-
tal square grids. This is not just a matter of a correction to
usual laws; it is a matter of dramatically different laws.
One important aspect of Eq. (30) is that it collapses onto
a single curve the x and Re, dependencies of L,/\ for many
turbulent flows. Figures 16(a) and 16(b) show clearly that in
the decay region, L,/\ is independent of x and also not sig-
nificantly dependent on fractal square grid, but is clearly de-
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FIG. 15. (a) L,/\ as a function of R, for different inlet velocities U, and
different positions on the centerline in the decay region in the lee of the
SFG17 fractal grid. The dashed line represents the empirical law obtained by
fitting experimental data from various turbulent flows none of which is
generated by fractal square grids. These are the data compiled in Ref. 15
(which includes jet, regular grid, wake, and chunk turbulence), and the
dashed line is an excellent representation of L,/\~ R, particularly at
Re, >150. (b) R, as a function of x/x, for three different inlet velocities U,
in the lee of the SFG17 fractal grid.

pendent on U.,,. There are other turbulent flows where L,/\
is independent of x, notably plane wakes and axisymmetric
jets. However, the important difference is that Re, is also
independent of x in plane wake and axisymmetric jet turbu-
lence, whereas it is strongly varying with x in turbulent flows
generated by fractal square grids [see Fig. 15(b)]. As a result,
Eq. (30) holds for plane wakes and axisymmetric jets but not
for turbulent flows generated by fractal square grids where,
instead, L,/\ is independent of Re, in the decay region [see
Fig. 15(a)], as previously reported in Ref. 13. It is not fully
clear from Fig. 15(a) if L,/\ is or is not a constant indepen-
dent of Re, for large enough values of Re, [specifically for
values of U., larger or equal to 10 m/s in the case of Fig.
15(a)]. The results in Ref. 13 might suggest that L,/\ is
independent of Re, for large enough values of Re,, but Fig.
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FIG. 16. L,/\ as a function of x/x, along the centerline (a) for the four
different fractal grids and U.,,=5.2 m/s and (b) for the fractal grid SFG17
and three different inlet velocities U.,.

16(b) does not comfortably support such a conclusion. More
data are required for a conclusive assessment of this issue
which is therefore left for future study.

We now turn to the Reynolds number corrections which
our measurements suggest may be needed in Eq. (34). Fig-
ures 17(a) and 17(b) show that

A~ LyRep'? (35)

is a better approximation than Eq. (34) as it collapses the
different U, data better without altering the quality of the
collapse between different fractal grids. From e~ vu'?/\2,
Eq. (35) implies

12
U.
L —Reg", (36)

€~
X

which is an important Re, deviation from Eq. (29) and car-
ries with it the extraordinary implication that € tends to O as
Rey— . Of course, this implication is an extrapolation of
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FIG. 17. N/[Ly(U.ty/ v)™] vs x/x, along the centerline for n=1/3 (various
values of n were tried and n=1/3 offers a clear best fit). (a) Data for the four
different fractal grids and U,=5.2 m/s. (b) Data for the fractal grid SFG17
and three different inlet velocities U... The results look very similar when
plotting N/[Lo(Uty/ v)™].

our results and must be dealt with care. In fact, we show in
Sec. IV H that this extrapolation is actually not supported by
our data and the single-length scale theoretical framework of
our work.

There are only two ways in which George and Wang’s26
single-scale theory can account for these deviations from
Egs. (29) and (34). Either (i) these deviations are an artifact
of the different large-scale anisotropy conditions for different
values of Rey, or (ii) the single-length scale solution of Eq.
(12) which in fact describes our fractal-generated turbulent
flows belongs to the family for which ¢ # 0, not the family
for which ¢=0 (see Sec. IV D).

(1) Large-scale anisotropy affects the dimensionless coef-
ficient required to replace the scaling wvu'?/\>~ €
[=(3/2)B(u'*U../x,) according to Eq. (29)] by an ex-
act equality. This issue requires cross-wire measure-
ments at many values of U, to be settled and must be
left for future study.

(i) Ifc#0, ie., ¢<O0, then
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2E (x 4valc (1=c)/2e
a2l bl O e
31(xo) X(x0) U

(where we used x=U,t and x,=U.t;) and Egs. (32)
and (33) remain valid but with

4valc| }”2
I(x,Reqy, *) =l(xg,Rep, *)| 1 + 57— (x — s
(x,Reg, *) = I(xp,Re, ){ l2(x())Uoc(x Xo)

(38)

not with a length scale / independent of x. Addition-
ally, the following estimates for the Taylor microscale
and the dissipation rate € can be obtained, respec-
tively, from (d/dt)u’>~ vu'?/\* and from an integra-
tion over x of Eq. (21)

12

I(xo,Req, *) 4valc|
~ =X | (39)
V2a(l-rc) F(xp) U
u/2
€=3va(Rey, *)(1 + |c(Rey, >!<)|)l—2 (40)

These two equations replace Egs. (34) and (29) which
follow from c=0. It is easily seen that the power-law
form (37) tends to the exponential form (25) and that
the Taylor microscale A becomes asymptotically inde-
pendent of x—x, in the limit ¢ — 0.

The new forms (37)—(40) depend on two length scales,
1(xy,Req,*) and x, one kinetic energy scale E(x,)/1(x,), and
two dimensionless numbers, wva(Reg,*)/[l(xy,Req,*)Us]
and c(Reg, *), all of which may vary with Re, and boundary/
inlet conditions. There seems to be enough curve-fitting free-
dom for these forms to account for our data in the decay
regions of our fractal-generated turbulent flows, in particular
Figs. 5(b), 6(b), 9, and 14-17.

In Sec. IV H, we present a procedure for fitting Egs. (37)
and (39) to our data which is robust to much of this curve-
fitting freedom. It is worth noting here, in anticipation of
Sec. IV H, that Eq. (39) is consistent with the observation
(originally reported in Refs. 12 and 13) that \ is approxi-
mately independent of x in the decay region, but provided
that (2valc|/P(xg)U.,)(x—xo) <1 in much of this region.
However, Eq. (39) also offers a possibility to explain the
departure from the constancy of A at large enough values of
x/x,, where \ appears to grow again with x [see Figs. 14(a)
and 17(a)], very much as Eq. (39) would qualitatively pre-
dict. Note, in particular, that this departure occurs at increas-
ing values of x/x, for increasing Re, [see Figs. 14(b) and
17(b)], something which can in principle also be accounted
for by Eq. (39). In the Sec. IV F, we show that same obser-
vations can be made for L,,.

F. The integral length scale L,

The streamwise evolution of the longitudinal integral
length scale L, on the centerline is plotted in Fig. 18 for all
space-filling fractal square grids as well as for the regular
grid SRG. The integral length scales generated by the fractal
square grids are much larger than the regular grid’s even
though their effective mesh sizes are smaller. Comparing
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FIG. 18. Centerline streamwise evolution of the longitudinal integral length
scale L, normalized by the mesh size M (U,=5.2 m/s). Data obtained for
the regular grid SRG are also shown (*).

data from the 7—0.46 m tunnel, one can see that L, appears
independent of the thickness ratio #,. However, there are
large differences between the integral scales generated by
fractal grids SFG17 and BFG17 which have the same ¢, but
fit in different wind tunnels. This observation suggests that
the large-scale structure of the fractal grid has a major influ-
ence on the integral length scale. One might in fact expect
that the integral length scale is somehow linked to an inter-
action length scale of the grid. For regular grids, this inter-
action length scale is typically the mesh size, whereas for
space-filling fractal square grids, a large variety of interac-
tion length scales exist, the largest being L,. Figure 19(a)
supports the view that the scalings of L, and its
x-dependence are mostly determined by L, and x,, respec-
tively, though not perfectly.

Figure 19(b) suggests that L,/L, is not significantly de-
pendent on the inlet Reynolds number Re,, at least for the
range of U, values investigated here. This figure was ob-
tained for the SFG13 grid but is representative of our other
three space-filling fractal square grids as well.

Irrespective of whether / does or does not depend on
streamwise coordinate x, Eqs. (32) and (33) suggest that
L,/N\ is definitely not a function of x but that it can never-
theless be, in all generality, a function of Re, and of the
fractal grid’s geometry. In fact, Fig. 16 is evidence of some
dependence on U., at least at the lower U, values. Assuming
L,~L, as seems to be suggested by Figs. 19(a) and 19(b)
and using either Eq. (34) or Eq. (35) implies either L,/\
~Rey* or L,/\~Reg”. Of these two implications, it is the
latter which agrees best with our measurements [see Figs.
20(a) and 20(b) where we plot (L,/ )\)/Re(l)/3 versus x/x,],
which is consistent with the fact that Eq. (35) fits our data
better than Eq. (34).

As reported in Refs. 12 and 13, L, remains almost con-
stant in the decay region [see Figs. 19(a) and 19(b)]. The
independence on x can be explained in terms of the ¢=0
single-scale solution of George and Wang,26 but it might also
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FIG. 19. L,/L as a function of x/x, along the centerline. (a) Four different
fractal grids and U,.=5.2 m/s. (b) Three different inlet velocities U.,. with
the SFG13 fractal grid.

be even better explained in terms of the ¢ <0 single-scale
solution which yields Egs. (32) and (38), i.e.,

4valc| 12

L, = a(Regy, *)l(xg,Rep, *)| 1 + 55—
u (,1’( € )(XO € ) lz(X())Uoo

(x - xo)

(41)

A careful examination of Figs. 19(a) and 19(b) suggests that
L,/Ly may be constant for some of the way downstream in
the decay region until it starts increasing slightly, very much
like the behavior of the Taylor microscale A (see Figs. 14 and
17) and in qualitative agreement with Eq. (41). In fact, the
ratio L,/\ is predicted by Egs. (39) and (41) to be indepen-
dent of x in the decay region, which is in full agreement with
Fig. 16.

The fact that L,/\ is independent of x (Fig. 16) in the
decay region where Re, decreases rapidly with increasing x
[Fig. 15(b)] is evidence against e~u'3/L,, not only in the
context of ¢=0 single-scale solutions of Eq. (12), but also in
the context of ¢<<0 single-scale solutions of Eq. (12).
Indeed, Eqgs. (37) and (41) are consistent with U..(d/dx)u’?
~-u"3/L, only if c=—1, in which case Rey=u’\/v is inde-
pendent of x because of Egs. (37) and (39) and therefore in
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FIG. 20. (Lu/)\)/Re(l)/ 3 as a function of x/x, along the centerline (a) for the
four different fractal grids and U,=5.2 m/s and (b) for the fractal grid
SFG17 and three different inlet velocities U.,.

conflict with our experimental observations and those in
Refs. 12 and 13. In fact, the downstream decreasing nature of
Re, in the decay region of our fractal-generated turbulent
flows imposes —1 <c=0.

G. The energy spectrum E (k)

The results of Secs. IV D-IV F imply that the small-
scale turbulence far downstream of low-blockage space-
filling fractal square grids is either fundamentally different
from the small-scale turbulence in documented boundary-
free shear flows and decaying wind tunnel turbulence origi-
nating from a regular/active grid, or e~u'3/L, does not hold
in these non-fractal-generated flows where the length-scale
ratio L,/\ is proportional to Re, if one assumes e~u'3/L,.

Our results therefore shed serious doubt on the univer-
sality of e~u'3/L,, the cornerstone assumption present ei-
ther explicitly or implicitly in most if not all turbulence mod-
els and theories.' ™% However, our data do not allow us to
educe with full confidence a formula for the dissipation rate
€ in turbulence generated by space-filling fractal square
grids. This issue is related to the fact that while an exponen-
tial turbulence decay [Eqgs. (10) and (11)] fits our data well,
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FIG. 21. SFG17 grid in the 7-0.46 tunnel with U,=5.2 m/s along the
centerline. Compensated 1D energy spectra normalized using (a) u’? and A
or (b) u'? and L,. Spectra from different centerline positions x/x, collapse
over all wavenumbers.

the Re, dependence of N which follows from it in a self-
preserving single-length scale context does not. Qualitative
observations of the x-dependence of L, and N may suggest
that the turbulence decay is in fact a power law of the type
(37), rather than exponential, albeit with a power-law expo-
nent large enough (i.e., ¢ close enough to 0) for the exponen-
tial form to be a good fit. An attempt at addressing this issue
is made in the following and final Sec. IV H. This attempt
relies on the results of our examination of energy spectra and
the single-length scale assumption which we now report.
Seoud and Vassilicos' studied the downstream evolution
of the 1D energy spectrum E,(k,,x) in the decay region of
space-filling fractal square grids and found that, for a given
velocity U,, E,(k,,x) can be collapsed for different
downstream positions and for all our fractal grids in terms of
Eq. (31) where [ is replaced by either N or L,. Indeed,
E, (k)=u"*\F (k) and E,(k,)=u'*L,F,(k.L,) collapse the
entire spectral data equally well at a given inlet velocity U,
a fact which we confirm in Figs. 21(a) and 21(b). These
figures clearly support George and Wang’s26 single-length
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scale assumptions (16) and (31) (see the Appendix for some
additional observations on the scaling of the highest wave-
numbers).

However, Seoud and Vassilicos'® did not attempt to col-
lapse energy spectra for different inlet velocities U... We
therefore compare the energy spectra obtained at the same
position downstream of the same fractal grid but with differ-
ent inlet velocities U,,. In Figs. 23(a) and 23(b), we report
such results obtained at x/x,=0.62 with the SFG17 grid.
These figures are representative of all other such results
which we obtained with our other fractal grids and at other
positions but which we do not present here for economy of
space. From these figures, the form E,(k,)=u'>\F,(k,\) may
seem to offer a much better collapse for different inlet ve-
locities U., than E,(k,)=u'’L,F,(k.L,).

The discrepancy of the form E,(k,)=u'’L,F,(k,L,) is
mostly at the high wavenumbers and is made evident by our
compensation of the spectra by (k,L,)>>. It might be tempt-
ing to conclude that / is different from L, and in fact equal to
N, but such a conclusion would be incompatible with
E,(k,)=u'*\F (k) because Eqgs. (32) and (33) would then
lead to the inconsistency that [ is in fact not different from
L,. The fact that L,/\ grows with Re, at least for the range
of Re, values considered here, suggests that we should be
considering a spectral form E,(k,)=u'?lF,(k,Re,,*) with-
out neglecting the dependencies on Re, and perhaps even .

We have seen Sec. IV F that much of the scaling of L, is
controlled by L, i.e., L,~ L to a first scaling approximation,
and that L, does not vary significantly with U... Figure 23(b)
suggests that the plot of E,(k,)/(u'’L,) versus kL, is also
imperceptibly dependent on U, at the lower values of k,L,
but not at the higher ones. These three observations can all
be explained if the assumption is made that

Z(XO,RC(), *) = Lo, (42)
and that
F (k0 Regy, *) = f,(k)H (k] Rey"), (43)

where n>0 and H, is a monotonically decreasing function
which is very close to 1 where k,/ Re;" <1 and very close to
0 where k[ Rey" > 1. There may be residual dependencies on
the geometry of the fractal grid, i.e., on *, but we do not have
enough fractal grids in our disposal to determine them. Once
again, this is an issue for future study.

Equations (31), (38), (42), and (43) can readily account
for the behavior observed in Fig. 23(b). Combined with Eq.
(32), Egs. (42) and (43) also imply that L, scales with L,
provided that f, is a decreasing function of k[ where
k> 1. Figures 20(a) and 20(b) would then suggest that 8 in
Eq. (33) scales as Rey'". It is the function H,(k, Rey") in
Eq. (43) which makes this scaling possible. In fact, if
fu~ (kD)P, where kI>1, then Egs. (33), (38), and (42)
imply A~ L, Re(;"@_p 2. Note that the Kolmogorov-like
exponents p=5/3 and n=3/4 (see Refs. 1-3) yield
A~ Ly Re;""? identically to Eq. (34) which follows from the
¢=0 single-length scale solution of the spectral energy equa-
tion (12).

The good collapse in terms of both forms E,(k,)
=u'>\F,(k\) and E,(k,)=u'L,F (k.L,) in Figs. 21(a) and
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sated 1D energy spectra measured at x/x,=0.62 and normalized using (a)
u'? and \ or (b) u'? and L,. Spectra corresponding to our different grids
appear to collapse over all wavenumbers.

21(b) comes from the fact that all data in these figures are
obtained for the same value of Re, and the same fractal grid,
and that L,/\ does not vary with x. These figures are there-
fore also consistent with Eqs. (42) and (43). The good col-
lapse of the form E,(k,)=u'’L,F,(k.L,) in Fig. 22(b) is
mainly a consequence of the fact that the fractal grids SFGS,
SFG13, and SFG17 all have the same value of L, and can
also follow from Egs. (42) and (43). However, the apparently
good collapse of the form E,(k,)=u'*\F,(k,\) in Fig. 22(a)
must be interpreted as being an artifact of the limited range
of values of thicknesses #, that we experimented with (see
Table I), more limited than the range of inlet velocities U.,
which allows the Re(l)/3 scaling of L,/\ to be picked up by
our spectra in Fig. 23(b) but not in Fig. 22(b).

Returning to Fig. 23(a) we notice that it does not, in fact,
present such a good collapse of the data, particularly over the
range of scales where the collapse in Fig. 23(b) appears
good. Within the framework of Egs. (42) and (43), the sem-
blance of a perhaps acceptable collapse in Fig. 23(a) results
from a numerical circumstance to do with the exponents n
and p. Choosing p=5/3 and n=3/4 for the sake of argu-
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FIG. 23. SFG17 in the T—0.46 tunnel. (a) Compensated 1D energy spectra
normalized by the Taylor microscale \. (b) Compensated 1D energy spectra
normalized by the large-scale properties measured on centerline downstream
fractal grid SFG17 for different inlet velocities U, (x/x,=~0.62 on the
centerline).

ment, Egs. (31), (38), (42), and (43) would imply that the
quantity plotted in this figure, i.e., (k,\)>3E,(k,)/(u'?\), is in
fact equal to Re;*H, (kA Rey'"”) in the range which would
correspond to kK, A=0.1 in the figure. Over the range of
inlet velocities tried here, Rea”9 remains about constant
while Rea” 3 varies a bit thus producing the effect seen in
Fig. 23(a): a slight dependence on U,, of the plateau and a
semblance of a collapse of the dissipative range of the
spectra.

The conclusion of this data analysis is that the self-
preserving spectral form

Eu(kx) = urzlfu(kxl)Hu(kxl Rean)’ (44)
with
4 1/2
l=L0|:1+ZL|C|(x—x0):| (45)
(=]

is consistent with the theory of George and Wang26 and with
our measurements in the decay region in the lee of our fractal
square grids. We must stress again that future work is re-
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FIG. 24. SFG17 grid in the 7-0.46 m tunnel with three different inlet
velocities. (a) Fit (46) of centerline \ data. (b) Fit (50) of centerline u'? data.

quired with a wider range of fractal grids, measurement po-
sitions, and inlet velocities in order to reach definitive con-
clusions confidently valid over a wider range of parameters.

H. Exponential versus power-law
turbulence decay

We close Sec. IV with a discussion of how the exponen-
tial turbulence decay (25) corresponding to the ¢=0 solution
and the power-law turbulence decay (37)—(39) corresponding
to —1 <¢<<0 solutions might fit together into a single frame-
work. We already commented straight under Eq. (40) that the
power-law form (37) tends to the exponential form (25) and
that the Taylor microscale N becomes asymptotically inde-
pendent of x—x in the limit c— 0. We now attempt to fit
expression (37) to our decay region data and compare it with
our exponential fit (10) [which is consistent with Egs. (25)
and (26)]. To do this, we start by fitting Eq. (39) to our
Taylor microscale decay region data using some of the re-
sults reached in the previous subsection for our range of
experimental parameters, namely, S~ Rey"? and (xq)=L,.
We therefore reformulate Eq. (39) as follows:
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TABLE V. Estimates of the coefficient vy for the grid SFG17.

U, (m/s) 5.2 10 15
b% 0.23 0.2 0.13
A2 ( X =X )
— =5 = 1 + . 46
L(2) Reazl 3 4 Xy (46)
where
4a|c|
= . 47
7= Rey (47)

We have, in effect, arbitrarily set to 1 a Rej-independent
dimensionless parameter (or, if /3~Re{)” 3 is somewhat
faulty, perhaps even a weakly Rej-dependent parameter)
multiplying the left hand side of Eq. (46). However, most of
the potential dependence remains intact in this relation, in
particular as vy is a priori Rey-dependent.

Relation (46) is plotted in Fig. 24(a) for the SFG17 grid
and for all our inlet velocities U... From these curves it is
easy to estimate 7y independently of the virtual origin x,, and
we report our results in Table V.

We can now attempt to fit (37) to our turbulence decay
data. Equation (37) can be recast in the form

. 2Es(x0)) 1—c {
In(u )—ln( 31xy) + e In| 1+

4valc|
l(xO)ZUoc

(x=xp) |-

(48)

The observed near constancies of N and L, in the decay
region suggest from Egs. (39) and (41) that
(4valc|/1(xp)*U..) (x—xp) < 1.

It is therefore reasonable to consider the first order ap-
proximation of Eq. (48), which is

In(u’?) = 1n< 2Es(x0)) . ( 1- c){ 4valc| (x—xo)],

31(x,) 2¢ /| 1(xp)*U.,
(49)
and which can be reformulated as
2FE -
In(u'?) = ]n( SOCO)) + 5<x xo)’ (50)
31()60) X

with 8=vy(1-c)/2c. This linear formula makes it easy to
determine & from our experimental data independently of
E(x)/l(xy) and x,, as indeed shown in Fig. 24(b) where
Eq. (50) actually appears to fit our data well for all inlet
velocities U,.. Our resulting best estimates of the dimension-
less parameter & are reported in Table VI. This parameter
appears to be Rejp-independent, in agreement with the
Rejp-independence of the turbulence intensity reported in
Fig. 6(b).

TABLE VI. Estimates of the coefficient ¢ for the grid SFG17.

U.. (m/s) 5.2 10 15
o —-23 —-22 —24
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TABLE VII. Estimates of the coefficients a and ¢ for the grid SFG17.

U.. (m/s) 52 10 15
c —0.053 —0.048 —0.028
a 20.6 24.6 31.3

The dimensionless coefficients a and ¢ can now be ob-
tained from our estimates of y and & using ¢=7/(26+y) and

R
a:%|5+ 2. (51)

In Table VII, we list the values thus obtained for ¢ and a. It
is rewarding to see that ¢ turns out to be negative and in fact
larger than —1. Of particular interest is the finding that
¢ — 0 with increasing Re, and that the values of ¢ are indeed
quite close to O for all our inlet velocities. These results
suggest that the single-length scale power-law turbulence de-
cay (37) tends toward the exponential turbulence decay (25)
with the dimensionless coefficient a given by Eq. (51). Equa-
tion (51) is in fact equivalent to Eq. (26) which we obtained
by fitting our turbulence intensity data with an exponential
decay form. The Taylor microscale A also tends to an
x-independent form with increasing Re, because y— 0, and
so does

L,=aLy[1 + y(x —x¢)/x,]"? (52)

[obtained from Egs. (41) and (42)]. Indeed, we checked that
in the decay regions of our fractal-generated turbulent flows,
Eq. (52) provides a good fit of our L, data with the same
values of vy as the ones listed in Table V and with a dimen-
sionless constant (a=~0.34 in the case of the SFG17 grid) for
all our inlet velocities U.,.

The dissipation rate € is given by Eq. (40) in the context
of the power-law decaying single-length scale turbulence and
it is easy to check that Eq. (40) tends to Eq. (29), the dissi-
pation rate form of the c=0 exponentially decaying single-
length scale turbulence, as Re increases. Of course, this as-
sumes that y and ¢ tend to O in that limit as the extrapolation
of our fits would suggest. Equation (36) is incompatible with
the view that power-law decaying single-length scale turbu-
lence tends toward exponentially decaying single-length
scale turbulence in the limit Rey— c°.

Similarly, the empirical scaling of Eq. (35), i.e.,
A~L, Real/ 3, is also incompatible with such a gradual
asymptotic behavior. If use is made of Eq. (51), or equiva-
lently Eq. (26), Eq. (39) shows that, as Re, grows, \ tends
toward A ~ L Reg” 2, the form predicted by the exponentially
decaying single-length scale solution [see Eq. (34) and the
argument leading to it].

We noted in Sec. IV G that an energy spectrum with a
power-law intermediate range, i.e., f,~(k/)”, where
k.>1, and a spectral form (31) with Egs. (43), (38), and
(42) implies A~L, Re(_)"(3_p 2 We also noted that the
Kolmogorov-like exponents n=3/4 and p=5/3 yield
A~L, Real/ 2. We are now suggesting that fits of the expo-
nent n(3-p)/2 might tend to 1/2 as Re, increases. This
seems consistent with our observation that fits of the inter-
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10

FIG. 25. (k,L,)PE,(k,)/(u'*L,) vs kL, for the value of the exponent p which
gives the most horizontal plateau. Data obtained with the SFG17 grid at
x/x,=0.62 on the centerline of the 7-0.46 m tunnel with three different
inlet velocities. The exponent p seems to increase toward 5/3 with increas-
ing U,. (p=1.50 for U,,=5.2 m/s, p=1.57 for U,,=10 m/s, and p=1.60 for
U,=15 m/s).

mediate form f,~ (k)™ to our spectral data lead to
p=150 for U,=5 m/s, p=1.57 for U,=10 m/s, and
p=1.60 for U,=15 m/s (see Fig. 25). The exponent p might
indeed be tending toward 5/3 with increasing Re,, in which
case we might also expect the exponent n to tend toward 3/4
if n(3—p)/2 tends to 1/2.

V. CONCLUSIONS AND ISSUES RAISED

There are two regions in turbulent flows generated by
the low blockage space-filling fractal square grids experi-
mented with here. The production region between the grid
and a distance about 0.5x, from it and the decay region be-
yond 0.5x,. In the production/decay region, the centerline
turbulence intensity increases/decreases in the downstream
direction. The wake-interaction length scale x, is determined
by the large scale features of our fractal grids, x*=L(2)/t0, but
it must be kept in mind that one cannot change 7, and/or L,
without changing the rest of the fractal structure of these
fractal grids. The downstream evolution of turbulence statis-
tics scales on x, and can be collapsed with it for all our grids.
However, it must be stressed that we tested only four fractal
grids from a rather restricted class of multiscale/fractal grids
and we caution against careless extrapolations of the role of
this wake-interaction length scale to other fractal grids. For
example, Hurst and Vassilicos'? experimented with a low ¢,
space-filling fractal square grid which seemed to produce
two consecutive peaks of turbulence intensity instead of one
downstream of it. A wider range of wake-interaction length
scales should probably be taken into account for such a frac-
tal grid, an issue which needs to be addressed in future work
on fractal-generated turbulence.

While the turbulence in the production region is very
inhomogeneous with non-Gaussian fluctuating velocities, it
becomes quite homogeneous with approximately Gaussian
fluctuating velocities in the decay region. Unlike turbulence
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decay in boundary-free shear flows and regular grid-
generated wind tunnel turbulence where L,/N and Re,
change together so that their ratio remains constant, in the
decay region of our fractal-generated turbulent flows L,/\
remains constant and Re, decreases as the turbulence decays.
This very unusual behavior implies that L,/\ ~Re, and the
Richardson—Kolmogorov cascade are not universal to all
boundary-free weakly sheared/strained turbulence. In turn,
this implies that e~u'3/L,, is also not universally valid, not
even in homogeneous turbulence as our fractal-generated tur-
bulence is approximately homogeneous in the decay region.
Inlet/boundary conditions seem to have an impact on the
relation between L,/N and Reynolds number. The issue
which is now raised for future studies is to determine what it
is in the nature of inlet conditions and turbulence generation
that controls the relation between the range of excited turbu-
lence scales and the levels of turbulence kinetic energy.
While the general form L,/\=Re}? fct(x—xo/Lz) may be
universal, including fractal-generated turbulent flows, the ac-
tual function of x—x,/Lg in this form is not and can even be
of a type which does not allow to collapse the x and Re
dependencies by the Richardson—Kolmogorov cascade form
L,/N~Re,.

This issue certainly impacts on the very turbulence in-
terscale transfer mechanisms, in particular, vortex stretching
and vortex compression which are considered to have quali-
tatively universal properties such as the tear drop shape of
the Q-R diagram.7 Multi-hot-wire anemometry37 applied to
turbulence generated by low-blockage space-filling fractal
square grids may have recently revealed very unusual Q-R
diagrams without clear tear-drop shapes.38 Fractal-generated
turbulence presents an opportunity to understand these inter-
scale transfer mechanisms because it offers ways to tamper
with them.

The decoupling between L,/\ and Re, can be explained
in terms of a self-preserving single-length scale type of de-
caying homogeneous turbulence®® but not in terms of the
usual Richardson-Kolmogorov cascade (Refs. 2—4 and 36)
and its cornerstone property, e~ u'3/L,. This self-preserving
single-scale type of turbulence allows for L,/\ to increase
with inlet Reynolds number Re,, as we in fact observe. This
is a case where the range of excited turbulence scales de-
pends on a global Reynolds number but not on the local
Reynolds number.

Our data support the view (both its assumptions and con-
sequences) that decaying homogeneous turbulence in the de-
cay region of some low-blockage space-filling fractal square
grids is a self-preserving single-length scale type of decaying
homogeneous turbulence.¢ Furthermore, our detailed analy-
sis of our data suggests that such fractal-generated turbulence
might be extrapolated to have the following specific proper-
ties at high enough inlet Reynolds numbers Rey:

E, (k. x) = 1"*(x)Lo(k Lo)™"H, (kLo Reg™™), (53)
u'(x) = ufre >, (54)
€~ 3u'*U,/x,, (55)
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Lu -~ LO’ (56)

A~ Ly Rep'"?, (57)

where both L, and A are independent of x. A more detailed
account of our conclusions involves the two types of single-
scale solutions of the spectral energy equation, the ¢=0 and
the —1 <c¢ <0 types introduced in Secs. IVD and IV E. In
Sec. IV H, we showed how our data indicate that the turbu-
lence in the decay region is of the —1<c<<0 type with a
value of ¢ which tends to 0 as Re increases. This is why we
stress the asymptotic extrapolations (53)—(55) and (57) in
this conclusion.

Our data require a very clear departure from the usual
views concerning high Reynolds number turbulence.'”°
There is definitely a need to investigate these suggested
high-Re, properties further. Measurements are needed with a
wider range of fractal grids and a wider range of inlet veloci-
ties in perhaps a wider range of wind tunnels and with a
wider range of measurement apparatus: x-wires, multi-hot-
wire anemomet1’y37’38 and particle image velocimetry. Direct
numerical simulations of fractal-generated turbulent flows
are only now starting to appearso’32 and their role will be
crucial. Among other things, these studies will reveal depen-
dencies on inlet/boundary geometrical conditions * which we
have not been able to fully determine here because of the
limited range of fractal grids at our disposal.

A quick discussion of the features of extrapolations
(53)—(57) reveals the various issues that they raise. The first
issue which immediately arises is the meaning of Rey— .
We cannot expect this limit to lead to Egs. (53)-(57) if it is
not taken by also increasing the number N of iterations on
the fractal turbulence generator. How do our results and the
extrapolated forms (53)—(57) depend on N?

Second, in the extrapolated spectral form (53), we as-
sumed that the exponent p tends to 5/3 in the high-Re, limit
and have therefore, in particular, neglected to consider any
traditional small-scale intermittency corrections (see Ref. 2).
This may be consistent with the observation of Stresing
et al.'” that small-scale intermittency is independent of Rey
in the decay region of our flows. However, it is not clear why
p should asymptotically equal 5/3 in the non-Kolmogorov
context of our self-preserving single-scale decaying homoge-
neous turbulence. In particular, the inner length scale
Ly Rey** differs from the Kolmogorov microscale (1°/€)!*
which scales as Ly Reg”*(ry/Ly)"*(u' 1 U..)~"? if account is
taken of Eq. (55). If Ly Rey>’* in Eq. (53) was to be replaced
by this Kolmogorov microscale, then Eq. (57) would fail and
the single-length scale framework of George and Wang26
would fail with it.

Third, Eq. (55) suggests that the kinetic energy dissipa-
tion rate per unit mass is proportional to u'? rather than u'3
and that the turnover time scale is the global x,/U,, rather
than the local L,/u’. What interscale transfer mechanisms
cause one or the other dependencies, and what are the im-
plied changes in the vortex stretching and vortex compres-
sion mechanisms hinted at by the recent preliminary Q-R
diagram results of Kholmyansky and Tsinober?™® These is-
sues directly address the universality questions raised in Sec.

Downloaded 13 Jul 2010 to 155.198.172.98. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



075101-24  N. Mazellier and J. C. Vassilicos

1400
o x/x =053
* XX, =071 e
1200 ) 9
o x/x,=0.89 &0
e
— 1000 4
1
Y]
= 800 H
~.
>
w
~~ 600 i
>
—
x
X

400

200

8 :
O% o Xx/x,=0.53
*

s x/x, = 0.71Y
? x/x, = 0.89

a

(b)

FIG. 26. Compensated 1D energy spectra for several positions downstream
from the SFG17 grid in the 7-0.46 tunnel with U,=5.2 m/s along the
centerline. (a) Compensation with large scale variables u’ and L,, (b) Com-
pensation with Kolmogorov variables.

I and depend on the mechanisms of turbulence generation in
the production region and the mechanisms which force im-
portant features of particular turbulence generations to be or
not to be remembered far downstream from the initial gen-
erator. What is the role of coherent structures, large or small,
in shaping the type of homogeneous turbulence which de-
cays freely in the decay region?

Fourth, is it possible that turbulence in various instances
in industry and nature (e.g., in or over forest canopies, coral
reefs, complex mountainous terrains, etc.) might appear as a
mixture of single-scale self-preserving turbulence and
Richardson—-Kolmogorov turbulence? Could such mixtures
of two types of different turbulence give rise to what may
appear as Reynolds number and intermittency corrections to
the usual Richardson—-Kolmogorov phenomenology and scal-
ings? Given Fig. 26 in the Appendix, the turbulence studied
here may already, itself, be a mixture of some sort.

As a final note, it is worth comparing Eq. (55) with the
usual estimate e=Cu'?/L,, which can also be seen as a gen-
eral definition of the dissipation constant C.. One gets

Phys. Fluids 22, 075101 (2010)
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FIG. 27. Compensated 1D energy spectra for several positions downstream
from the SFG17 grid in the 7-0.46 tunnel with U,=5.2 m/s along the
centerline. Compensation with Kolmogorov scaling.

3 (t/Loy)

< sWiUL)’ (58)

where use has been made of the estimate L,~0.2L, ex-
tracted from Fig. 19. The dissipation constant C, is not only
clearly not universal, it can also be given bespoke values by
designing the geometry of the turbulence-generating fractal
grid, i.e., by changing the aspect ratio #y/L,. Furthermore,
while a constant and universal value of C, would imply that
given a value of L, the level of turbulence dissipation cannot
come without an equivalent predetermined level of turbu-
lence fluctuations, Egs. (55) and (58) show that it actually is
possible to generate an intense turbulence with reduced dis-
sipation and even design the level of this dissipation. The
implications for potential industrial flow applications are vast
and include energy-efficient mixers' and lean premixed
combustion gas turbines on which we will report elsewhere.
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APPENDIX: HIGH WAVENUMBER SCALING
OF THE ENERGY SPECTRUM

One can zoom into the highest wavenumber part of the
energy spectrum by plotting kf;Eu(kx) with respect to k,. In
Fig. 26(a) we plot (k,L,)*E,(k,)/(u'*L,) versus kL, for dif-
ferent values of x/x,. The clear collapse of the smallest
scales (highest wavenumbers) in terms of the large-scale
quantities u’" and L, is impressive and unprecedented. Figure
26(a) strengthens our conclusion, which in Sec. IV G is
based on Fig. 21(b), that our fractal-generated turbulence
has single-scale self-preserving energy spectra in the decay
region.

It is noteworthy, however, that the Kolmogorov variables
€ and v also appear to collapse the highest wavenumbers of
the energy spectrum [see Fig. 26(b) where we use the
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Kolmogorov length scale 7= (1°/€)"*], even though they do
not collapse the entire spectrum (see Fig. 27) as the large-
scale variables u#’ and L, are shown to clearly do in Fig.
21(b). Of course, collapse of the highest wavenumber part of
the spectrum with Kolmogorov variables does not require
nor imply that the Kolmogorov cascade phenomenology and
e~u'3/L, should hold. This collapse of the highest wave-
numbers with Kolmogorov variables is certainly of limited
influence as it does not affect our central observation that
L,/ N\ is not proportional to Re,, and is in fact independent of
it, in the decay region of the fractal-generated turbulent flows
considered here. The compatibility between the two different
ways to scale the highest wavenumbers of the energy spec-
trum [Figs. 26(a) and 26(b)] requires information about the
dimensionless functions f and g in Egs. (16) and (17), and is
therefore beyond the scope of the present work. However, it
is the subject of a forthcoming publication by one of the
present authors.
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