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The dimensionless dissipation rate constant C� of homogeneous isotropic turbulence is such that
C�= f�log Re��Cs�

3, where f�log Re�� is a dimensionless function of log Re� which tends to 0.26 �by
extrapolation� in the limit where log Re��1 �as opposed to just Re��1� if the assumption is made
that a finite such limit exists. The dimensionless number Cs� reflects the number of large-scale eddies
and is therefore nonuniversal. The nonuniversal asymptotic values of C� stem, therefore, from its
universal dependence on Cs�. The Reynolds number dependence of C� at values of log Re� close to
and not much larger than 1 is primarily governed by the slow growth �with Reynolds number� of the
range of viscous scales of the turbulence. An eventual Reynolds number independence of C� can be
achieved, in principle, by an eventual balance between this slow growth and the increasing
non-Gaussianity of the small scales. The turbulence is characterized by five length-scales in the
following order of increasing magnitude: the Kolmogorov microscale �, the inner cutoff scale
�*���7.8+9.1 log Re��, the Taylor microscale ��Re�

1/2�, the voids length scale �v�Re�
1/3�, and

the integral length scale L�Re�
2/3�v. © 2008 American Institute of Physics.

�DOI: 10.1063/1.2832778�

I. INTRODUCTION

In one of the most important papers ever written on fully
developed fluid turbulence, Taylor1 proved that, if the turbu-
lence is isotropic, the kinetic energy dissipation per unit
mass, �, is equal to 15�u�2 /�2, where � is the fluid’s kine-
matic viscosity, u� is the rms velocity of the turbulence, and
� is the Taylor microscale. In that same paper, Taylor1 intro-
duced and tested experimentally a relation which is now
widely regarded as the cornerstone property of fully devel-
oped turbulence, �=C�u�3 /L, where the dimensionless con-
stant C� is independent of Reynolds number in the limit of
high Reynolds number Re�u�L /�, where L is the longitu-
dinal integral length-scale of the turbulence. Since then, a
multitude of laboratory experiments and numerical
simulations2–7 concerned with isotropic homogeneous turbu-
lence seem to confirm that C� is independent of Reynolds
number in the limit of high Reynolds number, but are not
conclusive as to whether C� is universal at such high Rey-
nolds number values. In fact, the high Reynolds number val-
ues of C� seem to differ from flow to flow. At lower Rey-
nolds numbers where C� is Reynolds number dependent, C�

is, as one might expect, quite clearly not universal.
An interesting observation about the Taylor microscale �

was made by Rice8,9 and Liepmann:10,11 the average distance
between consecutive zero-crossings of a statistically station-
ary stochastic function u�x� is equal to ��u2	1/2 / ��du /dx�2	1/2

if u�x� and du /dx have Gaussian distributions centered
around zero and are statistically independent �see Appendix�.
Sreenivasan et al.12 demonstrated that this relation is a good

approximation for many different turbulence signals in many
different turbulent flows �longitudinal velocity fluctuations in
boundary layers and a wake, wall shear stress in a channel
and temperature derivatives in a heated boundary layer� and
suggested, as a result, that the assumption of Gaussianity
may, in fact, not be necessary. If u�x� is taken to be a longi-
tudinal velocity fluctuation component, then
�u2	1/2 / ��du /dx�2	1/2=u� / ��du /dx�2	1/2 is the Taylor micro-
scale � in �=15�u�2 /�2. This Taylor microscale multiplied

by � is therefore equal to the average distance l̄ between
consecutive zero-crossings of u�x�, i.e., points x where
u�x�=0.

Sreenivasan and co-workers13 and Davila and
Vassilicos14 went one step further: they demonstrated that the
number density ns of zero-crossings of the longitudinal ve-
locity fluctuation component u�x� is a power-law function of
L /�c, where 2� /�c is the filter wavenumber of a low-pass
filter applied on u�x�. Specifically, in terms of a dimension-
less constant Cs�, Davila and Vassilicos14 found that

ns�L/�c� =
Cs�

L
�L/�c�2/3 �1�

in wind-tunnel grid turbulence at various Reynolds numbers
and for various values of �c. It may be interesting to note
that the power law �1� has been mathematically proven to
hold by Orey15 for Gaussian stochastic functions with a Fou-
rier power spectrum that has a power-law shape with a −5 /3
exponent. Turbulent velocity component fluctuations do have
such spectra but do not have Gaussian velocity derivatives. It
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is interesting that the stagnation points of turbulent velocity
signals have scaling properties which are not affected by the
non-Gaussianity of velocity derivatives.

In this paper we confirm and extend the observation of
Davila and Vassilicos14 and then combine it with the afore-
mentioned Taylor and Rice–Liepmann results to estimate the
turbulence dissipation constant C�.

II. THE DISSIPATION CONSTANT C�

IS PROPORTIONAL TO THE THIRD POWER
OF THE NUMBER Cs� OF LARGE-SCALE EDDIES:
C�= f„log Re�…Cs�

3

We start by confirming Eq. �1� by testing it for a wide
range of values of �c between � and L in two different round
jet flows �see Table I�, in “chunk” turbulence at the S1 wind
tunnel of Modane and in wind tunnel turbulence generated
by various grids �see Tables II and III�: two different classi-
cal grids �regular grids made of equidistant identical square
bars�, one fractal cross grid, and one fractal I grid �see Hurst
and Vassilicos16 for a detailed description of fractal grids,
including the ones used here, and the turbulence they gener-

ate�. All data are of u�x� on the centerline of each flow. Some
of the results are plotted in Fig. 1. For this figure, ns�L /�c�
has been obtained by low-pass filtering the signal u�x� using
a fifth order filter with filter wavenumber 2� /�c and then
counting zero-crossings of the filtered signal �we checked

that results do not change with higher order filters�; l̄ has
been obtained independently by averaging distances between
consecutive zero-crossings of the unfiltered signal. For this
and all other figures, the longitudinal integral length-scale L
has been calculated by integrating the autocorrelation func-
tion of u�x�. Furthermore, the lengths of the data sets used to

calculate ns�L /�c� and l̄ in this paper are long enough for
statistical convergence of all quantities calculated here,
something which we have systematically checked. They are
1.4�104L for fractal I grid turbulence, 9�104L for fractal
cross grid turbulence, about 104L for the Modane data, 8
�104L and 4�104L for the larger nozzle jet at Re�

�u�� /�=390 and 490, respectively, from 2.5�104L to 5
�103L for the smaller nozzle jet from 50d to 110d, and
between 104L and 6�104L for classical grid turbulence �see

TABLE I. Round air jet data used here. They were obtained by hot-wire anemometry from the jet’s centerline
by Mazellier �Ref. 17� �first line� and by Naert and Baudet �Ref. 18� �second line�. In both cases, the hot wire
diameter was of 3 �m, the sensing length to diameter ratio was 120 for Mazellier and 330 for Naert and Baudet,
and spatial velocity fluctuations were derived using the local Taylor hypothesis as described in Kahalerras et al.
�Ref. 19�. The spatial hot-wire resolution ranges between 5� at x=60d and 1.8� at x=110d in the case of
Mazellier’s �Ref. 17� data and is 7.7 and 11.3�, respectively, for the data of Naert and Baudet �Ref. 18�. The
frequency resolution ranges between 7.2 and 39.3 Kolmogorov frequencies from x=60 to x=110d in the case
of Mazellier’s �Ref. 17� data and is 3.8 and 5.7 Kolmogorov frequencies, respectively, for the data of Naert and
Baudet �Ref. 18�.

Nozzle
diameter Exit velocity

Streamwise distance
from nozzle

Turbulence
intensity Re� L

d=2.25 cm 50 m /s 50d, 60d, 70d, 80d,
90d, 100d, 110d

26% 380 4.7 cm to 10.3 cm

d=5 cm 18 m /s and 30 m /s 50d 28% and 27% 390 and 490 12 cm and 10.4 cm

TABLE II. �i� Wind tunnel grid-generated �except in Modane� turbulence data used here. They were obtained by hot wire anemometry from the tunnel’s
centerline by Mazellier �Ref. 17� with a classical grid �first line�, by the current authors with a classical grid �second line� and a fractal I grid �Ref. 16�
corresponding to Fig. 17e in Hurst and Vassilicos �Ref. 16� �fourth line�, by Hurst and Vassilicos �Ref. 16� with a fractal cross grid corresponding to Fig. 3�c�
in their paper �third line� and by Malecot and Gagne �Refs. 19 and 20� in wind tunnel S1 at Modane �fifth line�. The Modane data are of so-called “chunk”
turbulence �Refs. 19 and 20� which is not grid-generated. The section size and length are the wind tunnel test section’s. The mesh size is the mesh size M of
the classical grid �square bars� or the effective mesh size Meff of the fractal grid �Ref. 16�. The blockade ratio is that of the grid. We used the same hot wire
as Hurst and Vassilicos �Ref. 16�, i.e., 5 �m wire diameter and sensing length to diameter ratio of 200. Mazellier �Ref. 17� and Malecot and Gagne �Refs. 19
and 20� used a 3 �m diameter wire with a sensing length to diameter ratio of 120. The spatial hot-wire resolution ranges between 1.3 and 3.6� for Mazellier’s
�Ref. 17� data, between 2.1 and 3.8� for the data of Hurst and Vassilicos �Ref. 16� between 1.5 and 6� for our data and is about 1.5� for the Modane data.
The frequency resolution varies from 5 to 90 Kolmogorov frequencies for Mazellier’s �Ref. 17� from 3 to 5 Kolmogorov frequencies for the data of Hurst and
Vassilicos �Ref. 16� and is around 2 Kolmogorov frequencies for the Modane data. For our data, it ranges between 5 and 100 Kolmogorov frequencies. We
used a DISA 55M10 anemometer which has a 50 kHz frequency response with the wire we used, well above the highest resolvable frequencies for our wire
and flow speeds. Our acquisition card is NI9215 �USB NI Compact DAQ� with 16 bit resolution. Our signal to noise ratio ranges between 36 and 48 dB. Our
calibration procedure was made using a Pitot tube before and after each run and King’s law was used for the conversion from voltage to velocity. We also
monitored the temperature during measurements to make sure that no compensation for temperature drift was needed. The local Taylor hypothesis described
in Kahaleras et al. �Ref. 19� was used to derive spatial velocity fluctuations in all the flows of this table.

Section size Section length Mesh size Blockade ratio

Classical grid 75 cm�75 cm 4 m M =7.5 cm 34%

Classical grid 46 cm�46 cm 5 m M =3.2 cm 34%

Fractal cross grid 91 cm�91 cm 5.4 m Meff=5.7 cm 21%

Fractal I grid 46 cm�46 cm 5 m Meff=3.55 cm 25%

Modane 24 m diameter N.A. N.A. N.A.
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Tables I–III for details on these data and related notation�.
High frequency noise generates its own stagnation points and
we took care in removing them by filtering out the frequen-
cies where the noise dominates the power spectrum. We veri-
fied our procedures on known functions such as sine waves
and chirps with various degrees of added noise.

We find, in all turbulent flows tried here, that an inner

cutoff scale �* exists such that l̄ns�L /�c��1 for �*	�c,
and that Eq. �1� holds in the range of scales �c between the
inner cutoff scale �* and L. This means that �* is the inner
cutoff scale below which one does not find new stagnation
points. Furthermore, the dimensionless constant Cs� is there-
fore well-defined in the range of scales �c between the inner
cutoff scale �* and L but turns out to be different for differ-
ent turbulent flows. Cs� calculated as in Fig. 1 is only weakly
dependent on streamwise distance from the nozzle in the
centerline round jet turbulence and also weakly dependent on
streamwise distance from the grid in the centerline wind tun-
nel turbulence �see Fig. 3 below�. This holds for all grids, the
classical, the fractal cross and the fractal I grids. However, as
can be seen in Fig. 1, Cs� differs from flow to flow; for ex-
ample, it is significantly larger for classical grid turbulence
than for jet turbulence.

It is important to realize that Cs� is a dimensionless con-
stant characterizing the largest eddies of the turbulence. In-
deed, Fig. 1 demonstrates that the value of Cs� can be ob-
tained unaltered after low-pass filtering a turbulence data set
irrespective of the filter size �c, as long as �c is between �*
and L.

This observation is important because the average dis-
tance between consecutive zero-crossings is ns

−1�L /�*�. Fol-
lowing Rice8,9 and Liepmann,10,11 we may write ns

−1�L /�*�
=��. However, we define the constant B by ns

−1�L /�*�
=B� in the expectation that the proportionality ns

−1�L /�*�
�� may hold in turbulent flows even though they are non-
Gaussian but that the constant B may differ from � as a
result of this non-Gaussianity �see Appendix�. Defining the
dimensionless constant A��* /�, where �= ��3 /��1/4 is the
Kolmogorov microscale, setting �c=�* in Eq. �1� and using
it in conjunction with ns

−1�L /�*�=B�, Taylor’s relation �
=15�u�2 /�2 and �=C�u�3 /L, it then follows that

C� = �15B2�3/2
 Cs�

A2/3�3

. �2�

We define K��15�2�3/2�1801.3. We also introduce B
=C� so that Eq. �2� may be recast as C�=K�CCs� /A2/3�3.

TABLE III. Wind tunnel turbulence data used here, presented in the same order as in Table II. See caption of
Table II for details.

Mean inlet velocity
Streamwise distance

from grid
Turbulence

intensity Re� L

9 and 16 m /s 35M, 38M, and 42M 3.3% 130 and 180 6.0 to 6.6 cm

2.5, 5, and 10 m /s 40M 2.5% 39, 56, and 82 3.2 to 2.2 cm

6, 8, and 16 m /s 75Meff 2.7% 91, 111, and 189 5.8 cm

10 m /s 65Meff, 72Meff, and 83Meff 7% 238 6.3 cm

20, 20.7, and 20.8 m /s N.A. 7.3% 1918, 2263, and 2486 1.6 to 2.1 m
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FIG. 1. Plots of �a� log�l̄ns� vs log�L /�c� �to the left� and of �b� Cs�
=nsL�L /�c�−2/3 vs log�L /�c� �to the right� for longitudinal velocity fluctua-
tions u�x� obtained on the centerline of four different turbulent flows: a
round air jet with nozzle diameter d=2.25 cm �streamwise distance from the
nozzle 50d, but we have confirmed the 2 /3 power law with data from 60d,
70d, 80d, 90d, 100d, and 110d�; turbulence generated by a classical grid in
a square 75 cm�75 cm wind tunnel �mean inlet velocity 9 m /s and stream-
wise distance from grid 42M, but we have confirmed the 2 /3 power law
with data from 35M and 38M and mean inlet velocities 9 and 16 m /s�;
turbulence generated by a fractal I grid �streamwise distance from grid
83Meff, but we have confirmed the 2 /3 power law with data from 65Meff and
72Meff�; and “chunk” turbulence in the S1 wind tunnel of Modane �Re�

=2263, but we have confirmed the 2 /3 power law with the other two
Modane data sets�. Summary descriptions of these data can be found in
Tables I–III.
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Note that, to obtain this equation, we do not need to assume
that C� is independent of Reynolds number. As Cs� is Rey-
nolds number independent, any Reynolds number depen-
dence of C� will have to come from Reynolds number de-
pendencies of A and/or B.

Equation �2� is a remarkable relation because it suggests
that the small-scale dissipation rate, represented by the di-
mensionless number C�, is directly and strongly dependent
�C�
Cs�

3� on the large-scale dimensionless number Cs�. This
large-scale number is something like a number of large-scale
eddies within an integral scale. Modify this number and you
modify the normalized turbulence dissipation rate C�. This
may be the reason why the high Reynolds number values of
C� obtained in various laboratory and numerical
experiments2–7 seem to differ from turbulent flow to turbu-
lent flow. In Fig. 2 we plot C� as a function of Re� for a total
of 27 different u�x� data sets from 7 different turbulent flows
�Tables I–III�.

It is clear from Fig. 2 that C� varies significantly from
flow to flow and also with Reynolds number. A plot of Cs�

calculated from Eq. �1� with �c=�*, i.e., Cs�
=ns�L /�*�L�L /�*�−2/3, is given in Fig. 3 as a function of Re�

for the same turbulence data sets. A calculation of �* is
required prior to that of Cs�, and this is achieved by fitting a
straight line of 2 /3 slope to the L /�c-dependent side of the
data in Fig. 1�a� and finding the intersection of this line with

the horizontal line log�l̄ns�=0 in that figure. We estimate
log�L /�*� from the value of log�L /�c� where this intersec-
tion occurs and plot the resulting A=�* /� as a function of
Re� in Fig. 3. We find that A�7.8+9.1 log Re� is a reason-
able fit for all 27 data sets from our 7 different turbulent
flows in the range of Reynolds numbers covered. �Other
functional forms could be used to fit these data, such as
a1�1+a2Re�

b�, but they either lead to significantly worse fits
if b is constrained to be positive, or to a satisfactory fit but
with a negative value of b which, as we explain in the para-
graph which contains Eq. �3�, runs counter to the dual re-
quirement that C� should be finite and the small-scale turbu-
lence increasingly non-Gaussian in the limit Re�→�.� This
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FIG. 2. Lin-log plots of C�, A−2, C�A
2 /K, Cs�

3, and K�Cs� /A2/3�3 as functions of Re�. To calculate C� we use C�u�3 /L=15���du /dx�2	. To calculate Cs� we use
Cs�=L�L /�*�−2/3ns�L /�*� with �*=A�, where A is estimated as described in the main text and � is calculated from �= ��3 /��1/4 with �=15���du /dx�2	. The
constant K= �15�2�3/2�1801.3.
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means that the inner length-scale �* scales as the Kolmog-
orov microscale � modulo a logarithmic correction in Rey-
nolds number, at least in the range of Re� between about 60
and O�1000�.

This monotonic increase of A with Reynolds number
seems to account for much of the Reynolds number depen-
dence of C� in Fig. 2. We plot A−2 versus Re� in that same
figure for comparison with the plot of C� versus Re�. In
agreement with Eq. �2� which implies C��A−2, the two Rey-
nolds number dependencies look similar. Hence, Eq. �2� can
also account for much of the Reynolds number dependence
of C� via its dependence on the microscale dimensionless
number A. Plotting C�A

2 versus Re� �see Fig. 2� does remove
the systematically monotonic variability with Re� but keeps
a very significant scatter �of the order of 30%� around a
mean value which appears independent of Re�. Plotting Cs�

3

versus Re� as part of Fig. 2 for comparison with the plot of
C�A

2 versus Re� reveals an equally significant and very simi-
lar scatter in qualitative agreement with Eq. �2� which im-
plies C�A

2�Cs�
3.

The variations of Cs� from flow to flow and with Rey-
nolds number �see Fig. 3� may not be as significant as those
of C�, but those of Cs�

3 from flow to flow are definitely as
significant as those of C�A

2 from flow to flow �Fig. 2�. In
Fig. 4 we plot KCs�

3 /A2 versus C� for all 27 data sets from
our 7 different flows and find some compelling evidence that,
indeed, C� is close to being proportional to Cs�

3 /A2. This
approximate proportionality appears to hold universally, i.e.,
for all our Reynolds numbers and all our flows.

Based on the assumptions of large- and small-scale isot-
ropy �required1 for �=15���du /dx�2	�, and of Gaussianity of
and statistical independence between u�x� and du /dx �suffi-
cient requirements8–11 for ns

−1�L /�*�=B� with B=� and,
therefore, C=1�, the constant of proportionality in C�


Cs�
3 /A2 is K= �15�2�3/2�1801.3, i.e., C�=KCs�

3 /A2. How-
ever, the line C�=KCs�

3 /A2 is above our data in the left plot
of Fig. 4 indicating that this constant of proportionality is
actually an overestimate. The right plot of Fig. 4 makes this
point even more clearly by presenting the data in a particu-
larly unfavorable way; C� / �KCs�

3 /A2� is indeed close to 1, in
fact closer to 1.1, at the smaller values of Re�, and increases
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FIG. 3. Lin-log plots of A and of Cs�=L�L /�*�−2/3ns�L /�*� as functions of
Re�. The dotted line in the plot of A vs Re� is A=7.8+9.1 log Re�. Expla-
nations for how A and Cs� are calculated are given in the main text and the
caption of Fig. 2.
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FIG. 4. Plots of K�Cs� /A2/3�3 vs C� and of C� /K�Cs� /A2/3�3 as a function of
log Re�. Explanations for how A and Cs� are calculated are given in the main
text and the caption of Fig. 2. The dotted line in the top plot is
K�Cs� /A2/3�3=C� and K= �15�2�3/2�1801.3.
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towards values above 1.6 with increasing Re�. Hence, there
is a deviation from C�=KCs�

3 /A2 which increases systemati-
cally with increasing Reynolds number. Nevertheless, for the
Reynolds numbers considered, C�=KCs�

3 /A2 is not so far
from the data. This proximity to the data is surprising be-
cause of the different degrees of nonisotropy, non-
Gaussianity and statistical dependence across scales in each
one of the data sets. Each one of these data sets corresponds
to a different location and/or a different Reynolds number in
one of 7 different turbulent flows.

Of all the assumptions which together lead to C�

=KCs�
3 /A2 we home in on the non-Gaussianity of du /dx as

the weakest of them all. Relaxing this assumption does not
invalidate Eq. �2�, but forces us to consider B��, and there-
fore C�=K�CCs� /A2/3�3 with C�B /��1. As explained by
Liepmann and Robinson8–11 and in the Appendix, this con-
stant C=B /� controls, in fact, the difference between
��du /dx�	 and ��du /dx�2	1/2: C��du /dx�	=
2 /���du /dx�2	1/2

and C=1 if du /dx is Gaussian. We have calculated ��du /dx�	
and ��du /dx�2	1/2 for all our data sets and plot the resulting

values of C3 as a function of log Re� in Fig. 5. The derivative
du /dx may be close to Gaussian at our lowest Reynolds
numbers because C3 is under 1.15 there, but becomes in-
creasingly and systematically non-Gaussian as the Reynolds
number increases. The increase of C3 with log Re� matches
that of C� /K�Cs� /A2/3�3 in Fig. 4. As a result, C�

=K�CCs� /A2/3�3 fits the data much better than C�

=K�Cs� /A2/3�3 �compare Figs. 5 and 4�. We may claim that
the relation C�=K�CCs� /A2/3�3 is universal but we stress the
need to try it on yet more turbulent flows, such as turbulent
boundary layers and homogeneous shear flows, before such a
claim may be cemented.

As shown in the last plot of Fig. 5, there remain some
deviations to Eq. �2� which are all below 16% of
C� /K�CCs� /A2/3�3=1. These deviations are all such that
C� /K�CCs� /A2/3�3 is slightly larger than 1 and may be caused
by our imperfect estimation of �* and the fact that our cal-
culation of Cs� from ns�L /�c�L�L /�c�2/3 with �c=�* �rather
than some other value of �c between �* and L� does, in fact,
systematically underestimate Cs�. However, contributions to
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FIG. 5. Plots of C3 vs log Re�, C3K�Cs� /A2/3�3 vs C�, C� /C3K�Cs� /A2/3�3 vs log Re� and C3 /A2 vs log Re�. Explanations for how C, A and Cs� are calculated
are given in the main text and the caption of Fig. 2. The dotted line in the second plot is C3K�Cs� /A2/3�3=C� and K= �15�2�3/2�1801.3. The dotted curve in
the fourth plot is C3 /A2��0.87+0.11 log Re� /7.8+9.1 log Re��2.
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these deviations may also come from the remaining nonuni-
versal factors such as differing degrees of anisotropy, and
perhaps even slight non-Gaussian statistics of the large scales
and slight statistical dependencies between large and small
scales. It is surprising that these remaining factors may ac-
count, if they do, for so little of the nonuniversal behavior of
C� most of which is caused by the universal strong depen-
dence of C� on Cs�, i.e., C��Cs�

3, and the nonuniversality of
Cs�

3 which characterizes, in some sense, the number of large-
scale eddies, i.e., the topology or topography of the large
scales of the turbulence.

The Reynolds number dependence of C� results from the
slow growth �with Reynolds number� of the range of viscous
scales of the turbulence, i.e., on A=�* /��7.8+9.1 log Re�,
and from the slow increase �with Reynolds number� of the
non-Gaussianity of the small scales, i.e., C3��0.87
+0.11 log Re��2 from an approximate fit of the first plot in
Fig. 5. Just for the sake of keeping with tradition, and there-
fore rather arbitrarily, this type of fit has been chosen such
that the Reynolds number dependence of C�, which is all in
C3 /A2 because of C�=K�CCs� /A2/3�3, tends to a constant as
Re�→� �this is an assumption, usually accepted, but an as-
sumption nonetheless�. This constant turns out to be approxi-
mately 1.46�10−4. Hence, in the limit where log Re��1,

C� �
1.46�15�2�3/2

104 Cs�
3 � 0.26Cs�

3, �3�

if the assumption is made that our fits for the Reynolds num-
ber dependencies of C3 and A can be extrapolated as
log Re�→�. �Fits of the dependencies of A and C3/2 on Re�

with functional forms such as a1�1+a2Re�
b� are also possible

in principle with both positive and negative exponents b. In
the case of positive exponents b, the requirement that C�

should be finite in the limit Re�→� forces the same expo-
nent b in the fits of both A=A�Re�� and C3/2=C3/2�Re��. The
requirement that C should grow indefinitely with Re� im-
poses a positive value of b which leads to fits of significantly
lesser quality than our logarithmic fits.�

The formula C��0.26Cs�
3 predicts asymptotic constant

values of C� about seven to eight times smaller than the
usually accepted values which cluster near 0.5 �see the val-
ues of Cs�

3 in Fig. 2�. The fit C3 /A2��0.87
+0.11 log Re� /7.8+9.1 log Re��2 does reproduce values of
C� close to the usual 0.5 for Re��2000, which is the largest
in this paper and of the same order as the largest ever tried.
In the fourth plot of Fig. 5 we confirm the fit C3 /A2

��0.87+0.11 log Re� /7.8+9.1 log Re��2. The relation �3� is
an asymptotic extrapolation of this fit for very high values of
log Re�. Measurements up to values of Re� as high as 109 are
required to confirm that the asymptotic values of C� are in-
deed seven to eight times smaller than currently thought and
that the logarithmic fits on which these extrapolations are
based are indeed accurate enough.

We stress that most of the Reynolds number dependence
of C� at small to moderate values of log Re� comes from A
=�* /�=7.8+9.1 log Re�, but the non-Gaussianity of du /dx
catches up as log Re� increases bringing in its own weaker
Reynolds number dependence of C which can in principle

eventually compensate that of A. The fit C3/2�0.87
+0.11 log Re� has been chosen so as to achieve such com-
pensation.

As a final note, it may be worth pointing out that there
have been previous measurements12 of B via independent

estimations of l̄ and � and use of the Rice–Liepmann

relation,8–11 l̄=B�. In agreement with these measurements
we find that B has a weak dependence on Reynolds number
and on type of turbulent flow �see Fig. 6�. In addition to

these measurements we also estimate �v���l− l̄�2	1/2, where
l is the distance between consecutive zero-crossings and de-
fine the dimensionless constant D by �v=D�. This length
scale, which we call voids length scale, may be interpreted as
characterizing the nonuniformity in the spatial distribution of
zero-crossings and we find D�Re�

1/3 �see Fig. 6�. The weak
dependence of B on Re� can be accounted for by B=C� and
the weak dependence on Re� of C calculated as for Fig. 5.
This is confirmed in the second plot of Fig. 6.
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III. MAIN CONCLUSIONS

The gist of our conclusions can be summarized as fol-
lows: a self-similar pattern is one where the small number of
large scales is directly reflected in the large number of small
scales. Zero-crossings of turbulent velocity fluctuations form
such a pattern because of Eq. �1� and as a result, the average

distance l̄ between consecutive zero-crossings is strongly in-
fluenced by Cs� which is some sort of number of large-scale
eddies within an integral scale. This average distance is pro-
portional to the Taylor microscale � �an explanation of this
statement is given in the Appendix�. Hence, the number of
large-scale eddies directly affects the dimensionless dissipa-
tion rate C�: C�
Cs�

3. This might be the physical-space
equivalent of the Fourier-space effect recently reported by
Bos et al.21 who found numerically that C� depends on the
structure of the small-wavenumber distribution and on the
presence or absence of forcing at those wavenumbers.

It also turns out from our data analysis that the constant

of proportionality relating l̄ to � depends on the deviations
from Gaussianity of the statistics of du /dx. These deviations
turn out to increase only logarithmically with Re�, and one of
the central results of this paper is that

C� = f�log Re��Cs�
3. �4�

The dimensionless function f�log Re�� tends to 0.26 in the
limit log Re��1 if the assumption is made that C� is finite in
such a limit. This finite limit can be achieved by an eventual
balance between the slow growth of the range of viscous
scales and the slow increase in the non-Gaussianity of the
small scales. We find that f�log Re���1801.3�0.87
+0.11 log Re� /7.8+9.1 log Re��2. The numerator quantifies
the increasing non-Gaussianity of the small scales and the
denominator quantifies the slow increase of the range of vis-
cous scales of the turbulence: �*=��7.8+9.1 log Re��.

The natural length-scales to introduce in addition to the

first moment l̄ are the higher moments ��l− l̄�n	1/n for n
=2,3 , . . .. We have ended this paper’s investigation with a

note concerning n=2, i.e., �v���l− l̄�2	1/2. This length scale
characterizes the nonuniformity in the spatial distribution of
zero-crossings and we therefore call it the voids length scale.
Future work on zero-crossings of turbulence signals should
address all these length-scales and attempt to explain why �v
scales with Reynolds number like none of the other known
length scales of turbulence.
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APPENDIX: THE RICE THEOREM

To start understanding the proportionality between the

average distance l̄ between zero crossings of a random con-
tinuous function u�x� and the Taylor microscale �
= �u2	1/2 / ��du /dx�2	1/2, consider first the special case of an
on-off telegraph signal ��x�. The number of discontinuities,
and therefore zero-crossings, in this signal is equal to

��d� /dx�dx which means that the average distance between
zero-crossings is proportional to the inverse of ��d� /dx�	.

Now consider a random continuous function u�x� such
that �u�x�dx=0, and the resulting telegraph signal H�u�x��,
where the function H�y� equals 1 for y
0, 0 for y=0 and −1
for y�0. The number of zero-crossings in the random signal
u�x� is equal to the number of discontinuities of H�u�x��
which is equal to ��d /dxH�u�x���dx which, in turn, equals
���u�x���du /dx�dx in terms of the Dirac delta function. As-
suming ergodicity and using the notation v�du /dx and
P�u ,v� for the joint probability density function of u and v, it
then follows that

1/l̄ =� P�u,v���u��v�dudv .

Restricting ourselves to cases where u and v are statistically
independent, we obtain

1/l̄ = ��v�	p�u = 0� = ��du

dx
��p�u = 0� ,

where p�u� is the probability density function of u. If u is
statistically Gaussian, then 
2��u2	1/2p�u=0�=1, and

l̄ =
1

��du

dx
��p�u = 0�

= 
2�
�u2	1/2

��du

dx
�� .

If du /dx is also statistically Gaussian with zero mean,
then ��du /dx�	=
2 /���du /dx�2	1/2, thus yielding the Rice
result8,9

l̄ = �
�u2	1/2

�
du

dx
�2�1/2

.

In the case where u�x� is assumed to be a turbulent fluctua-
tion velocity component, du /dx is not Gaussian and
C��du /dx�	=
2 /���du /dx�2	1/2, where C is, in principle, dif-
ferent from 1. From such considerations, Liepmann10,11 de-

duced the following relation between l̄ and the Taylor micro-
scale �:

l̄ = B� ,

where B=C�. As shown in the present paper, deviations
from C=1 in turbulence, i.e., from ��du /dx�	
=
2 /���du /dx�2	1/2, turn out to be relatively small and grow
with Reynolds number very slowly, in fact logarithmically.
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