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Depletion of horizontal pair diffusion in strongly stratified turbulence: Comparison

with plane two-dimensional flows
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In this paper different arguments are put forward to explain why two-particle diffusion is depleted in the
direction of stratification of a stably stratified turbulence. Kinematic simulations (KSs) which reproduce that
depletion are used to shed light on the responsible mechanisms. The local horizontal divergence is studied and
comparisons are made with two-dimensional kinematic simulation. The probability density function of the
horizontal divergence of the velocity field is not a Dirac distribution in the presence of stratification but a
Gaussian and this Gaussian does not depend on the Froude number. The number of stagnation points in the KS
of three-dimensional strongly stratified turbulence is found virtually identical to what it is in KS of three-
dimensional isotropic turbulence. However, the root mean square horizontal and vertical stagnation point
velocities of the stratified turbulence are both larger than their counterparts in isotropic turbulence that latter
getting progressively smaller as the Reynolds number increases. Therefore, the strong stratification destroys the
persistence of the stagnation points. The main reason for the depletion, however, seems to have to be sought in
the effect of stratification on the strain rate tensor. The stratification does lead to a depletion of the average
square strain rate tensor, as well as of all average square strain rate eigenvalues. We conclude that it is these
effects of stratification on the strain rate tensor that explain the depletion of the horizontal turbulent pair

diffusion.
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I. INTRODUCTION

Stratification can be found in many geophysical or indus-
trial flows (e.g., diffusion of pollutants in the atmosphere or
ocean, movement and growth of clouds). The term “stratified
flow” is normally used for “flow of stratified fluid” or, more
precisely, “density stratified fluid,” and this is the meaning it
has in this paper. In these fluids, the density varies with the
position in the fluid, and this variation is important in terms
of fluid dynamics. Normally, the density variation is stable
with nearly horizontal lines of constant density, i.e., lighter
fluid above and heavier fluid below. The density variation
may be continuous, as it occurs in most of the atmosphere
and oceans, this is the case we consider in this paper, mean-
ing a fluid with a negative density gradient in the vertical
direction. In many situations the variation of density is very
small. However, this small variation can have a severe effect
on the flow if the small buoyancy forces can come into play.

One particle diffusion [10] in stratified flow has already
received much attention [2-5]. In this paper, we focus on
pair particle diffusion of fluid elements in stratified turbu-
lence.

The pair particle mean square displacement A%(7) is de-
fined as
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A%p) = < S 520 —x§1><z)}2>, (1)

i=1,3

where i is the ith component of the particle position vector x.
x) and x@ refer, respectively, to the first and second particle
and (--*) represents the ensemble average.

Richardson [6] stated that the turbulent diffusivity
(d/dt)A%(t) at time ¢ is mainly governed by the eddies of size
A(z). Tt is that hypothesis, that we refer to as the locality
assumption, that leads to the four-third law of diffusion

d
E<A2(r)> — 3GA1/361/3A'(I)4/3, (2)

where A’(f)=(A%(t))!?, € is the turbulence kinetic energy
dissipation rate per unit mass, and G, a universal dimension-
less constant called Richardson constant.

Richardson’s locality assumption can be studied by esti-
mating Richardson’s coefficient 8 defined as follows:

3G1A/361/3

u!/L1/3 (3)

B:

[7,8]. In this paper we propose to use kinematic simulations
(KSs) in order to understand better the turbulent diffusivity
properties in the direction of stratification. KSs have demon-
strated their ability to reproduce turbulent pair diffusion with
Richardson’s scaling both for isotropic turbulence [9] and for
stably stratified turbulence in the horizontal plane [8,11,12].
This scaling is clear evidence of the turbulent diffusivity’s
dependence on the pair separation.
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It is well known that stratification decreases the vertical
diffusion. Reference [7] also showed that stratification causes
a decrease of the pair diffusion in the horizontal plane. They
measured this effect of stratification on the coefficient 8. In
this paper we proposed different mechanisms in terms of
stagnation points distribution and straining rates to explain
their results and why B with stratification is smaller than its
counterpart in two-dimensional KS and independent of the
strength of the stratification.

II. NUMERICAL MODELS
A. Kinematic simulation (KS)

Kinematic simulations were first developed for incom-
pressible isotropic turbulence where incompressibility and an
energy power law spectrum are prescribed [13]. This model
is based on a kinematically simulated Eulerian velocity field
which is generated as a sum of random incompressible Fou-
rier modes. This velocity field has a turbulentlike flow struc-
ture, that is eddying, straining and streaming regions, in ev-
ery realization of the Eulerian velocity field, and the
Lagrangian statistics are obtained by integrating individual
particle trajectories in many realizations of this velocity field.

B. Boussinesq approximation

More details on the use of KS for one and two-particle
diffusion in stably stratified nondecaying turbulence can be
found in Refs. [3,4,8,11,12]. The KS model used here is
based on the Boussinesq approximation. A stably stratified
turbulence is given at static equilibrium, with pressure p(x;)
and density p(x;) varying only along the vertical axis, that is
in the direction of stratification. Hence, we have dp/dx;=
—pg, where g=(0,0,—g) is the gravity. For a stable stratifi-
cation, the mean density gradient is negative, i.e., dp/dx;
<0 as the tilting of a density surface will produce a restoring
force. From the Boussinesq approximation we have

D (p 1 dp
—(—> L @
Dt\ p pdx;

where D/Dt=4/dt+u-V is the derivative following the fluid
particle, p' the perturbation pressure, and p’ the density fluc-
tuation, this latter is much smaller than p (p’ <p) so that, in
the limit of a vanishing viscosity, the dynamic equation be-
comes

!

D 1
—u=——Vp'+p—g. (5)
Dt p p

The perturbation velocity u(x,#)=(u,,u,,u3) is taken incom-
pressible

V-u=0. (6)

C. Linearized Boussinesq equations

The initial velocity u(x,0) can involve a large range of
length scales, the smallest of these length-scale is 7, the
Kolmogorov length scale. In the limit where nonlinear terms
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FIG. 1. Craya-Herring frame.

can be neglected, that is when the micro-scale Froude num-
ber is much smaller than 1, i.e., Fr,7=u(7])/./\f17< 1, where N
is the buoyancy (Briint-Viissild) frequency and u(7) the
characteristic velocity fluctuation at the Kolmogorov scale,
the nonlinear terms in Egs. (4) and (5) can be neglected
which leads to the linearized Boussinesq equations

17C) 1 dp
e P )
ot de3
d 1
—u=--Vp' +0g. (8)
ot p

The Fourier transform u(k,7) of u(x,?) is used to solve Egs.
(7) and (8), so that the incompressibility requirement is
transformed into k-tu(k,?)=0. If e; is the unit vector in the
direction of stratification and e, e, two unit vectors normal
to each other and to e; (so that x=xe;+x,e,+xze; and
g=-ge;), the Craya-Herring frame (see Fig. 1) is given by
the unit vector k=k/k and ¢;=e;xXk/|e;xk|, ¢,=k
X ¢,/|k X ¢;|. In the Craya-Herring frame the Fourier trans-
formed velocity field u(k,z) lies in the plane defined by ¢,
and ¢, i.e.,

T(k,1) = 7,(k,1)¢; + 5o(k, e, 9)

Incompressible solutions of Egs. (7) and (8) in Fourier space
and in the Craya-Herring frame are [14]

5l(k’t) = UNl(k’O)7 (10)

5k, 1) = 5,(k, 0)cos o7 — Ok, 0)sin o7, (11)

=z

- ~ N
O(k,1) = O(k,0)cos ar + —,(k,0)sin ot, (12)
8

where 6= 6(k) is the angle between k and vertical axis e; and
o=MNsin . The initial conditions that we choose are

7,(k,0), 0,(k,0), and ©(k,0)=0 (zero initial potential), then
Eqgs. (10)—(12) become

17](k9t)=l7l(k’0)a (13)
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0,(k,1) =05(k,0)cos ot, (14)
~ N .
O(k,7) = —0,(k,0)sin ot. (15)
8

We emphasize again that the linearized Boussinesq equations
are valid for Fr<1 only.

D. Kinematic simulation of stratified
with or without rotating turbulence

The initial three-dimensional turbulent field onto which
the stable stratification is superimposed is an isotropic KS
field (see, e.g., Ref. [4]):

N M
u(x,0) =2, >, (K, 0)k> sin 6,,Ak,A 6, m>
n—1 m=1
(16)
and
ﬁ(kmn’o) = 171 (kmn’o)cl(kmn’o) + EZ(kmn»O)CZ(kmn) s
(17)

where K,,,=k,(sin 6,, cos ¢,,,,sin 8,, sin ¢,,,,cos 6,). Note
that u(x,0) is three dimensional and incompressible by con-
struction because it is appropriately distributed in the Craya-
Herring frame. 0,(k,,,,0), 0,(k,,,,0) are the decomposition
of the Fourier transformed initial isotropic velocity field
u(k,,,,0) in the Craya-Herring frame. It is worth remember-
ing here the assumptions underlying Egs. (16) and (17).
Equation (16) is the classical KS decomposition in Fourier
modes, whereas U; and 0, are a rapid distortion theory
(RDT) solution of the Boussinesq equation. As such this so-
lution is valid when the linearization is valid, that is when
the stratification is strong enough for its effects to be the
fastest to develop. This has to be the case at all scales in-
volved in turbulence. Therefore the validity criteria is a
Froude number based on the Kolmogorov scale smaller than
one (see, e.g., Ref. [3]).
The energy spectrum E(k) is prescribed as follows:

E(k)= E)L(kL)*  for 0 <k <k,

E(k) = E)L(kL)™? for k, <k <k,, (18)

E(k)=0 for ky <k,
k;=1/L, where L/2 is the energy containing length scale
where the energy spectrum reaches its maximum value, E; is
a characteristic energy, and the Kolmogorov length scale is

defined as n=1/ky. The wave number is geometrically dis-
tributed, i.e.,

kN (n-1)/(N-1) 1
k,,=k1(— and k;=—. (19)
ky 4L
Ak, is then derived as
k k
Ak, = —" ln(—N>An. (20)
N-1 \k

In order to capture correctly the effect of stratification, for
each wave number, M wave vectors are defined such that
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-1
Gm—(m )77 for 1sm<M (21)
M-1
and
A6, = ——Am. (22)
M-1

Then, the angle in the horizontal plan ¢,,, is chosen ran-
domly in the range [0,27]. From Egs. (16) and (17), the
velocity field u(x,7) can be expressed at any time as

N M
u(x,’) =27 Rey >, > k2 sin 6,,Ak,A ¢ Fnn X+

n—1 m=1

X [171(kmn’t)cl(kmnv[) + EZ(kmmt)CZ(kmn)] 5

(23)

where “Re” stands for real part. 0,(Kk,,,.) and 0,(K,,,.)
obey Egs. (13) and (14), respectively. A time dependence
w,,,t has also been introduced in Eq. (23) in order to simulate
time decorrelation within the Fourier modes [4]. w,,,
=N, Vk E(k,), where \,, is a dimensionless unsteadiness
coefficient equal to 0.5 for all m and n in this paper.

In order to calculate the particles’ diffusion, we track the
particles in time using

x(1) =u[x(2),1]. (24)

We obtain the Lagrangian trajectories x(7) by integrating Eq.
(24) using Eq. (23) for the Eulerian velocity. Each particle is
released at a time f, from an initial position x, randomly
chosen in each realization.

III. DEPLETION OF HORIZONTAL PAIR DIFFUSION
IN STRONGLY STRATIFIED TURBULENCE

If we consider the horizontal displacement only, we can
look for a two-dimensional version of Eq. (2) as follows:

d !
2 800) =36y, P BAL D", (25)

where A (#)=\(A; (7)) is the r.m.s of the horizontal separa-
tion <Aﬁ(t)> which is defined as E?=1<{x§2)(t) —xl(-l)(t)}2> where
the superscripts (1) and (2) refer to particles (1) and (2); i
=1,2 are coordinate subscripts in the horizontal plane. Using
e~u'3/L, where € is the energy dissipation rate, we can
define the constant B, as

3Gye
B = u,/im (26)
and therefore write
d L -1/3 A,([) 4/3
—(Aj(0)y = By’ 7/<—> . , (27)
dt yi n

where L and 7 are, respectively, the energy containing length
scale and the Kolmogorov length scale.
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FIG. 2. B, as a function of A;()/ % for N'=500, 1250, and 2500.
Cases A, B, C, and D (isotropic) in Table 1.

Reference [7] compared B, of stratified turbulence with
B, of three-dimensional isotropic incompressible turbulence
and found that B, does not depend on the strength of the
buoyancy. For a more precise comparison, here 3,5 of two-
dimensional isotropic incompressible turbulence is also com-
puted and compared with B, [ B, is also defined by Eq. (27)
but for a two-dimensional flow]. Values of B, for stratified
turbulence as functions of A,(z)/ 7 for different buoyancy
frequencies A are presented in Fig. 2, where the two-
dimensional isotropic KS turbulence case is also plotted for
the sake of comparison.

Particle pairs are released at a random time f,=(10
+0)21/ N, where & is a random number between —1 and 1
different for each pair in order to avoid them oscillating in
phase. This initial time is large enough for the velocities to
have reached their anisotropic r.m.s values as a result of
stratification’s rapid distortion [4]. Averages are taken over 4
pairs in 250 realizations.

The coefficient B, for purely stratified turbulence is cal-
culated for Froude numbers Fr=0.0007, 0.00028, and
0.00014 (other simulation parameters are given in Table I)
and the results are in good agreement with Refs. [11]. Figure
2 shows that when there is stratification 8, is reduced com-
pared to the two-dimensional case while, as for the two-
dimensional case, it remains almost independent of A,/ 7, in
the range 7<A,(r) <L. Furthermore, within statistical accu-
racy, B3, is independent of A in this range.

We can therefore conclude following [11] that the hori-
zontal locality-in-scale hypothesis which leads to Eq. (27)

PHYSICAL REVIEW E 78, 046306 (2008)

with (d/dr)8,=0 remains valid in strongly and stably strati-
fied turbulence but with a modified value of (3, which is
independent of N. We emphasize that the horizontal pair
diffusion is depleted in the presence of stratification and this
is not due to considering only two components of the dis-
placement as we have compared B,(N) with two-
dimensional turbulence and found

BN #0) < Byp, (28)

The coefficient 3, for a two-dimensional isotropic turbu-
lence is smaller than its counterpart in three-dimensional iso-
tropic turbulence (noted B;;). In d-dimensional isotropic tur-
bulence, pair separation is defined as <A2)=<A%>+-~~+<A§>
where A,:xgz)—x,(l) for i=1 to d. This can be rewritten as
<A2)=d(Af) in isotropic d-dimensional turbulence, so that
from

(A% =Gy e (29)
in two-dimensional isotropic turbulence and
(A% =Gy zer’ (30)

in three-dimensional isotropic turbulence, it follows that
GA,3/3=GA,2/23 i.e.,

2
Gan= gGA,a <Gp3- (31)
Using Eq. (3), it follows that B, < B3,

IV. PROBABILITY DENSITY FUNCTION (pdf)
OF HORIZONTAL VELOCITY DIVERGENCE
IN STRATIFIED TURBULENCE

In Sec. III, we saw that 3, is not affected by the strength
of the buoyancy and that it is also smaller than what it would
be in isotropic incompressible turbulence. This indicates that
the turbulent diffusivity is almost the same for any small
enough Froude number when strong and stable stratification
exists in a turbulent flow.

In a two-dimensional flow the incompressibility condition
yields

J J
Vh'uh=;u1+5u2=0. (32)
1 2

Whereas, in the stratified flow, though <u§)<<u%>=(u§>, Eq.
(32) is not true everywhere. To better understand the topo-
logical differences between the two-dimensional flow and
the horizontal flow resulting from stratification we calculate

TABLE 1. Different cases studied in Secs. III and IV.

Case Fr=u'/LN N Lin u' N Ag/m L 1/n
A stratified 0.0007 500 400 0.35 0.5 0.1 1 400
B stratified 0.00028 1250 400 0.35 0.5 0.1 1 400
C stratified 0.00014 2500 400 0.35 0.5 0.1 1 400
D 3D isotropic o 0 400 0.35 0.5 0.1 1 400
E 2D isotropic 00 0 400 2 0.5 0.1 1 400
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FIG. 3. (a) (L/u")X(V,-u,—(V,-u,))?); (b) uL—,(Vh-uh) as functions of the Froude number.

the probability density function of the horizontal velocity
divergence

J J (33)
V, u=—u +—u 3
= | oy ) 2
for the stratified flow. In particular, we compute the normal-

ized mean

L
;<Vh “up) (34)
and fluctuation variance
L 2
<;> (V) u,=(V,,- Uh>)2> (35)

in order to compare the shape of the pdf of V,-u,, to a Gauss-
ian distribution. The variation with the Froude number of
these two statistics and pdf will help explaining why the
strength of the buoyancy does not affect 3, and why deple-
tion of horizontal pair diffusion exists. Figure 3 shows the
normalized mean and variance of the horizontal velocity di-
vergence as functions of the Froude number.

As expected the mean and variance values remain almost
constant, showing no dependence of S, on the Froude num-
ber. Thus, we can expect the probability density functions to
have the same shapes for all Froude numbers. Furthermore,
we may expect the pdf to be skewed towards negative values
if horizontal compressibility is the reason for 83, <<f,p. Fig-
ure 4 shows that the pdf of the horizontal divergence of the
stratified velocity field is not a Dirac distribution, as it would
be for a two-dimensional turbulence, but a Gaussian centered
on 0. However, this Gaussian pdf does not depend on the
Froude number; this again is consistent with the result that
B, does not depend on the Froude number.

At this stage, it is still difficult to conclude whether this
pdf can explain the depletion of horizontal pair diffusion
because of the symmetrical Gaussian structure of this prob-
ability density function which implies equal probability for
flow convergence (negative range of pdf) and flow diver-

gence (positive range of pdf). This observation alone is
therefore not sufficient to explain the depletion of horizontal
turbulent pair diffusion. Therefore, more detailed results on
the pair diffusion in isotropic nonincompressible turbulence
are needed.

A. Modified two-dimensional isotropic kinematic simulation

In this section, we study the probability density function
of the horizontal divergence in a two-dimensional KS where
the incompressibility condition is artificially relaxed. This is
done in order to understand the effect of compressibility on
the depletion of horizontal pair diffusion.

Isotropic two-dimensional KS velocity fields are given by

N

u(x,r)= >, A, cos(k, - X+ w,1) + B, sin(k,, - X + w,1),

n=1

(36)

where N is the number of modes in the simulation, k,
=k,k,, where k,, is a random unit vector in the plane and A,

and B,, are vectors normal to ﬁn in that plane. The amplitudes
of these vectors are set by

E(k) = E,L(kL)™>" (37)

and
|A,I*=|B,|* = E(k,)Ak,, (38)

where Ey=[gE(k)=u'? Ak,=k,, —k, for I<n<N-1 and
Aky=ky—ky_; and L=27/k; is the upper limit length scale
of the inertial range.

The distribution of wavenumbers is algebraic, i.e.,

k In n/lIn N
knzkl(_N) >

b (39)

where ky=2m/7. The unsteadiness pulsation is w,
=7\Vk2E(kﬂ) where \ is a dimensionless constant (A=0.5 is
used for this section’s simulation).
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FIG. 4. PDF distributions of (L/u’)V,-u,, and their Gaussian fits (a) N'=300, (b) N'=500, (c) N=700, (d) N'=800, (e) N'=900.

Flow parameters for the simulations in this section are L
=1, 1/7=400, u’'=2, and A,/ 5=0.1, where A, is the initial
separation of the two fluid particles. To insure incompress-
ibility in kinematic simulation one imposes A,-k,=B,-k,
=0. By changing the angles between these vectors, the value
of V-u can be modified to differ from 0. To do so, an angle
¢ is introduced in the definition of A, B,,, and k,, for all n as
follows:

—A,sin(6,+ ), B, sin(6,),
A”:{ (6,+ ) B{ (6)

A, cos(6,), - B, cos(6,),

n

{k,, cos(6,+ i), (40)

ky sin(6,),

where ¢ is chosen to be either m, 77/8, or 7/ 16. In this way,
we break the orthogonality between A, and k, and between
B, and k,. When ¢=0, A,-k,=B,-k,=0, and V-u=0. Fig-
ure 5 shows the probability density function of V-u in two-
dimensional KS turbulence which is a Dirac distribution
when =0. Figure 6 shows the same pdf when # 0, in this
case it is clearly different from a Dirac distribution and it is
also clear that this pdf gets broader with increasing . Figure
7 shows what the effect of ¢ is on B,,. When ¢ is a very
small angle, i.e., y=m/8 and 7/16, B, oscillates around the
incompressible-KS value of 3,p, even though the probability
density function of V-u (see Fig. 6) is much broader than
that in Fig. 4. When =, the value of 3, drops to a similar
level as B, for horizontal pair diffusion in strongly stratified
KS turbulence.

If different flows have similar Richardson coefficients g3,
we may expect that they also have similar probability density

functions of their velocity divergence. However, it is not the
case: the pdf of the horizontal divergence in stably stratified
turbulence in Fig. 4 is very different from that in Fig. 6.
The pdfs of horizontal velocity divergence can only partly
explain the decrease of horizontal pair diffusion in stratified
turbulence. The pdf of the horizontal velocity divergence in
stably and strongly stratified turbulence is independent of the
Froude number and also different from a Dirac distribution:
it is a Gaussian with a zero mean and a standard deviation
which scales as u’/L and is independent of the buoyancy
frequency N. This is consistent with the results that B, is
independent of A/, but does not trivially explain why S, is

0.1

0.09
0.08 | 1

0.07 [ il

0.06

0.05
0.04 [ 1

0.03
0.02 | 1

0.01

0 ‘ ‘
-1 -0.5 0 0.5 1

FIG. 5. pdf distribution of L/u'V -u in two-dimensional KS
with =0 case E in Table 1.
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FIG. 6. pdf of L/u’V -u in two-dimensional compressible KS flow with (a) ¢y=7/16, (b) 7/8, and (c) 7 case E in Table I

smaller than 3, rather than larger, in particular because the
pdf of the horizontal velocity divergence is not skewed to-
wards convergence regions. Furthermore, it appears from our
numerical experiment with compressible two-dimensional
KS isotropic turbulence that a very significant compressibil-
ity would be required for B, to reach the value it reaches in
stratified turbulence. We therefore now attempt a different
approach for explaining why 8, < B,p.

1.8

1.6 1
14r 1
1.2¢ 1

| 2D TIsotropic Yy =7/ 16 |

0.8
0.6
04N
0.2

0

1 Ayt /M 10

FIG. 7. B,p for two-dimensional KS with different values of
case E in Table 1.

V. TURBULENT PAIR DIFFUSION
AND STAGNATION POINTS

A. Velocity definition stagnation points

In any reference frame §, at a given time ¢, locations x
exist where the fluid velocity u;(x,f) vanishes. These loca-
tions vary with time, so that we can define s(#)=x such that
us(r),t]=0 at each time. In order to track such zero-velocity
points s(¢) in time we must solve

us(0),0]=0,

ditu,-(s,t)=0. (41)

In this paper we call stagnation points the solutions of Eq.
(41). Considering a particular stagnation point s as a function
of time, we can define a velocity V,=(d/dt)s(r) that de-
scribes its motion, and from Eq. (41) it comes

(9'/!1' S,t
ui(s:1) ==V, - Vuys,1). (42)
ot
By definition, the acceleration of a fluid particle is
(914,»
a,-=—+ll-Vul- (43)

and at x=s(r), where u=0, it follows from Egs. (42) and (43)
that the Lagrangian acceleration a; of a fluid particle is
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a;=-V,-Vu,. (44)

This latter relation is purely kinematic and can be solved
using Crammer’s rule

[det(a, dru, d3u),det(d;u,a,dsu),det(d u, dru,a)]
det(d,u, dyu, d5u)

s

(45)

where d;=d/ dx;. This allows us to forgo the complicated pro-
cess of not only having to find the stagnation points in the
flow but also to track their trajectories in a time-dependent
flow field. Indeed, only a snapshot of the flow field is neces-
sary to determine the stagnation point velocity with Eq. (45).

Equation (44) can be used to find the order of magnitude
of the r.m.s. values of the Lagrangian acceleration a* at the
stagnation points. We can expect the spatial derivative of the
velocity to be dominated by the smallest length scale # or its
analogous in KS, so that

u
Vui""_q

where u,, is the characteristic velocity fluctuation at » and
a~ Vi, (46)
n

where V7 is the r.m.s. of V. In Eq. (46), a* is calculated by
averaging over all the stagnation points in the frame § and is
therefore equal to a; the r.m.s. value of the local accelera-
tion, a;=(d/dr)u, averaged over all the stagnation points.
Later in this section we verify in kinematic simulation the
validity of Eq. (46) with a* replaced by a} and we also test
whether Eq. (46) remains valid for @’ the r.m.s. of the La-
grangian acceleration calculated by averaging over the entire
flow. If we assume the small scale velocity to scale as u,
~(en)'? and e~u'?/L, then a normalised form for Eq. (46)

is
* 2/3
- w

In KS isotropic turbulence where large scale sweeping of
small scales is absent, we can expect a Kolmogorov scaling
for a;, i.e., a/ ~ u%l/ 7, which implies

La; (L\'"
P (—) (48)
u 7

and we can also expect a* ~ ui/ n when a* is calculated by
averaging over stagnation points as, such averaging, removes
the sweeping effect from acceleration statistics. So that

La; L\
=~ (—) : (49)
7

From Eqgs. (49) and (47) it follows that
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TABLE II. KS parameters common to all runs in Sec. V.

N number of modes 100
Ny number of KS flow field realizations 1
N, number of sampling points per realization 109
u' r.m.s. of the velocity fluctuation I ms™!
-1/3
g (L 0
u 7

The negative exponent in the scaling of V}/u’ implies that,
in a statistical sense, the movement of the stagnation points
becomes less significant when compared with the movement
of the fluid particles (this latter characterized by u’) as the
Reynolds number increases. In that sense, the stagnation
points become more persistent in space as explained in Refs.
[9.15].

However, if there is a strong stratification, we expect a’
~Nu' when both conditions L/ 7> 1 and Fr, <1 are satis-
fied as they imply that Nu'>Nu,>u /7]>u’2/L [using
w,~u' (! L)” 3]. This simply means that the buoyancy force
domlnates a’ in strongly stratified turbulence. In the next
section, this relation is tested and compared with isotropic
turbulence acceleration scaling.

B. Scaling of the acceleration

For all the KS in Sec. V we chose the main computation
parameters as in Table II Other parameters are in Table III

TABLE III. Flow parameters for the isotropic cases used in Sec.

V.
case 1/n L N A
Isol 1000 0.01 0 0.5
1000 0.1 0 0.5
1000 0.5 0 0.5
1000 1 0 0.5
1000 10 0 0.5
1000 100 0 0.5
1000 1000 0 0.5
Iso3 100 0.1 0 0.5
100 1 0 0.5
100 5 0 0.5
100 10 0 0.5
case 1/7 L N A
Iso2 1000 0.01 0 5
1000 0.1 0 5
1000 0.5 0 5
1000 1 0 5
1000 10 0 5
1000 100 0 5
1000 1000 0 5
Iso4 10 1 0 0.5
500 1 0 0.5
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TABLE IV. Flow parameters for the stratified cases used in Sec.

V.
case 1/7 L N A
Stral 100 0.1 1000 0.5
100 1 1000 0.5
100 10 1000 0.5
100 100 1000 0.5
100 1000 1000 0.5
100 10000 1000 0.5
Stra2 100 1 varied 0.5
case /7y L N A
stra3 100 0.1 500 0.5
100 1 500 0.5
100 5 500 0.5
100 10 500 0.5
stra4 10 1 500 0.5
500 1 500 0.5
1000 1 500 0.5
strad 100 1 varied 0.5

for isotropic flows and in Table IV for stratified flows.

We split the acceleration into a local component a;
=du/dt, and a convective component a,=u-V/u’; and cal-
culate both components in the frame §, defined as the frame
where (u)=0 and consequently also (V,)=0 (see Ref. [15]).
a; and a, are obtained using the KS velocity field and its
derivatives. The results for the scaling of the r.m.s. values of
the local and convective accelerations, respectively, a; and
a! in three-dimensional isotropic KS turbulence, are pre-
sented in Fig. 8. One can see that the scaling of the r.m.s.
convective acceleration component is

108
o o= 0.5k E(k)"?
> ®,= 5 kn3’2 E(k)”z
109 — (L)
104 1

La'/u?

102
10 102 103 104 10 106
(a) L/n

PHYSICAL REVIEW E 78, 046306 (2008)

1 03 > n 3
(Dn: k 32 E(k) ?
w=>5 k“y E(k)l/
102 r _— (L/n)J/ |
=
>m .m\»\\u.,».,\.\ T
| 7 =l ,_‘_...\‘\“\M\... |
] e
17 . = ...W..\‘.\M,
~Q._ .
©- Q...
o .
1 O- 1 ‘ ‘

FIG. 9. r.m.s. of the stagnation point velocity V; as a function of
L/ 7. The two lines correspond to (L/7)™3. (Cases Isol and Iso2 in

Table II1.)
M/Z 7 .

In contrast, the r.m.s. of the local acceleration a; scales as

Laj _ (é)“
u72 7 .

At stagnation points, the convective acceleration a,. is by
definition equal to zero. Thus assuming a;'=a,, from Eq. (50)
it comes that the rm.s. of the stagnation point velocities
scales as (L/7)™"3 in isotropic KS turbulence (see Fig. 9).
Figure 9 shows V./u’' as a function of L/#n where V is
determined directly using Eq. (45) on the three-dimensional
isotropic KS for cases Isol and Iso2 in Table III. We find the
scaling derived in Eq. (50) which confirms the validity of our
approach.

(51)

(52)

108
. 0 ®= 0.5 kns/z E(k)"?
\:U ol > ®,= 5 kn3/2 E(k)”
= 10 — 13
= (Lm)
104 |
102 | ]
i
LT |
102 | | | |
10 10? 103 10* 103 100
(b) L/n

FIG. 8. Scaling with L/ 7 of the r.m.s. values of (a) the local acceleration component g; and (b) the convective acceleration component
a.. The flow parameters are detailed in Table III case Isol and Is02). Averages are taken over the entire flow.
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— (L/n) -2/3

10*

103

La'/u”

102

10

1 ‘ ‘ ‘ ‘
10 10 10° [ /yq 104 10° 106
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102 :

La'/u”?

10¢ I

103 N

FIG. 10. r.m.s. of the convective acceleration az_ for a stratified flow, u’ =1 (a) a, as a function of L/ for N=1000; (b) a, as a function

of N for L/ 5=100.

In Figs. 8 and 9 the unsteadiness term w, in the KS has
been varied, two values of A, namely, 0.5 and 5 are com-
pared. a_ dominates a; when A=0.5. Whereas, when A=5, a,
does not begin to dominate a;, until L/ 7> 10°, which ex-
plains the total acceleration’s scaling towards a more
Kolmogorov-like scaling [La'/u'?>~(L/7)"3] when L/7
<103, as also argued in and in agreement with Ref. [8].

C. Effect of stratification on the scaling of stagnation
points

The rms of the convective (a.) and local (a;) accelera-
tions (averages taken over all space) of stratified turbulence
are presented, respectively, in Figs. 10 and 11. From Fig. 10
it is clear that the convective component of the acceleration

scales with L/ 7 as
o (L)
c L 7]

and is independent of A. This is the same scaling as for the
isotropic KS turbulence. However, from Fig. 11, the r.m.s. of

106

(53)

105

104

La,/u®

103

102

1 ‘ ‘

10-1 1 10 102 103 104

the local acceleration in presence of stratification scales with

N only:
a, ~Nu'. (54)

At stagnation points a,=0 and in our KS we have Fr,<1,

that is,
2 2/3
L\n

(55)

then it follows from comparing Eq. (53) and Eq. (54) that in
a KS with stratification, the r.m.s. of the acceleration is
dominated by the local acceleration

a' ~aj

and from Eq. (47)
(56)

That is, using Eq. (54)

1 L 4
o 5 (@] (@]
oS
2
5
0.1 ‘
(b) 103 N

FIG. 11. Local acceleration component a;, u’=1. (a) La;/u’ as a function of L for A’=1000 and 5=0.01; (b) a;/Nu’ as a function of N/

for L/ »=100.
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1\~ 1\-23
Vi ~NL(—) =u'Fr_1(—> =u’Fr;]l. (57)
7 Y

Figures 12(a)-12(c) show, respectively, Vi, V},, and V},
as functions of L, clearly they scale with LL™%*3. Figures
12(d)-12(f) show, respectively, V7, V3, and V;, as functions
of 7, clearly they scale with (1/%)7%3. Finally, Figs.
12(g)-12(i), show, respectively, Vi, V,, and V} as a func-
tions of Fr, and clearly they scale with Fr;ll. So that we can
conclude that relation (57) is verified in KS.

Furthermore, Fig. 12 also shows more precisely that hori-
zontal and vertical r.m.s. for the stagnation point velocities
V3, and V3, scale as NL(L/ 7)™ in strongly stratified turbu-
lence. According to the condition Fr,<I1-—where Fr,
=u,/ nN=Fr(L/ 7)*3—the r.m.s. velocity of the stagnation
points V; is larger in stratified turbulence than V; in isotropic
turbulence for the same u’, L and #. Furthermore, V: is
larger than u' in stratified turbulence when Fr, <1. There-
fore, fluid particles of stratified turbulence have less chances

to meet and stay in the neighborhood of stagnation points,

PHYSICAL REVIEW E 78, 046306 (2008)

which have high curvature streamlines around them. This
may suggest, but not conclusively, a depletion of turbulent
pair diffusion in stratified turbulence compared to isotropic
turbulence.

D. Number of stagnation points in stratified turbulence

In this section we compare the number of stagnation
points in isotropic turbulence and in strongly stratified turbu-
lence in order to further investigate the depletion of the hori-
zontal pair diffusion in stratified turbulence. We use the mul-
tidimensional root finding method (Newton-Raphson method
in Ref. [16]) to find all the stagnation points. This is an
iterative method that requires initial points to start the itera-
tion process. These initial points are separated by a distance
6 smaller than 7, and evenly distributed on a cube of side
length L as shown in Fig. 13. We assume that each small box
of size 6 can only have one stagnation point and ignore
points located outside the box of length L. We use a box-
counting algorithm, and to avoid double counting of stagna-

10° 103
©  Stratified — NL(L/m)?>* — NL(Lm)?
— NL(L/m)>?
@ / 102}
>
g 13 102 °© . o
10 s
¢ Isotropic 3D
T ou(Lmys
1005==~—____
e 1
TTm—— 1
4 0
1 1 -
lcr10 102 L/n 108 100 1¢ L/n 10 010 102 L/n 103
(a) (b) (c)
104 3 104
ol
13¢ 1 103 103

5 2 ?\}fs&ﬁeg R O Stratified . O Stratified
. LVe ‘s T NL(Lm)>? >  NL@m)P
> 102f \\ Z 102 \\ 102

101 F 3 101 101 ¢ ki
9 Isotropic 3D ¢ Isotropic 3D
i - = u(Lm)" - = u(Lmy"® | ¢ Isotropic 3D
1008 =~~~ _ e 10 fgmmme 100y - = u(Lm)”
------- ———0__ R
——e—__ ———— e o-
N o
101 ‘ 10-1* 10!
10! 102 L/n 103 10! 102 L/ 3 10! 102 Lm o 10d
(d) (e) ()
103 103 10
i Fr"" - Fr”" — F, 1
= E
o o
o
102 102 102

10! . . . . . . 10!
104.6 1045 1044 1043 1042 104‘1Frn

(9) (h)

104.6 1045 1044 1043 1042 ]04'1Frn

10!

U]

104.6 1045 1044 1043 1042 1041 Fr,

N

FIG. 12. r.m.s. velocity of the stagnation points in isotropic and stratified turbulence u’=1. (a)—(c) N'=0 and 500, and 1/ 5=100, varying
L. (d)—~(f) N'=0 and 500, and L=1, varying 7. (g)—(i) L/ »=100, L=1, and varying Fr,,.
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4;‘/

FIG. 13. Three-dimensional space split into small boxes of
size O.

tion points each box is only counted once. In order to reduce
computing time, we also ignore stagnation points found be-
yond a distance L/3 from the starting point, because these
stagnation points can be found from other starting points
closer to them. For each Reynolds number, we calculate and
plot n, the number of stagnation points in the volume L? as a
function of L/ # for different buoyancy frequencies. The re-
lation is well fitted by Eq. (58) with D=2 (see Fig. 14):

DS
nszcs(é) , (58)
n

where C; is a dimensionless parameter. This relation was
derived by Ref. [16] and validated on data from KS and
direct numerical simulation (DNS) of isotropic three-
dimensional turbulence. We can then conclude that in KS,
the Buoyancy frequency does not affect the number of stag-
nation points in comparison to an isotropic turbulence (see
Fig. 14). This may be seen consistent with Fig. 2 which
shows that B, does not change as buoyancy frequency
changes. Though, it does not help explaining why f3,, is in

10*
9 Isotropic
2 N=500
* N=1000
Z N=1500 g
N=2500
10%F —

(Limy

10 Lin 102

FIG. 14. Number of stagnation points per unit volume as a func-
tion of L/ 7 in KS for different buoyancy (L=1) frequencies.

PHYSICAL REVIEW E 78, 046306 (2008)

Eigenvalue %, Eigenvalue 2, (L/n =100, ¥ = 500)

(Lin =100, ¥ = 500)

Isotropic Isotropic

0.008 0.008

0.006 Stratified 0.006

0.004 0.004

N Stratified -

0.002 0.002

40 S5 30 25 0 15 10 5 0 20 15 10 5 0 5 10 15 20
(@) (b)
0.014 0.012

Eigenvalue 2, (L =100, . = 500) Eigenvalue 7.,
0012 (LI =100, . = 1250)

0.01 Isotropic ¢
sotropic 0008 Isotropi

0.008

Stratified

0.006 Stratifie

0.006
0.004

0.002

0

© 3 (@)

0 -35 -30 -25 20 -15 -10 5 0

0012 “Egenvaluc &, (L/n =100, ¥ = 1250) OO value 7 (Lm 100, ¥ = 1250)

0.012
Isotropic

0.01 Isotropic
0.008
0.008 Stratified
0.006
0.006)

0.004
g g 0.004]
& Stratified =)

0.002 0.002

0720 -1 10 -5 0 5 10 15 20 0 5 10 15 20 25 30 35 40

(e) (f)

0.012

Eigenvalue ., Eigenvaluc 2, (L/m =100, ¥ = 2500)
(L/n =100, & = 2500)
0.01

0.008 Isotropic 0.008]

Isotropic,

0.006 Stratified 0.006]

0.004 0.004

’ ~ Stratified

0.002 0.002]

0.014
Eigenvalue &, (L/m =100, & = 2500)
0.012, y

Isotropic

Stratified

FIG. 15. p.d.f of the eigenvalues A, \,, and A3 of straining rate
at stagnation points in isotropic and stratified turbulence. A; and A\,
are for the horizontal component and A; is for the vertical
component.

stratified KS turbulence smaller than in two-dimensional iso-
tropic KS turbulence.

However, it may explain why (d/d){A; (1))~ (A} is
still valid in stratified turbulence as the arguments of Ref. [1]
still hold because the buoyancy frequency does not affect D;.
Reference [1] introduced the idea of a geometrical separation
process, as follows:
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FIG. 16. Mean square eigenvalues of horizontal straining rate in isotropic (N'=0) and stratified turbulence with different L/ 7: (a) A,
L/7=10, (b) \3*, L/ 7=10, (c) A\i*, L/ 7=500, (d) \3*, L/ =500, (e) N\3*, L/ =1000, (f) A3*, L/ 5=1000.

TdAg)  THEA) TLEA)
Ay — €Ay — §2A0 ) (59)

where A is the initial separation, ¢ a constant multiplier, and
T{(&'A,) the characteristic time needed for pair separations
to increase from &'A, to &*'A,. This characteristic time
T{(A) can be expressed as follows:

/ n—1/3

T{A) ~ j’ ~ =, (60)

u

where [ is the mean distance between stagnation points and
n, is the number of stagnation points per unit volume evalu-
ated at L/A, i.e., n(L/A) [see Eq. (58)]. Let us suppose that
at time ¢ the pair separation is A=¢"'A, then, using Eq. (58)
it comes
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n—1 n—1

j L . L D3 _
= T&Ap) ~ > = (EAPS ~ _AgﬁgDT
Jj=0 j=0 u' u' g Y
(61)
which can be inverted to give
1\ 6/D
1 s
o= Lz(%) : (62)

From our observation that D =2 in stratified turbulence, it
follows that

(A% ~ 7. (63)

Using the fact that (A%)=(A7)+(A3) and that (A3)<(A7) in
stratified flows [4], we can conclude that (A7)~7 which
implies that (d/df){A;(1)~ (A7) (see, e.g., Ref. [8]).

VI. STRAINING RATE AND RICHARDSON’S
COEFFICIENT

As counting the number of stagnation points in three-
dimensional space does not explain the depletion of horizon-
tal pair diffusion. We try a different approach based on the
study of the strain rate.

KSs having by construction no energy cascade dynamics,
we venture to interpret (A%)=Gef’ as being in fact

(A% = Gy2uS*)7,

where we used the kinematic relation e=21{S?) between e

(64)

and <Sz>=<SljSﬂ> with
1(du; du;
2\ dx; Ox;

7

There is no kinematic viscosity either in KS, but we can
derive an implicit one from 7 and (S%) as follows:

3 )1/4

1434
=€ ~ | — ,
7 g (V<S2>

ie., v=Cn{S*)"? where C is a dimensionless constant in-
dependent of all KS parameters. As a result, we can surmise

(66)

2
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that the Richardson law in KS should really be written as

(A% = G\ 28 = 2G,C1P((SH)1?1)3, (67)
which yields from the definition of S,
113
Bi=—[2C7(8?) ] PGy (68)

u/

The observed reduction of (3, by strong stratification can
therefore be directly linked to a reduction of (S?) by the same
stratification. Any modification that a strong stratification
may impose on (S?)!/2 is directly reflected on S,

To test this idea, we calculate the statistics of the straining
rate [Eq. (65)], that is its r.m.s. and the distribution of the
eigenvalues of §;; at stagnation points. The stagnation points
are regions which move more and more slowly with increas-
ing L/ n as shown in Sec. V B, so they can have an effect on
the horizontal separation of fluid elements and thereby ac-
count for (AZ) ~ £3. However, their full effect, which includes
their effect on B, remains dependent on the local straining
rate.

We define the three eigenvalues of the straining rate ten-
sor such that A <\, =<N\3. In order to verify incompressibil-
ity A;+N,+N3=0. Therefore, A\;>0 and \;<0. Our KS cal-
culations show that |\;| and |\;| are statistically smaller in
strongly stratified turbulence than in isotropic turbulence (see
Fig. 15).

Figure 16 shows the variance of two eigenvalues )\%" and
)\5* (averages taken over stagnation points) as functions of A/
for different inertial ranges L/ 7. The variances are indepen-
dent of V. That can be the reason why g, in stratified turbu-
lence is also found independent of N. From Kolmogorov’s

scaling, we get
1\2/ [ \43
<w2>=z<sz>~(“—) (— ,
7

. (69)

where  is the vorticity (V X u). The mean square straining
rate and vorticity of an isotropic and stratified turbulence
follow the scaling (L/7)*?. We define the dimensionless
constant C' as

O Isotropic |
O stratified
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FIG. 17. Coefficient C’ scaled mean square straining rate and vorticity of isotropic (O) and stratified (<) turbulence.
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TABLE V. KS parameters used in runs in Sec. VI.

N number of modes 100

Ng number of KS flow field realizations 1

N, number of sampling points per realization 10°

u’ rms of the velocity fluctuation I ms™!

Fig. 15 L=1m, L/ »=100

Fig. 16 L=1m

Fig. 17 L=1 m, N'=500
w \2[ L\¥3

() =2($%) = 0(—) (—) (70)

L] \n

and find that C' for the stratified turbulence is smaller than
C’ of isotropic turbulence. This is the main explanation for
the observed depletion of horizontal pair diffusion in strati-
fied turbulence. Figure 17 clearly shows that the enstrophy
and the average square strain rate tensor are depleted in the
presence of stratification, thus we conclude that the depletion
of the horizontal pair diffusion in stratified turbulence can be
understood as a depletion of the strain rate (see Table V).

VII. CONCLUSION

Though our results have been obtained with KS and are
valid when our RDT-KS is valid that is in the limit of Fr,
=u,/ npN'<1. We have found that the probability density

PHYSICAL REVIEW E 78, 046306 (2008)

function of the horizontal divergence of the velocity field
(V-u,,) is not a Dirac distribution in the presence of stratifi-
cation but a Gaussian symmetrically distributed around 0.
This Gaussian does not depend on the Froude number and
neither does the depletion of the horizontal pair diffusion.
However, they both disappear in the absence of stratification,
i.e., for an infinite Froude number.

We therefore sought to explain this depletion of the hori-
zontal pair diffusion by vertical stratification in terms of the
statistics of stagnation points in the line of the recent ap-
proach to Richardson pair diffusion by Refs. [9,15,16,1]. We
measured the number of stagnation points (n,) in the KS of
three-dimensional strongly stratified turbulence and found
that it was virtually identical to what it is in KS of three-
dimensional isotropic turbulence.

The root mean square horizontal and vertical stagnation
point velocities of stratified turbulence V;, and V;, scale with
NL(L/ 5)7%3 when Fr,<1. Hence, they are both larger than
u' and therefore also of their counterparts in isotropic turbu-
lence which get progressively smaller than u’ as L/7% in-
creasing. The strong stratification destroys the persistence of
the stagnation points if non linear processes are not taken
into account, as in KS.

The stratification does lead to a depletion of the average
square strain rate tensor, as well as of all average square
strain rate eigenvalues. We can conclude that it is these ef-
fects of stratification on the strain rate tensor that explain the
depletion of the horizontal turbulent pair diffusion.
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