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The previously reported non-equilibrium dissipation law is investigated in turbulent flows
generated by various regular and fractal square grids. The flows are documented in terms
of various turbulent profiles which reveal their differences. In spite of significant inhomo-
geneity and anisotropy differences, the new non-equilibrium dissipation law is observed
in all these flows. Various transverse and longitudinal integral scales are measured and
used to define the dissipation coefficient C.. It is found that the new non-equilibrium
dissipation law is not an artefact of a particular choice of the integral scale and that the
usual equilibrium dissipation law can actually coexist with the non-equilibrium law in
different regions of the same flow.

1. Introduction

The classical empirical scaling, C. = ef/u’® ~ constant (where ¢, £ and u’ are, respec-
tively, the turbulent kinetic energy dissipation per unit mass, an integral length-scale
and the root-mean-square of the fluctuating velocity field) was first suggested by Taylor
(1935) and is considered to be “one of the cornerstone assumptions of turbulence theory”
(Tennekes & Lumley 1972, pp. 20-21). The importance of C. ~ constant can hardly be
overstated since it is often used in the modelling of turbulence and as a building block
in the understanding of turbulence physics (see e.g. Townsend 1976; Tennekes & Lumley
1972; Frisch 1995). This phenomenological relation has received support conceptually (see
e.g. Lumley 1992; Frisch 1995), experimentally (Sreenivasan 1984, 1995; Pearson et al.
2002; Burattini et al. 2005) and numerically (Sreenivasan 1998; Burattini et al. 2005),
for both homogeneous and inhomogeneous flows, with or without mean shear, whether
stationary or non-stationary.

However, the general validity of this empirical law has been strongly challenged over
the past six years. Wind tunnel and water flume experiments on turbulence generated
by fractal square grids (FSGs) using both hot wire anemometry (HWA) and particle
image velocimetry (PIV) (Seoud & Vassilicos 2007; Mazellier & Vassilicos 2010; Valente
& Vassilicos 2011, 2012; Gomes-Fernandes et al. 2012; Discetti et al. 2013; Nagata et al.
2013) have provided a wealth of data for which C. ~ constant does not hold and is
replaced by C. = Rel};/Re} where m ~n ~ 1 seem to be good approximations supported
by the data even at fairly high Reynolds numbers. (Re; = v'¢/v and Rep = Uso M [V
where U, is the inlet velocity, M is an inlet mesh size and v is the fluid’s kinematic
viscosity.)

Valente & Vassilicos (2012) showed that this non-classical dissipation behaviour is also
present in a flow region of decaying turbulence generated by regular square-mesh grids
(RGs) closer to the grid than the far region where the classical C. ~ constant behaviour
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is recovered. The classical and non-classical behaviours of € were associated with equilib-
rium and non-equilibrium turbulence, respectively, since, as shown in textbooks such as
Pope (2000, pp. 182 — 188), the classical behaviour C. = constant is a consequence of the
Richardson-Kolmogorov equilibrium cascade. This observation is significant because it
shows (i) that the non-equilibrium behaviour occurs naturally, and possibly generally, in
nature without being particular to the FSGs and (ii) that the non-equilibrium behaviour
can lead to the equilibrium behaviour along a streamwise evolution. However, the -5/3
power-law of the energy spectrum is already present in its clearest and over the longest
range in the non-equilibrium region.

In this study we investigate different forms of the C. law in terms of different definitions
of the integral length-scale which is usually taken to be the longitudinal integral length-
scale but does not need to be. We try different longitudinal/lateral integral length-scales
and also investigate dependencies on isotropy which can impact on the use of 3/2u'? as
a surrogate for kinetic energy. We also examine the sensitivity of our results on the way
that the dissipation rate is obtained.

It is also important to further document the non-equilibrium region of the flow as a
platform for such an investigation. We therefore start by doing this for two RGs and two
FSGs, and we obtain and compare various turbulent flow profiles in the vertical mid-
plane using two-component hot wire anemometry (§3). These data allow a quantitative
assessment of the turbulent transport and production (§3.5) and help us assess the im-
pact on the flow of the geometrical differences between the grids. The data also allow a
qualitative assessment of the confinement due to the wind tunnel’s bounding walls, §§3.4,
3.5. The turbulence generated by one of the grids, RG115 (figure 1d) is then further inves-
tigated using two-point/two-component anemometry measurements to estimate various
integral length-scales of the flow. These measurements also allow a quantitative assess-
ment of large-scale anisotropy (§4) and are finally used to investigate, for the first time,
the behaviour of the normalised energy dissipation using various integral length-scales.
Both centreline and off-centreline assessments, in particular behind a bar of the grid, are
performed (§6).

2. Experimental setup

The experiments are performed in the 3'x3’ closed circuit and the 18”x18” blow-down
wind tunnels at the Department of Aeronautics, Imperial College London. The 3'x3’
wind tunnel has a working section of 0.91 m x 0.91 m x 4.8 m, a contraction ratio of
9:1 and the free stream turbulence intensity is about 0.05 %. The 18”x18” wind tunnel
has a working section of 0.46 m x 0.46 m x 3.5 m, a contraction ratio of 8:1 and the
free stream turbulence intensity is about 0.1 %. (Note that, the length of the test section
of the 18”x18” is the same as that used in Valente & Vassilicos 2012, which is about
1m shorter than that used in Valente & Vassilicos 2011.) The inlet velocity Us, in both
tunnels is set and stabilised with a PID feedback controller which takes as an input the
static pressure difference across the contraction and the flow temperature (both measured
using a Furness Controls micromanometer FCO510) and actuates on the input of the wind
tunnel’s motor drive.

Data are recorded at the lee of five grids (figure 1). The geometrical details of the
grids are summarised in table 1 and the overview of the data acquired for each grid are
presented in table 2. All our grids were used in the 18”x18” wind tunnel with the sole
exception of the FSG3’x3’ grid which was used in the 3'x3’ wind tunnel. The coordinate
system that we use has the streamwise centreline as z-axis and two axes orthogonal to
each other and to the centreline but aligned with the bars on the grids as y- and z-axes.
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FIGURE 1. Turbulence generating grids, (a) FSG 3'x3’ (b) FSG 18” (c) RG230 (d) RG115 and
(e) RG60. The figures are to scale.

Grid M to d o T Tpeak [ Tx
(mm) (mm) (mm) (%) (m)

FSG3'x3’ mono-planar 228.7 19.2 5 25 2.72 0.43

FSG18"x18” mono-planar 237.7 19.2 5 25 2.94 0.43

RG230 mono-planar 230 20 6 17 2.65 0.63

RG115 mono-planar 115 10 3.2 17 1.32 0.63

RG60 bi-planar 60 10 10 32 0.36 ~0.4

TABLE 1. Geometric details of turbulence-generating grids. For the RGs, M is the distance
between parallel bars within a mesh, i.e. the mesh size, and t¢o is the lateral thickness of these
bars. For the FSGs, which are made of many different square bar arrangements, i.e. meshes, of
different sizes, M refers to the largest mesh size and ¢y to the lateral thickness of the largest
bars. The longitudinal thickness of the bars is denoted as d, and o is the grid blockage ratio.
The value of Zpear for RG60 (see §3.1) is taken from measurements of a very similar grid (Zpeak
and z. are defined in §3.1). The low-blockage space-filling FSGs, have four fractal iterations
and a thickness ratio t,, i.e. the ratio between the lateral thickness of the biggest to the lateral
thickness of the smallest bars, equal to 17. For further details see Valente & Vassilicos (2011).

The origin of this coordinate system is on the centreline at the test section entry where the
grid is placed. The streamwise and two spanwise velocity components are Uy +uy = U +u,
Us +ug =V + v (aligned with the y-axis) and Us + uz = W + w (aligned with the z-axis)
where Uy = U, Uy =V and Uz = W are mean flow components and u; = u, us = v and
ug = w are turbulence fluctuating velocity components.

2.1. Single-point thermal anemometry measurements

For the single point measurements, i.e. using only one sensor recording one or two velocity
components, we use the experimental hardware, setup and instrumentation performance
tests described in Valente & Vassilicos (2011). Briefly, a Dantec Streamline constant tem-
perature anemometer (CTA) is used to drive one- and two-component hot-wires (SW and
XW, respectively). The majority of the single-point data presented here were recorded
with an in-house etched P1-(10%)Rh XW, denoted as XW2.5um (the sensing length of
the wires is [, » 0.5mm and their diameter d,, » 2.5um; the wires are separated by
A ~ 0.5mm). The exceptions are, (i) the two-component data acquired for the FSGs
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Grid Ue Reynr  Probe Z[Tpeak y/M Dataset
(mfs) (x107)
FSG3x3 15 229 SW2.5um [0.7 - 3.2] [0; 0.5] New
FSG3x3 15 229 XWsum [1.5; 2.0; 2.5; 3.0; 3.5]  [0.5—0.5]  New
FSG18’x18” 15 238 XW5um [1.4; 1.8; 2.3; 2.8; 3.2] [-0.5-0.5] VVI11
FSGI®"x18” 15 238 SW25um (1.3 - 3.4] [0] VV1L
RG230 15 230 XW2.5um [1.3; 1.8] 0-05  New
RG115 15 115 XW2.5um [1.4; 1.8; 2.8; 3.7) [0.5-05] New
RG115 20 153 SWium 0.6 — 3.8] [0] VV12
RG115 20 153 SWlum 0.6 — 3.8] [0.5] New
RG115 10 77 XW25um(x2) [1.1; 1.5; 2.0; 2.6; 3.1; 3.7]  [-1.1 — 1.1] New
RG115 10 77  XW25um(x2) [1.1; L5; 2.0; 2.6; 3.1; 3.7] [1.6 — 0.6]  New
RG60 10 40 XW2.5um(x2) 21 [21-21] New
RG60 10 40 SWlum 1.8 - 22] [0] VV12
RG230 10 153 SW2.5um [1.0 - 1.9] [0] VV12
RG115 10 77 XW2.5um(x2) [1.5; 2.0; 2.6; 3.1; 3.7] [-0.6 — 0.6] New
RG115 10 77 XW2.5um(x2) [1.5; 2.6] [0.65 - 0.55] New

RG60 10 40 XW2.5um(x2) [8.5; 11.5; 15.6; 17.6; 20.7] [-1.2 — 1.2] New

TABLE 2. Overview of the experimental data (note that VV11 and VV12 refer to Valente &
Vassilicos 2011, 2012).

(both the new data and the previous data presented in Valente & Vassilicos 2011, i.e.
datasets 2 and 3 respectively) which are recorded with a standard Dantec probe 55P51,
denoted as XW5um (l, ~ lmm, d,, ~ 5um and the wires are A ~» lmm apart), (ii) the
one-component longitudinal profiles at the centreline and behind the bar at y = 0.5M of
FSG3’x3’ (dataset 1) and at the centreline of FSG18”x18” and RG230 (dataset 4 and
13) which are acquired with an in-house etched P1-(10%)Rh SW, SW2.5um (I,, ~ 0.5mm,
dyy ~2.5pum) and (iii) the one-component longitudinal profiles at the centreline of RG115
and RG60 (datasets 7 and 12 from Valente & Vassilicos 2012, respectively) and behind
the bar at y = 0.5M of RG115 (dataset 8) which are acquired with another in-house
etched P1-(10%)Rh SW, SWilum (I, » 0.2mm, d,, ¥ 1pm). The SWs and XWs are
mounted, respectively, on a 2- and 3-axes automated traverse mechanism, which sets the
downstream and vertical position of the probes and for the XWs also controls the pitch
for their calibration.

The probes are calibrated at the beginning and the end of each set of measurements
using a fourth-order polynomial and a velocity-pitch map for the SW and XW measure-
ments, respectively.

2.2. Two-point simultaneous thermal anemometry measurements

For the measurements of the correlation functions for transverse separations presented in
§4 (datasets 9 — 11) and of the spanwise derivative components of the velocity presented
in §5 (datasets 14 — 16), two XW2.5um are simultaneously used.

The apparatus consists of two X-probes (aligned with the xy plane to measure the lon-
gitudinal and vertical velocity components, U and V') mounted on a traverse mechanism
controlling the vertical distance between the probes and their individual pitch angle for
in-situ calibration (figure 2b). (Note that, in the orthonormal coordinate system used,
x is aligned with the mean flow and y & z are perpendicular and parallel to the floor,
respectively.) The vertical traverse mechanism has single degree of freedom, actuated by
a stepper motor, and can only displace the two probes symmetrically about their centroid
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(defined as the geometrical midpoint between the X-probes’ centres; the minimum step
is 5um). Each of the two pitch angle traverses is also actuated by a stepper motor (with
a 1:50 ratio gearbox) providing a minimum step angle of 0.018°. All the stepper motors
and gearboxes lie outside of the test section. In the case of the pitch angle traverses the
actuation is made via a timing belt running inside each of the two 12 x 25mm rectangular
section tubes (seen in figure 2b). The apparatus described above is mounted on a second
traverse mechanism controlling the downstream and vertical position of the centroid of
the two X-probes and has a minimum traversing step of 40pum and 2.5um respectively.
The separation between the two X-probes is measured optically with the aid of an
external camera (HiSense 4M camera fitted with a Sigma f/3.5 180mm macro lens and
1.4x tele-converter). A calibration image is recorded for every set of measurements (i.e.
one fixed centroid location and 23 different X-probe separations), such as the one shown
in figure 2a (the original calibration image was cropped and annotated). The typical
field of view and pixel size are 14 x 14mm and 7um, respectively and the effective focal
length is about 250mm (note that the pixel size is 2 — 3 times the wire diameter but it is
sufficient to distinguish the wire from the background). The location of the centre of each
X-probe is inferred from the images as the geometric interception between straight lines
connecting the extremities of the etched portion of the wires. This differs slightly from
the visual interception of the sensors (figure 2a) since the wires are slightly buckled due
to the thermal load they are subjected during operation (Perry 1982) as well as other
residual stresses from the soldering/etching process. The vertical separation between the
two X-probes, Ay, is defined as the vertical distance between the two centres and Az is
the downstream separation which should be zero. During the course of the experiments it
was found that the overall precision of the prescribed vertical separation between the X-
probes was typically +50um (i.e. over the three degrees of freedom) and the misalignment
Az was typically smaller than 200um (in figure 2a Az = 50pm). During the processing of
the data the measured X-probes’ location (Ay is optically confirmed up to Ay = 10mm) is
taken into account (the misalignment Ax is corrected with the aid of Taylor’s hypothesis),
even though no noticeable difference was observed when no such corrections are applied.

The upper and lower X-probes (figure 2) are modified standard sensors (DANTEC
55P63 and 55P61, respectively) such that the distance between the inclined wires in the
z-direction is reduced from Az » 1.0mm to Az ~ 0.5mm and the original Tungsten wires
are replaced by Platinum-(10%)Rhodium Wollaston wires soldered to the prongs and
etched to I, ¥ 0.45mm in length and d,, = 2.5um in diameter. (Note that Az is analogous
to Azg in the nomenclature of Zhu & Antonia (1996), see their figure 1.) The minimum
vertical separation between the probes is Ay = 1.2mm (probe resolution ~ 47—8r; mutual
interference is discussed in §2.2.1) whereas the maximum separation for datasets 9 — 11
is 250mm (~ 7L) and for datasets 14 — 16 is 70mm (~ 2L) in a total of 27 and 23,
respectively, recording locations. The two X-probes have a small incidence angle relative
to the mean flow (-1° to —3° for upper probe and 1° to 3° for lower probe) to guarantee
that probes’ bodies remain free of contact for small separations. The angle of the wires
relative to the mean flow (81 & (s in figure 2a) differ from the standard +45° not only
due to the incidence angle of the X-probes but also due to the manual soldering of the
wires to the prongs. For the upper X-probe g = 48° and (2 = -50° and for the lower
probe (31 = 48° and Py = —41°. The X-probes are driven by the Streamline CTA system
described in 2.1 supplemented with two additional channels. As for the two-component
single-point measurements, the probes are calibrated at the beginning and at the end
of each set of measurements using a velocity-pitch map. At the start of the calibration
procedure the X-probes are separated by Ay = 55mm, which was deemed sufficient to
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FIGURE 2. Measurement apparatus. (a) Detailed view of the two X-probes and (b)
configuration of the apparatus inside the tunnel.

avoid aerodynamic interference between the probes whilst also being sufficiently far from
the walls (> 130mm) at all calibration incidence angles.

For all the measurements, both single-point and two-point, the flow temperature vari-
ation from beginning of the first calibration to end of second calibration was less than 1°
thus avoiding the need for temperature corrections to the calibrations (Perry 1982).

Note also that, for every experimental dataset we ensure that the electronic perfor-
mance of the CTA system (including the in-build signal conditioners) is sufficient to have
an unattenuated response up to frequencies of, at least, k;np = 1 (ky is the longitudinal
wavenumber and 7 = (13/e)'/* is the Kolmogorov microscale).

2.2.1. Probe resolution and mutual interference

The common sources of error in the measurement of transverse velocity gradients using
two parallel single or X-probes are their finite resolution (individually and of the array),
errors in the calibrations of the probes, electronic noise and mutual interference (Antonia
et al. 1984, see also Mestayer & Chambaud 1979; Zhu & Antonia 1996; Zhu et al. 2002).
Errors arising from differences in probe calibrations and electronic noise contamination
on each of the probes were found to be negligible when the probe separation is larger than
3n (pp. 548 of Zhu & Antonia 1995), here Ay > 4n. Concerning thermal interference due
to the proximity of the probes, Antonia et al. (1984) measured quantities like (Ju/dx)?
with both probes operating and observed that the quantities remained unchanged when
one of the probes was switched off. We repeated the same tests with our X-probes at the
minimum separation and corroborate that there is no evidence of thermal interference.

The aerodynamic interference due to the proximity of the X-probes depends on the
configuration of the measurement apparatus and is investigated with the data from a
precursory experiment (measuring RG115-generated turbulence). These experiments con-
sisted of traversing, for each downstream location, the X-probes from Ay = 1.2mm to
Ay = 260mm with the centroid positioned at (i) (y,z) = (0,0), i.e. the centreline and
(ii) (y,2) = (-57.5mm,0), i.e. behind a bar. For each downstream location there is a
region, y = —130mm to 73mm which is measured twice. In particular, the regions around
(y,2) =(0,0) and (y, z) = (-57.5mm, 0) are measured when the probes are closely spaced,
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FIGURE 3. Dependence of mean square lateral velocity derivatives (m |O) (Ou/0y)? and (@ |O)

2(0v/dy)? on X-probe separation, Ay/n; (empty symbols) raw and (filled symbols) compensated
measurements for the attenuation due to finite resolution.

Ay ~ 1.2mm, and far apart, Ay ~ 115mm (2 x 57.5mm), thus allowing the assessment of
aerodynamic interference on single point statistics. The results show that for Ay < 2mm
the error is never larger than 4% in quantities like U, v/, v', (Ou/0x)?, (Ov/dx)?. Higher
order statistics such as the Skewness and Kurtosis of both velocity components are less
influenced by the X-probes’ proximity. However, the transverse component of the mean
velocity, V, is severely influenced by the proximity of the X-probes and for Ay < 2mm
errors up to +0.5ms™! (inlet velocity, Us = 10ms™!) are observed which may be respon-

sible for the overestimation of the lateral mean square velocity derivative, (Jv/dy)? (see
figure 3 and the discussion below).

The spatial resolution of each individual X-probe is always better than [,, ~ d,, = 3.57
leading to relatively small finite resolution correction factors to the mean square ve-
locity streamwise derivatives (< 15%). The correction factors are defined as the ra-
tio between finite resolution and actual values of the mean square velocity derivatives
(rig = (8u/8z)2m/(8u/8x)2 and ro 1 = (81}/8z)2m/(8v/8x)2, superscript m indicating
measured values, but are omitted throughout the paper). In the present study, we use
the DNS based correction factors obtained by Burattini (2008).

The finite separation between the two X-probes, in addition to the finite resolu-
tion of each probe and their aerodynamic interference, influences the estimation of the
mean square velocity transverse derivatives, (Ou/dy)? and (0v/dy)? (Zhu & Antonia

1995, 1996). The correction factors, r1 2(= (6u/6y)2m/(6u/8y)2) and rg o (= (6U/Gy)2m/
(Ov/0y)?), are obtained from figure 3 in Zhu & Antonia (1996) to compensate the attenu-
ation due to finite separation (the X-probe geometry for which the correction factors were
obtained is not too dissimilar to the one used here). The influence of the aerodynamic
interference of the X-probes in the measurement of the velocity transverse derivatives is

assessed by calculating the derivatives for Ay = 1.2,1.6,2.0,2.5 and 3.0mm, correcting
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for the different resolutions and comparing the results. If the aerodynamic interference
is negligible and the finite separation is correctly compensated, the mean square velocity
derivatives should be the same. In figure 3, one example of such a comparison is made
for measurements in the lee of the RG115 at = 2150mm. It is shown that the corrected
(Ou/dy)? is indeed roughly independent of the X-probe separation, but (dv/dy)? is not.
This may be due to the aerodynamic interference already observed in the spanwise mean
velocity, V. Note that the value of 2(dv/0y)? seems to be tending towards the value of
(Ou/dy)?, which is the expected behaviour for axisymmetric turbulence.

2.3. Data acquisition and processing

The in-built signal conditioners of the anemometer are set to analogically filter at 30kHz
and to offset and amplify the signal -1V and 2x, respectively. The analogue anemome-
ter signals are sampled at 62.5kHz with a National Instruments NI-6229 (USB) with a
resolution of 16-bit over a range of [-1 1]V.

The time-varying turbulent signals are converted into spatially-varying by means of
Taylor’s hypothesis (taking the mean streamwise velocity, U, as the advection velocity).
The signal is digitally filtered at a frequency corresponding to kin =~ 1.3 using a 4'-order
Butterworth filter to eliminate higher frequency noise.

The turbulent velocity signals are acquired for 9min corresponding to 150 000 - 200 000
integral-time scales. Following Benedict & Gould (1996) we quantify the statistical un-
certainty of the measurements and conclude that the 95% confidence interval of the even
moments of the longitudinal and transverse velocity components up to fourth-order, as
well as the second moment of their derivatives is less than £1% of the measured value.

The mean square velocity derivatives in the streamwise direction are estimated from

the longitudinal and transverse wavenumber spectra F1(11 )(kl), F2(21 ) (k1) as

min

k’nl
2 D (ky) dky (av/az)tfk 2 5D (ky) dky,

where kp,;n and ko, are determined by the window length and the sampling frequency
respectively. To negotiate the problem of low signal to noise ratios at high frequencies
we follow Antonia (2003) and fit an exponential curve to the high frequency end of the
spectra. We checked that this does not change the mean square velocity derivatives by
more than a few percent. However, in decaying turbulent flows the signal to noise ratio
progressively decreases as the flow decays and therefore it is preferred to remove any high
frequency noise to avoid a systematic bias to the data, regardless of how small this bias
may be.

3. Profiles of one-point turbulence statistics
3.1. Production and decay regions

The downstream evolution of the turbulent flow generated by the RGs and the FSGs
can be separated into two distinct regions, the production and the decay regions. The
production region lies in the immediate vicinity downstream of the grid where individual
wakes generated by individual bars develop and interact. This region extends as far
downstream as where the wakes of the biggest bars interact, i.e. as far as that distance
downstream where the width of these largest wakes is comparable to the largest mesh
size M (Mazellier & Vassilicos 2010, M is the distance between parallel bars within a
mesh). There is only one mesh size in the case of RGs but for FSGs, which are made of
many different square bar arrangements, i.e. meshes, of different sizes, M refers to the
largest mesh size (see figure 1 and table 1).
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In the case of our RGs and of the particular type of space-filling low-blockage FSGs
with high enough thickness ratio, ¢, (such as the ones studied here and previously by
Seoud & Vassilicos (2007), Mazellier & Vassilicos (2010) and Valente & Vassilicos (2011,
2012); for the definition of ¢, see caption of table 1) the turbulent kinetic energy in
the production region increases monotonically with downstream distance x along the
centreline until it reaches a maximum at & = Zpeak (see figure 5). Further downstream,
i.e. where & > Zpcak, the turbulence decays monotonically. Along any other line parallel to
the centreline the point downstream beyond which the turbulence decays monotonically
occurs before Tpeak as shown by Jayesh & Warhaft (1992) and Ertung et al. (2010)
for RGs and by Mazellier & Vassilicos (2010) and Laizet & Vassilicos (2011) for FSGs.
Note that this definition of production and decay separated by a plane perpendicular to
the centreline located at xpeax could in principle be made more precise by defining the
surface where the advection vanishes, Ukaq_Q/axk = 0 (i.e. where the turbulent kinetic
energy, ¢2/2 is maximum; ¢2 = u; ;).

In the present paper only the region downstream of zpeak, up to a distance = from the
grid equal to the first few multiples of Zpeak, is investigated. This is the region where
the nonequilibrium dissipation behaviour was reported by Seoud & Vassilicos (2007),
Mazellier & Vassilicos (2010), Valente & Vassilicos (2011), Gomes-Fernandes et al. (2012)
and Discetti et al. (2013) for the FSGs and Valente & Vassilicos (2012) for the RGs.
The overall extent of this region remains unknown except for the RG60 grid where
the downstream extent of the test section and measurements were sufficient to capture
the existence of an equilibrium region beyond the nonequilibrium one; see Valente &
Vassilicos (2012) who determined the cross-over distance between these two regions to
be about 5zpeax from the RG60 grid. Note that the downstream location of zpcax Was
shown to be proportional to a ‘wake-interaction length-scale’, x, = M?/ty (see Mazellier
& Vassilicos 2010; Valente & Vassilicos 2011), and the proportionality constant to be
dependent on other grid details as well as upstream turbulence (Gomes-Fernandes et al.
2012).

Before proceeding with the profiles of one-point turbulence statistics, it may now be a
good place to explain why the non-equilibrium dissipation region had never been reported
before the advent of fractal grids in 2007. Regular grids had been designed to have as high
a blockage ratio (o) as possible in order for the turbulence intensities and local Reynolds
numbers to be as high as possible. However, the ensuing flow is dominated by instabilities
and wake mergings if o is too high (see Corrsin 1963) and so the vast majority of regular
grids used since the 1930s when they started being used for turbulence research had a
o between about 35% and 45%. There is a one-to-one decreasing relationship between
M [ty and o for regular grids which is such that M /tg > c0c asoc > 0and M/tp=1ato =1
(i.e. 100%). Indicatively, for o = 40% one gets M [ty ~ 4.5 and therefore . ~ 4.5M giving
an estimate for Tpeqr ~ 2.2M (see Mazellier & Vassilicos 2010; Valente & Vassilicos 2011;
Gomes-Fernandes et al. 2012) and an estimate of the extent of the non-equilibrium region
to be from 2.2M to 11M (assuming the estimate of Valente & Vassilicos 2012 for RG60
in terms of multiples of Zpeqr to carry over to other RGs). As the safe application of hot-
wire anemometry in conjunction with the Taylor frozen turbulence hypothesis requires
turbulence intensities not exceeding about 15%, the vast majority of measurements taken
with RGs over the decades where made at distances from the grid at and beyond 10M,
hence missing the non-equilibrium dissipation region completely. Furthermore, the ratio
between the tunnel width and the mesh size has very often been around 10 or even higher,
particularly when attempts were made to simulate homogeneous turbulence. Hence the
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vast majority of the tunnel test section could and would be used to probe distances from
the grid well over z/M =~ 20.

The constraints in designing fractal grids encountered by Hurst & Vassilicos (2007) led
them to adopt much lower blockage ratios than usual, specifically o = 25% for FSGs, see
table 1. As a result, M /[ty = 12 for FSG3’x3’ and FSG18”x18” suggesting that the non-
equilibrium dissipation region extends from about peqr ~ 0.4M (M /to) ~ 5M to about
5Zpeak ~ 24M and therefore well beyond the end of the test section. The blockage ratio
being small, turbulence intensities are limited to values below about 10% in the non-
equilibrium dissipation region and therefore hot wire anemometry can be used to study
it in conjunction with the Taylor frozen turbulence hypothesis. An added advantage is
that, throughout the test section beyond peqk, the turbulence intensity does not drop
down to the very low values encountered with typical regular grids where the emphasis
is given on measurements at high x/M, thus avoiding signal-to-noise problems. Hence
FSGs paved the way for turbulence experiments where the non-equilibrium dissipation
region is magnified and covers the entire extent of the test section beyond Zpeqr, yet the
turbulence intensities are such that hot wire anemometry can be used conclusively.

Valente & Vassilicos (2012) followed by designing the untypical regular grids RG230
and RG115 of figure 1 which also have a low blockage ratio and a high M [ty and which also
return long non-equilibrium dissipation regions with similar turbulence intensities making
hot wire anemometry similarly suitable. Hence, Valente & Vassilicos (2012) demonstrated
that the non-equilibrium dissipation region is not unique to fractal grids. Their two low-
blockage RGs (RG230 and RG115) and the two FSGs of figure 1 and table 1 are used
in the remainder of section 3 to document the differences and similarities in the non-
equilibrium dissipation regions of the turbulent flows they generate and the potential
effects of the confining walls of the tunnel. Thus we demonstrate that the new non-
equilibrium dissipation law which we study further in sections 4 and 5 holds irrespective
of some significant differences in profiles and wall-confinement effects. This demonstration
would not have been possible without the FSGs and the new RGs.

3.2. Mean velocity deficit versus turbulent kinetic energy decay

We start by examining the mean velocity profiles as the turbulent flow decays and com-
pare, in figure 4, those resulting from the RG115 and the FSG3’x3’ grids. Note that
the bulk velocity, Uy = 1/M /_1%//22 U dy, is subtracted from the mean velocity profiles
to compensate for the slight decrease in the effective area of the test section due to the
blockage caused by the developing boundary-layers on the side-walls. (For wind tunnels
with mechanisms to compensate boundary-layer growth, e.g. a divergence test section,
Up = Uss.) Normalising the profiles with the velocity deficit, AU (defined in the caption
of figure 4), it can be seen that the mean profiles retain approximately the same shape
as the velocity deficit decreases (figure 4b). In the RG115-generated turbulence case this
profile is not very dissimilar from a cosine law. However it does seem to have some slight
deviations from the cosine law in the FSG3’x3’-generated turbulence case which must be
attributable to the change in upstream conditions, i.e. grid geometry.

The decay of AU is faster than the decay of v’ (the root mean square (rms) of the
longitudinal component of the fluctuating velocity), see figure 5. This starkly differs from
a wake-like flow where scaling arguments suggest that v’ ~ AU (Tennekes & Lumley
1972).

3.3. Profiles of 2" -order one-point turbulence statistics

We now turn to transverse profiles of the turbulent kinetic energy ¢2/2 = u2/2+v2/2+w?/2
estimated here as u?/2 + v2. This estimate relies on the assumption that v? ~ w? in
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FIGURE 4. Mean velocity transverse profiles (normalised by the mean velocity deficit,
AU= U(y = 0) -U(y = £M/2) in (b)), for different downstream locations in the lee of the
RG (filled symbols) and the FSG (empty symbols). The bulk velocity, Uy (see text for defini-
tion) is subtracted from the velocity profiles. Downstream locations: (B |0) z/Tpeax = 1.4, 1.5;
(@ |0O) x/xpeax = 1.8, 2.0; (& |O) x/xpear = 2.8, 3.0; (O |0) z/xpeax = 3.7, 3.5. All data are
recorded at Us = 15ms™". The dash-dotted line in figure (b) represents a cosine law, cos(6)/2
with 6 = [-7 7] corresponding to y = [-M/2 M/2] and the solid lines represent a 6™*-order poly-
nomial fit. Error bars represent the departures from symmetry between the upper (y/M > 0)
and lower (y/M < 0) half of the transverse measurements whereas the symbols represent the

mean between the two. All data are taken in the plane z = 0 (datasets 2 and 6 are used, see
table 2).
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FIGURE 5. Downstream evolution of (® | O) turbulence intensity at centreline, u../U. and (M |
0O) mean velocity deficit normalised by the centreline velocity, AU /U, in the lee of the RG115
(filled symbols) and the FSG3’x3’ (empty symbols). The solid lines are power-law fits to the
decay of u.,/U. using the nonlinear least-squares regression method described in Valente &
Vassilicos (2011) (‘Method IIT” in their §3.4). The decay exponents and virtual origins obtained

are n = 3.0, 2.4 and zo/Zpeax = —1.4, -1.1 for the FSG3’x3’ and RG115 data, respectively.
Datasets 1, 2, 6 and 7 are used, see table 2.
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FIGURE 6. Reynolds stress transverse profiles for different downstream locations in the lee of
RG115 and FSG3’x3’. Symbols and error bars are described in the caption of figure 4. All data
are taken in the plane z = 0. Datasets 2 and 6 (see table 2) are used as in figure 4.
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symbols) and the FSG3’x3’ (empty symbols). Datasets 2 and 6 (see table 2) are used as in figure
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the decay region x > xpeax Which is supported as a rough approximation by the direct
numerical simulations of Laizet & Vassilicos (2011) and the laboratory experiments of
Nagata et al. (2013).

Our first observation is that the shape of the profile changes and becomes progressively
more uniform as the turbulent flow decays (figure 6a). (The profiles are normalised by
the centreline value to enhance variation of the kinetic energy with spanwise location.)
This is indeed what one expects of grid-generated turbulence which has a tendency to-
wards asymptotical homogeneity, at least in some respects, with downstream distance.
A striking difference, however, is that the profiles of the RG115-generated turbulence are
more uniform than their counterparts of the FSG3'x3’-generated turbulence at similar
downstream locations relative to Zpeak. This may be attributed to the additional turbu-
lence generated by the wakes originating from the smaller squares of the FSG near the
centreline (compare figure la with figure 1d near the centre of the grid), which increase
the kinetic energy in this region. A similar effect appears in the profiles of the isotropic
dissipation estimate £*° = 151(9u/dx)? which we plot in figure 6d (normalised by the
values of £° on the centreline, y = z = 0). (Note, however, that the transverse profiles of
the actual kinetic energy dissipation rate e divided by £'*° may be different in the different
turbulent flows considered here.) Even though the present FSGs return less homogeneity
than the present RGs, they do nevertheless seem to generate a significant improvement
in the u'/v’ ratio (figure 6b) which is one of the indicators of large-scale isotropy (v’ is the
rms of the turbulent fluctuating velocity in the y direction). The downstream evolution
of this ratio is presented in figure 7 where it can also be seen that u//v’ do not vary
significantly during decay (in-line with the literature, see §3.9 in Townsend 1976).

Note that the curvature of the kinetic energy transverse profiles is associated with the
lateral triple correlation transport, 9/0ywvq?. This can be seen from an eddy diffusivity
estimate vq2 = =D 8/8y ¢ which leads to 8/dyvq? = -D 8%/dy? ¢2 if the eddy diffusiv-
ity D is independent of y. Profiles of triple correlation transport terms are presented in
§3.5 showing opposite net transport near the centreline at a distance of about 1.5Zpcax
for the two grids (RG115 and FSG3’x3’). The opposite curvatures appearing near the
centreline in the ¢2 transverse profiles at that distance from each grid (figure 6a) directly
relate to the opposite signs of the lateral triple correlation transports generated by the
two grids at these locations.

Figure 6¢ shows that differences in the Reynolds shear stress (normalised by the local
u’ and v’) between the turbulence generated by the two grids are very tenuous. The
numerical values of the normalised shear stress are similar and the shape of the profiles
differs only slightly in the location of the peak and the numerical values at y = M /2.

3.4. Wind tunnel confinement effects

In Valente & Vassilicos (2011) (§3.2.3) some concerns were raised regarding the effect
of the wind tunnel bounding walls on the measured turbulent flow. As noted by Hunt
& Graham (1978) the solid walls have a blocking action on the large-scale free-stream
turbulence eddies adjacent to the wall up to a distance of the order of the integral-length
scale (even in the absence of mean shear for the case of moving walls with a tangential
velocity equal to that of the mean flow). Valente & Vassilicos (2011) compared the ratio
of their wind tunnel width/height and their integral length-scales (estimated to range
between 8-10) with DNS and other grid-turbulence experiments and argued that the
effect of confinement could not, by itself, justify the outstanding properties of their flow,
in particular the constancy during decay of the integral to Taylor length-scale ratio Lﬁ) /A
(see §4 for the definition of this notation). Nonetheless, there could be some effect on
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FIGURE 8. Transverse profiles of (a) the normalised mean velocity and (b) kinetic energy for
different downstream locations in the lee of the RG230 (filled symbols) and the FSG18"x18”
(empty symbols). Downstream locations: (B |O) z/Tpeak = 1.3, 1.4; (@ | O) z/Tpeak = 1.8, 1.8;
(O) z/xpeak = 2.8; (O) z/Tpeax = 3.2. The dash-dotted line on figure (a) represents a cosine law.
Datasets 3 and 5 (see table 2) are used.

that ratio, for example by artificially reducing it and causing it to slightly decrease rather
than remain constant during decay.

The effect of wind tunnel confinement is investigated here by comparing geometrically
similar grids with different ratios between test section width/height (T) and mesh size
(M). This is accomplished by (i) comparing mean profiles from the FSG18”x18” and the
FSG3’x3’ grid arrangements for which M is approximately the same but the FSG3'x3’
is a periodic extension of the FSG18”x18” in a wind tunnel of double the size; and
(ii) by comparing mean profiles from the RG230 and RG115 arrangements which are
geometrically similar in the same wind tunnel but where the mesh sizes differ by a factor
2. These two comparisons provide an assessment of (i) the effect of generating large
integral length-scales relative to the tunnel’s cross section (which could influence, e.g.,

the downstream evolution of the Lﬁ) /A ratio, see §6) and (ii) the difference between
wakes interacting with each other whilst simultaneously interacting with the wall (as
is the case for RG230- and FSG18”x18”-generated turbulence) versus wakes interacting
with each other in a quasi-periodic arrangement (as is the case in the centre regions of
the RG115- and FSG3’x3’-generated turbulent flows).

Comparing the normalised mean velocity profiles of RG230 and FSG18”x18” in figure
8a with those of RG115 and FSG3’x3’ in figure 4b, it is clear that the profiles correspond-
ing to the grids with double the value of M /T have lost the similarity with downstream
position which characterises the profiles resulting from the lower M /T grids. This effect
is more pronounced further downstream, in particular at the furthermost downstream
stations where the greatest departures from self-similar profile shape appears (see fig-
ure 8a). The two furthermost stations in the FSG18”x18” case are at « = 3650mm and
x = 4250mm whereas the last measurement station in the RG230 case is z = 3050mm. It
is therefore no surprise that the greatest deviations from self-similar mean flow profile
are evidenced in the FSG18”x18” case as the blockage induced by the boundary layers
developing on the confining walls is greater at x = 3650mm and x = 4250mm than at
z = 3050mm.

Turning to the effect on the kinetic energy profiles (figure 8b versus figure 6a) it can
be seen that there is a substantial decrease in the uniformity of the profiles across the
transverse locations for the grids with higher M /T (RG230 and FSG187x18”). It also
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FIGURE 9. Transverse profiles of turbulent (a, ¢) transport and (b, d) production for different
downstream locations in the lee of the various RGs and FSGs. Symbols and error bars for the
top plots (a, b) are described in the caption of figure 4 and symbols for the bottom plots (c, d)
in figure 8. Datasets 2, 3, 5 and 6 (see table 2) are used.

appears that this effect is felt throughout the decay and is as pronounced closer to
Tpeak as it is further downstream. For example, the overshoot of kinetic energy off the
centreline observed at the first measurement station (z/zpeak = 1.4) in the lee of RG115
(c.f. figure 6a) is almost non-existent for the RG230 data at an identical downstream
location relative to Tpeak (T/Zpeak = 1.3, c.f. figure 8b). It is likely that this difference is
a consequence of the wakes generated by the RG230 and FSG18”x18” grids interacting
with the wall instead of interacting with other wakes from a periodic bar, as in the case
of RG115 and FSG3’x3’. These changes in the shape of the profiles lead to changes in
the turbulent transport as shown in §3.5.

3.5. Turbulent transport and production

We now turn to the estimates of the main terms of the single-point turbulent kinetic
energy (T.K.E.) transport equation,

Uk 0¢? oU; 0 [uwg® Tupp\ v 0%¢2
e Y iy o S O I S (3.1)
2 Oxp Or; Oxy 2 p 2 022,
N—— ———
A P T D,

We have confirmed against all the data presented here that the Reynolds number is
indeed sufficiently high (Rey; = O(10°), 600 < Reyia1y < 4000) for the viscous diffusion
D, to be negligible relative to the turbulent dissipation, e, similar to what was found
in Valente & Vassilicos (2011). We therefore now focus our attention on the transport



16 P. C. Valente and J. C. Vassilicos

g . 12 .
(a): RG115 | (b).l FSG3’x3’ |
3 .
E 04 I@,-LX s 1 04l o,
[\ 0.2—/ R ‘9\\‘;‘ - 02+ ;;;“E‘~—\,;
N B Enn“ff—<,;,i
ol By ol
L —m----®8--IZIZ”=C »////’*
-02 35 ’iﬁ{z_iﬁiiii * if -0.21- T —»»”'i//y_/>)i‘
- X //*\-\‘:://* o --m
K R
-04f &~ 1 -0.4f
(o) | % RG115 | (d) FSG3’x3’
o 04 %\\ 0.4
iy R
E 0.2 * 4 02 %\\\\\‘\\
. S N
Sy T dk L.
O s o S :
0 J}_,E,g<,,,,,QP,,,,11‘5:":::?:’-“1’— 0 ”E”’”";”””’i””:;’i:‘::\“i

x/xpeak x/xpeak
FIGURE 10. Longitudinal profiles of turbulent (a, b) transport and (c, d) production for three
spanwise locations in the lee of the RG115, namely (®) y =0, (0) y=M/4 and (») y= M/2
(based on datasets 2 and 6, see table 2). Additional data for RG115 from the 2xXW experiments
(datasets 9 and 10, see table 2) are added to (a, ¢) and represented with open symbols. Error
bars are described in the caption of figure 4. Dashed lines are polynomial fits to the data.

and production terms 7 and P. The turbulent kinetic energy dissipation, ¢, is estimated
using the isotropic surrogate evaluated at the centreline, £15°. This choice is motivated in
§85.

The turbulent transport and production terms are estimated in a cylindrical coordinate
system (r, ¢, ), where the z-coordinate is the same as the z-coordinate of our Cartesian
coordinate system (see §2). This is done with the aim to rely on an assumption of ax-
isymmetry of the turbulent flow with respect to the centreline axis. This assumption has
recently been given substantial support for the decay region in the lee of FSGs by the
wind tunnel measurements of Nagata et al. (2013). The turbulent production and triple
velocity-correlation transport therefore take the form,

10 urg®> WP 9 (uig®> wip
=——— - ap 3.2
() o2
and
oU; oU;
P = —Uiula - ’LLZUTW, (33)

where u, and u; are the turbulent fluctuating velocity components aligned with r and z,
respectively. Our axisymmetry assumption implies that we can estimate (3.2) and (3.3)
by replacing r, u, and 0/0r with y, v = us and 9/dy in these equations. Our experimental
apparatus does not allow the measurements of the pressure-velocity correlations and thus
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only triple velocity-correlation turbulent transport is estimated. Hence, what we are really

calculating is:
19 ( v?\ 0 (ug®
=———|y—=—|-=—|—= 3.4
T y@y(yQ) 630(2) (34)

where ¢? = u? + 2v? as in §3.3 and

p- ug_U u—g_’; (3.5)
since our flows are approximately parallel in the assessed region (i.e. W~V ~0).

Our conclusions in this subsection do not crucially depend on how good an approxima-
tion of the triple velocity-correlation transport and the turbulent production these two
equations are. The quality of these approximations depends on how good the axisymme-
try assumption is and on the impact of our neglect of the pressure-velocity correlation.
This is a separate issue which we do not address here. What we do address here are the
differences between the flows generated by RGs and FSGs and the effects of the tun-
nel walls. For simplicity, we refer to 7 defined by equation (3.4) as turbulent transport
henceforth.

The spanwise profiles of turbulent transport normalised by €15° for the FSG3'x3’- and
RG115-generated turbulence are shown in figure 9a (¢! is €*° on the centreline). The
profiles in the lee of the two grids are recorded at four comparable downstream locations
relative to Tpeak. The prominent differences for the two turbulent flows are striking.
Whereas the transport near the centreline for the FSG3’x3’ is always negative (i.e. net
loss of T.K.E.) and amounts to roughly 30% of the dissipation throughout the assessed
region of decay, for the RG115 at the measurement station closest to Tpcax it amounts
to » 45% (i.e. net gain of T.K.E.), changes sign further downstream and at the farthest
measurement station becomes relatively small (> —10%; see also figure 10a). These dif-
ferences are very likely caused by the geometrical differences between the grids. Note,
however, that Rep; for the FSG3’x3’ recordings is about twice as those of the RG115
(see table 2). Nevertheless, at these Reynolds numbers, the variation in Reps cannot by
itself justify the observed differences.

Conversely, the differences in the spanwise profiles of turbulence production are more
subtle (figure 9b). This observation is in-line with the more tenuous differences found in
the spanwise profiles of U and wo/u'v’ (figures 4a,b and 6c¢).

The longitudinal profiles of the turbulence transport and production, at the centreline
and at two parallel lines at y = M /4, M /2, can be found in figures 10a, b and show signifi-
cant differences between the FSG and RG on the centreline, though less so off-centreline.
Complementary data from the 2xXW experiments (recorded at different downstream
locations, c.f. table 2) are also included for the RG115 case. Note that these data are
recorded at a lower inlet velocity, U = 10ms™! and consequently at a lower Rej, but
seem to follow roughly the same longitudinal profiles. However, the difference in Rejs
(the Reyps of the 2xXW data is about 2/3 of the Reps of the single XW data) is insuffi-
cient to draw definitive conclusions concerning the Reynolds number dependence of the
distribution and magnitude of the turbulent transport and production. o

In §3.4 the effect of bounding wall confinement on the spanwise profiles of U and ¢2 was
demonstrated. Figures 9c,d can be compared to figures 9a,b to assess the confinement
effects in terms of turbulent transport and production. It is clear that the effect of
confinement is more pronounced on the turbulent transport profiles. For the RGs this
leads to a change in the direction of the transport at the centreline close to the grid
(z/Tpear ~ 1.4) from T/e° ~ 45% for RG115 to T /e ~ -10% for RG230 and an
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increase in the transport at o/Tpeak » 1.8 from T /1% » —5% for RG115 to T/l » -40%

for RG230. For the FSGs the confinement leads to an improved ‘collapse’ of the profiles
with a value at the centreline of about T/e® ~ -45% for the FSG18"x18”, c.a. 15%
higher than in FSG3’x3’. The fact that this effect is felt throughout the decay leads to
the hypothesis that it is caused by the influence of the wake/confining-wall interaction

on the wake/wake interaction.

On the other hand, the effect on the turbulent production is generally less pronounced,
except far downstream for the FSG18”x18” case where the profiles are severely distorted
by comparison to the FSG3’x3’ case, which can be attributed to the distortion in the
mean velocity profiles (figure 8a). This is likely a consequence of the developing boundary
layers on the confining walls as discussed in §3.4. (Note that the last RG230 measurement
is = 3050mm versus x = 4250mm for FSG18”x18”, explaining why this effect is mostly
seen for FSG18”x18”.)

Turbulent transport and production are shown to become small by comparison to the
dissipation (< 10%) beyond x/zpeak = 3.5 for the RG115-generated turbulence, regardless
of the spanwise location (see figures 10a,c). A similar observation can be made for the
FSG3'x3’-generated turbulence (see figures 10b,d), except for the turbulent transport
around the centreline which has a substantially slower decay, perhaps only marginally
faster than the dissipation and is persistent until the farthest downstream location mea-
sured. A similar observation was previously presented in Valente & Vassilicos (2011) for
FSG18”x18”-generated turbulence. With the present data we show that it is not due
to confinement, although we also demonstrate that confinement does have a significant
effect.

Finally, note that the presence of turbulent transport and production, particularly if
varying with respect to the dissipation, influences the kinetic energy decay rate and its
functional form. In Valente & Vassilicos (2011) it was pointed out that the functional
dependence on x of the decaying turbulent kinetic energy is the same when the advection
term in (3.1) is balanced by dissipation only and when it is balanced by dissipation and
other terms provided that the ratio between dissipation and these other terms remains
constant with z during decay. This was indeed the case in the FSG18”x18” centreline
measurements of Valente & Vassilicos (2011) where the one non-negligible term was the
turbulent transport (including pressure transport in Valente & Vassilicos 2011) which
kept at an approximately constant fraction of dissipation over the relevant streamwise
length of measurements. This is not so, however, in the present centreline FSG3x3 mea-
surements as can be seen in Figure 10b where the ratio of the turbulent transport to £
varies significantly over the z-range of the reported measurements. These new data sug-
gest that, if not caused by the pressure transport term, the constancy of turbulent trans-
port as a fraction of dissipation may have been, at least partly, due to wall-confinement in
the FSG18”x18” case of Valente & Vassilicos (2011). The nature of the present FSG3'x3’
set up is indeed one where wall confinement can be expected to be less of an issue. This
would suggest that the power law fits reported in Valente & Vassilicos (2011) for the
FSG187x18” case of decaying turbulence ought to be different from those of decaying
turbulence originating from our FSG3'x3’ grid. Our centreline data in figure 5 confirm
this expectation as they are well fitted by u? ~ (z—x¢)™" with n = 3.0 and zo/Tpeqr = —1.4
with the same nonlinear least-squares regression method used by Valente & Vassilicos
(2011) on their FSG18”x18” data to obtain n = 2.41 and x¢/Zpeqr = —0.5. For reference,
this same regression method yields n = 2.4 and zo/%pear = —1.1 when applied to our
RG115 data (see figure 5). (Note that Krogstad & Davidson (2012) find n ~ 2.2 for their
regular grid.)
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4. Two-point large scale anisotropy

We now turn our attention to the study of the large scale anisotropy of one of our
decaying turbulent flows. We focus on RG115-generated turbulence for three reasons:
(i) it is a better approximation to a periodic flow than RG230-generated turbulence;
(ii) it has a larger xpeax value and therefore a longer nonequilibrium decay region than
RG60 in the wind tunnel; (iii) the constancy of the integral-length scale to the Taylor
microscale ratio, which is indicative of the nonequilibrium region, is improved by compar-
ison to FSG-generated turbulence as we report in §6. Data from the farthest downstream
location on the centreline of our RG60 set up is also shown. These data are from the
equilibrium turbulence decay region because x/Tpeak » 21 > 5 (see Valente & Vassilicos
2012). As x/xpeax ~ 21 corresponds to x/M ~ 51 for RG60, these data are also as close
to homogeneous and isotropic turbulence as any of our data sets can be expected to get
from knowledge of past measurements.

We study the downstream evolution of longitudinal and transverse correlations over
both longitudinal and transverse separations. These correlations are defined as (no sum-
mation implied over the indices),

B® (X.r) = By(Xr) = X Tw/2) uiX 41 [2) 4.1
i (X,r) = Ba(X, ) e (4D

where 7, is the separation r in the direction along the xp-axis (with 1 = z, x2 =y, x3 = 2)
and X is the position vector.

We use the data obtained with the 2xXW apparatus described in §2 (datasets 14, 15
and 16 in table 2) to calculate Bg) and Bég) and the time-varying signals to calculate

Bﬁ) and Bg) using Taylor’s hypothesis. We repeat these calculations for six downstream
positions along the centreline which cuts through the centre of the central mesh (see figure
1d) and six downstream positions along the line (y = =M /2,z = 0) which cuts through
the lower bar of the central mesh.

Though of less importance for this paper, it is nevertheless worth noting that these
data can also be used to compute the scalar correlation function (with summation over 7)
B;i(X;71,72,0) in the (r1,72,0) plane if the assumption is made that B;;(X;r1,72,0) =
By(X;r1,12,0)+2B,,(X;71,72,0), where B) and B, are the correlation functions of the
velocity components parallel and perpendicular to r = (r1,72,0). By further assuming
axisymmetry around the axis intercepting X and normal to the (0,r2,73) plane we can
then map By;(X;r1,72,0) onto the spherical coordinates (R, 6, ¢) (where ¢ is the angle
around this axis) and extract an estimate of the spherically averaged correlation function,

B (X,r) = / Byi(X,r) dr. (4.2)

r=|r|

The assessment of the two assumptions that we use to calculate B* lies beyond the
scope of the present work as it concerns issues which are mostly peripheral to our main
conclusions. Some support for these assumptions around the centreline can nevertheless
be found in Laizet & Vassilicos (2011) and Nagata et al. (2013), though their validity
around the (y = -M/2,z = 0) axis can be expected to be more doubtful. This section’s
main conclusions concern comparisons between the different longitudinal and transverse
correlation functions and their associated integral-length scales Lgf ) (no summation over
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FIGURE 11. Comparison between the longitudinal and transverse correlation functions for lon-
gitudinal and transverse separations of turbulence generated by RG60. The centroid of the

correlation functions is located at the centreline y = 0 and at = 3050mm, corresponding to
Z/Tpear ~ 21. (dash-dotted line) B{}), (dashed line) BSY, (@) B, (0) B and (solid line)
B*. L{Y /M =067, LY JL{Y = 074, 2L /LY = 0.82, 2L{P/L{} = 0.91 and 3/2 L/L{; = 0.87.
Dataset 11 (see table 2) is used.

i)

LX) - fB(k)(X r) dr. (4.3)

B(k)(X 0) ¢

We do also calculate the integral-length scale
1 o)
szif B*(X,r)d 4.4
%)= oy Jy B @4

and compare it with the other integral-length scales to check, for example, whether 3/2L =

QL%) and/or 3/2L = Lﬁ) as is the case in incompressible isotropic turbulence (Monin
& Yaglom 1975, and Batchelor 1953). Our main checks, however, are to determine how

far or close we are from the incompressible isotropic relations QL%) Lﬁ), 2L(2) Lg),
BW = B and B = B{)) (Monin & Yaglom 1975; Batchelor 1953).

Figure 11 shows the different correlation functions for the RG60-generated turbulence
at our farthest downstream location on the centreline where the turbulence is expected
to be closest to homogeneous and isotropic. For r < 2M the transverse correlations are

roughly equal, 352) Bg), whereas the longitudinal correlations, Bﬁ) and 352) are

less so. For r > 2M, B(Q) seems to tend slowly to zero, contrasting with BS). These

departures between B( ) and Béé) for large r may be related to the lack of validity of
Taylor’s hypothesis for long time differences, but may also be genuine departures from
isotropy.

The ratio between the different integral-length scales is presented in the caption of fig-
ure 11 (for isotropic turbulence these ratios are equal to one) and they indicate small, but
non-negligible, departures from isotropy even at this relatively far downstream location
(/M ~51).

The RG115 data, on the other hand, show a larger departure from isotropy (figure
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FIGURE 12. Comparison between the longitudinal and transverse correlation functions for longi-
tudinal and transverse separations of turbulence generated by RG115. The centroid of the cor-
relation functions is located at, (a, b) the centreline y = 0 and (c, d) behind a bar y = —-M /2 for
downstream locations, (a, ¢) = 1250mm, corresponding to z/%peak = 1.5 and (b, d) z = 3050mm,
corresponding to /T peak = 3.7. Description of symbols/lines can be found in figure 11. Datasets
9 and 10 (see table 2) are used.

12 and table 3). The ratios Lgi)/Lﬁ) and QL%)/LS) do not show any tendency towards
isotropy between z/Tpeak » 1.1 and #/Zpeak ~ 3.7 on the centreline as they both remain

about constant with values around 0.62 and 0.54 respectively. The ratio 2L§21) / Lﬁ) is even
further away from the isotropic value 1 but grows quite steeply with streamwise distance
x on the centreline. The very small values of this particular ratio reflect the prominent

negative loop in Bﬁ) at the lower z/Tpeak locations, a negative loop which progressively

weakens as /Zpeak increases thereby yielding increasing values of 2L§21)/ Lﬂ). This effect

also presumably explains the steep growth of 3/ 2L/Lﬂ) with increasing /%peax along
the centreline because of the related negative loop in B* at the lower x/zpeax locations
which also disappears with increasing =/ peak-

The decaying oscillation and related negative loop in the transverse correlation Bg)
of longitudinal fluctuating turbulent velocities is likely a remnant of the periodicity of
the grid leading to a peak in negative correlation mid way between bars, i.e. at r = M /2
as indeed observed in figure 12. The grid’s periodicity can indeed leave a mark on the
flow in the form of a transverse near-periodicity of its vortex shedding which disappears
far downstream. When this happens and the correlation function has a negative loop as
a result, the integral-length scale obtained by integrating this correlation function loses
its usual meaning as a spatial extent of correlation.
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T Tpeak 1.1 15 2.0 2.6 3.1 3.7
. LM 0.24 0.25 0.27 0.30 0.34 0.36
= L2y 0.60 0.64 0.65 0.64 0.61 0.62
g 2L /LY 0.54 0.53 0.54 0.54 0.53 0.55
O 20 /LY 0.13 0.14 0.19 0.30 0.36 0.44
3/2L/LSY 0.40 0.44 0.48 0.54 0.57 0.61

5 LY /M 0.40 0.40 0.42 0.40 0.43 0.44
& Ly 0.38 0.40 0.40 0.46 0.44 0.47
E 2L /LY 0.31 0.34 0.36 0.43 0.44 0.49
2 2L /LY 0.95 0.94 0.88 0.91 0.86 0.84
3/2L/LSY 0.75 0.75 0.74 0.79 0.74 0.75

TABLE 3. Several integral length-scales for different downstream location for the

RG115-generated turbulence. The different integral length-scales are normalised with Lgll) with
a pre-factor such that unity would correspond to isotropic incompressible turbulence. Datasets
9 and 10 (see table 2) are used.

Along the (y = -M/2,z=0) line crossing the lower bar of the central mesh of the grid
the length-scale ratios are different. Firstly, L(2) / Lﬁ) and QL%) / L(l) exhibit a significant
increase with i 1ncreasmg x which they do not exhibit on the centreline. However, L(2) /L(l)
and QL%) / L11 take significantly lower values than at the same streamwise positions along
the centreline, indicating more anisotropy in the wake of the bar than along the centreline
between bars. By a different measure, though, that of 2L(2) / Lﬁ), the turbulence appears
more isotropic in the wake of the bar than along the centreline because 2L(2) /L(l)
very much closer to 1 behind the bar. It is clear that each of the ratios between different
length-scales and Lﬂ) show a different trend as the turbulence decays. Nevertheless,
it is also clear that Bﬁ) > Bég) for all separations r, and consequently Lﬂ) > Lg) at
all streamwise positions accessed by our measurements both behind the bar and along

the centreline. This suggests that the large-scale eddies are elongated in the streamwise
direction. This had previously been observed for RG-generated turbulence by Jackson
et al. (1973) which estimated that ng)/L(l) ~ 3[4 at /M ~ 11, i.e. a 25% elongation
in the streamwise direction. Also note that the PIV data of Dlscettl et al. (2013), taken
along the centreline of a FSG similar to our FSG18”x18” also suggest such an elongation
of large-scale eddies in the streamwise direction (see their figure 14).

5. Small-scale anisotropy and dissipation rate estimates

We now turn the focus to the (an)isotropy of the small scales. These are customarily
assessed by comparing the ratios between the various mean square velocity derivatives
with the isotropic benchmark (see e.g. George & Hussein 1991). For example,

M K, - (c%/@y) K (au/ax)
(0v/0z)® (8u/<‘9y) (3u/8y)

should all be unity for a locally isotropic flow (see Taylor 1935, where all the velocity
derivative ratios are derived for an isotropic turbulent field).

K= (5.1)
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There have been many experimental investigations of local isotropy in canonical tur-
bulent shear flows (see e.g. Browne et al. 1987; George & Hussein 1991; Saddoughi &
Veeravalli 1994, and references therein), but it seems that in this context grid-generated
turbulence has not attracted much attention, perhaps because local isotropy is thought
to be guaranteed. However, the experimental data by Tsinober et al. (1992) for RG-
generated turbulence suggest significant departures from local isotropy (to the best of
our knowledge no other assessment of local isotropy for RGs can be found in the litera-
ture). These data have significant scatter making it difficult to discern trends as the flow
decays, particularly for K5, but it seems that K; and K3 are about constant between
6 < &/Tpeak < 31 with numerical values surrounding 1.4 and 0.8 respectively. Recently,
Gomes-Fernandes et al. (2012) presented estimates of K7 and K3 in the lee of three FSGs
along the centreline up to a downstream region of about 4x,cak. Their data for the FSG
similar to the present FSG18”x18” indicate that K7 and K3 are approximately constant
beyond Tpeax With numerical values of about 1.2 and 1.1, respectively.

The validity of the approximations of local isotropy (or local axisymmetry) in the
decaying turbulence generated by square-mesh grids is, however, a peripheral topic to
the present work. What is, in fact, the main concern here is to assess how the anisotropy
of the small scales varies as the turbulent flow decays and/or Rey changes. If the ratios
K, Ky and K3 (and/or ratios than can be formed with the other components of the mean
square velocity derivative tensor) vary significantly during the turbulence decay and/or
with Rey, then the surrogate isotropic dissipation estimate, £15° = 150(0u/0z)?, obtained
from one-component measurements (e.g. with a single hot-wire) is not representative of
the true turbulent kinetic energy dissipation, €, as usually assumed. This would bear
severe consequences, not only for the present work, but also for turbulence research
in general since the overwhelming majority of the dissipation estimates found in the
literature are indeed estimates of the surrogate £5°, typically obtained with a single hot-
wire. Multicomponent hot-wires and particle image velocimetry, PIV, have resolution
and/or noise issues and inhibit accurate and reliable measurements of several components
of the mean square velocity derivative tensor (see also the discussion in Oxlade et al.
2012, where an exact filter is proposed for the unavoidable noise contaminating PIV
measurements). In any case, the data of Tsinober et al. (1992) and Gomes-Fernandes
et al. (2012) do not suggest that there are significant variations of the anisotropy ratios.

We use the 2xXW apparatus described in §2 (datasets 14 & 16 in table 2) to measure

(Ou)dz), (Ov]dx)?, (du)dy)? and (dv/dy)® for the RG60- and RG115-generated tur-
bulent flows along the centreline, which in turn allow the estimation of the ratios (5.1).
These are presented in tables 4 and 5, respectively. The first observation is that the ra-
tios K3 and K3 are roughly constant during the turbulence decay for both the RG60 and
the RG115 data, in-line with the observations from the data of Gomes-Fernandes et al.
(2012). The numerical values of K; ~ 1.09& 1.04 and K3 ~ 0.8&0.72 for the RG60 and
RG115 data respectively suggest that the RG115 data are closer to the isotropic bench-
mark in terms of the K ratio but conversely, the RG60 data are closer to unity in terms
of the K3 ratio. The ratio K> increases away from unity, particularly for the RG60 data,
which could be an indication of increasing anisotropy as the flow decays. However, K5 is
a ratio involving (Ov/dy)? whose measurement is strongly contaminated by aerodynamic
interference (see §2.2.1) and therefore the results are likely to be artificial.

Comparing with the data of Gomes-Fernandes et al. (2012), it is clear that the present
numerical values of K are always closer to the isotropic benchmark. Curiously, the ratio
K3 for the present data are 20% to 30% smaller than 1 whereas for the data of Gomes-
Fernandes et al. (2012) they are about 10% higher than unity. These differences may be
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Location 1250 1700 2150 2600 3050

T/ Tpeak 8.5 11.5 15.6 17.6 20.7
Reke 106 102 98 94 91
Rex 91 36 82 80 77

¢ (m*s7?) 0.43 0.28 0.20 0.16 0.13
A (mm) 3.6 4.2 4.8 5.3 5.6

7 (mm) 0.19 0.23 0.27 0.30 0.32
glse 2.19 0.99 0.55 0.36 0.25

glso,2 2.05 0.92 0.51 0.33 0.24

"% 2514007 118+0.02 0.66+0.02 0.42+0.01 0.30+0.01
e 2754019 1322008 0.77+0.07 0.51+0.05 0.36+0.04

Aln=~lw/n 2.6 2.2 1.9 1.7 1.6

(Ay ~1.2mm)/n 6.4 5.4 4.8 4.0 3.8
(Ay ~ 2.0mm)/n 10.5 9.0 7.5 6.7 6.2
K1 1.09 1.09 1.08 1.09 1.09

Ky 1.18+0.13 1.21+0.13 131+0.18 146+0.22 1.41+0.23
Kz 0.83+0.03 0.79+0.02 0.79+0.01 0.83+0.03 0.81+0.01
u' v’ 1.07 1.07 1.06 1.06 1.06

TABLE 4. Turbulence statistics for the RG60 along the centreline. The dissipation estimate glso3
is used to compute Rex, A and 7, whereas £°° is used to compute ReX°. Dataset 16 (see table

2) is used.

attributable to the different inflow conditions, e.g. grid geometry, free-stream turbulence
and Rejps, but may also be an artifice of measurement bias. In any case, the present data
and those of Gomes-Fernandes et al. (2012) support the hypothesis that the small-scale
anisotropy remains approximately constant.

The present data allow the calculation of several estimates of the turbulent dissipation.
In particular, the four mean square velocity derivative components are necessary and
sufficient to estimate the dissipation in a locally axisymmetric turbulent flow (George &
Hussein 1991). Even though the present data do not allow the test for local axisymmetry,
one might nevertheless expect a locally axisymmetric dissipation estimate to be closer to
the actual dissipation rate than the isotropic dissipation estimate.

The data are used to calculate four estimates of the dissipation, namely

glso = 15v(0u/0x)?;
02 = 1(3(9u/0x)? + 6(dv[0x)?); (5.2)
is0,3 v((0u)0x)? + 2(0v/0x)? + 4(du/dy)? + 2(Jv[Dy)?);

e = y(=(Ou/0x)? + 2(0v]0x)2 + 2(Ou/dy)? + 8(Dv/dy)?).

€

3

The first estimate, €'*° is the widely used isotropic dissipation estimate where all the
kinematic constraints of locally isotropy are implied. The second estimate (£'5%:2) is very
similar to the first, but with one less isotropy relation, namely K7 = 1 is not used. The
last estimate (¢*) is the locally axisymmetric estimate (George & Hussein 1991). How-
ever, this dissipation estimate heavily weights (Ov/dy)? whose measurement is, as noted
before, strongly contaminated by aerodynamic interference (see 2.2.1). To overcome this
limitation, a more robust estimate (£5°:%) that uses all the measured velocity derivative
components, but inevitably still relies on isotropy, is proposed. The estimated £5°2 is a

natural extension of €% without assuming that K5 = 1 nor that (0u/8x)2 = (81}/8y)2.
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Location 1250 1700 2150 2600 3050
Z[Tpeak 1.5 2.0 2.6 3.1 3.7
Rele 156 140 133 124 116

Rey 114 105 98 91 88
¢ (m*s7?) 0.78 0.51 0.36 0.26 0.20

A (mm) 3.3 3.8 4.3 4.7 5.2
7 (mm) 0.16 0.19 0.22 0.25 0.28

€' (m?s7®) 4.23 2.06 1.17 0.70 0.45
%2 (m?s7®) 4.08 2.02 1.13 0.67 0.43

€3 (m%s™)  521£0.24 2.59+0.12 1.48+0.02 0.89+0.02 0.55+0.04
e™ (m?s™)  5.44£0.58 2.71+0.21 1.59+0.07 0.97+0.06 0.62+0.09
Aln=~lw/n 3.2 2.6 2.3 2.0 1.8
(Ay ~1.2mm)/n 7.7 6.3 5.5 5.7 4.2
(Ay ~ 2.0mm)/n 12.5 10.8 9.3 8.1 7.2
K1 1.05 1.03 1.04 1.05 1.04

Ky 1.01+£0.05 1.00+£0.13 1.06+0.08 1.09+0.11 1.20+0.21
Ks; 0.73+0.01 0.72+0.04 0.72+0.01 0.71+0.01 0.77+0.02
u' v’ 1.18 1.15 1.16 1.16 1.14

TABLE 5. Turbulence statistics for the RG115 along the centreline. The dissipation estimate
€53 is used to compute Rey, A and 7, whereas €*° is used to compute Rek®. Dataset 14 (see
table 2) is used.

Note that (9u/dy)” and (dv/dy)> can be computed from datasets with different spanwise
separations between the X-probes (see §2.2.1). It was seen in §2.2.1 that as the separa-
tion between the X-probes is increased the interference between the probes is reduced
but the deterioration of the resolution causes a bias to the measured value which can
partly be compensated using the correction factors proposed by Zhu & Antonia (1996).
However, if the correction factor is excessive one cannot expect the method to yield ac-
curate results. For the present estimates of €3 and ¢ it was deemed that the best
compromise between interference and resolution for the present data was given by probe
separations between Ay = 1.6 and Ay = 2.5. We compute the average value of the esti-
mates obtained for the three datasets at Ay = 1.6, 2.0& 2.5 and present the difference
as an uncertainty interval in tables 4 and 5. Note that in that uncertainty interval the
statistical convergence has not been included, but it is estimated to be less than +1%
(c.f §2.3).

Taking e as the benchmark, it is noticeable that throughout the turbulence decay,
the isotropic dissipation estimate, €', underestimates dissipation rate by about 20%
for the RG115 data and 15% for the RG60 data, whereas the estimate 2, underesti-
mates dissipation rate by c.a. 30% for the RG115 data and 26% for the RG60 data This
motivates the choice of €'*° rather than %2 as the prime dissipation estimate when-
ever the additional data needed to estimate £°°3 are not available. Most importantly,
the observation that £5°, €2 and £ (and £ within the scatter) remain approx-
imately proportional throughout the decay lead to the expectation that these are also
approximately proportional to the actual dissipation rate. Therefore, using either of the
dissipation estimates to infer, for example, on the behaviour of the normalised energy
dissipation rate (see §6) leads to curves with the same functional form but offset from
one another.

is0,3
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FIGURE 13. Downstream evolution of the ratio between various integral-length scales and the
Taylor microscale versus Rey in the lee of RG115 for 1.1 < &/xpeak < 3.7 and Ueo = 10ms™! (see
table 2). The integral-length scales are based on the longitudinal and transverse correlations

for (a) longitudinal and (b) transverse separations. (W |X |O) Lgll)/)\ for y/M =0, -0.25, -0.5,
(@ |®|0) LY/ for y/M =0, -0.25, -0.5, (# |O) L/ for y/M =0, -0.5, (O |0) L) /x
for y/M =0, -0.5 and (A |A) 2L/X for y/M =0, —0.5. The dashed line follows B/15 Rey, with
(a) B =14 and (b) B = 1.0. The dotted line in (a) follows A + B/15Rex with A = 2.2 and

B =1.0. € is used as a surrogate for the dissipation rate due to the lack of estimates of e
for off-centreline locations. Datasets 9 and 10 (see table 2) are used.

iso,3
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FIGURE 14. Downstream evolution of Lgll) JAE° versus Rel° during turbulence decay. Data at the
centreline (y = 0): (<) RG60, (@) RG115, (O) RG230, (@) FSG3'x3’ and (m) FSG187x18”.
Data behind the bar (y = M/2): (O) RG115 and ([®]) FSG3’x3’. The dashed line follows
B/15 Rey, with B =0.92. Datasets 1, 4, 7, 8, 12 and 13 (see table 2) are used.

6. Energy dissipation scaling

Since Taylor (1935), the kinetic energy dissipation rate per unit mass ¢ is scaled with
the turbulent kinetic energy and length-scale of the large eddies. There is no ambigu-

ity in this definition for isotropic turbulence where 3/2L = QL%) = Lﬂ) and therefore
e=C, (q_2/3)3/2/Lﬁ) with a potential dependence of the dimensionless coefficient C; on

Reynolds numbers which does not change qualitatively if, in the definition of C, Lﬁ) is
replaced by one of the other integral length-scales.

However, when the large-scale eddies are ”elongated” /anisotropic and characterised
by different integral scales Lﬂ) and Lg) in different directions as found in the previous
section, then the dependence of C. on Reynolds numbers may depend on the choice of
length-scale in its definition. One can indeed define the coefficients

. Lk
ol = o Lui (6.1)
(¢?/3)%2

where L;k ) /(¢2/3)"? are the various time-scales corresponding to the various integral
length-scales. In this section we use our data to compare how some of these coefficients

depend on Reynolds number.
The ratio between the integral length-scale and the Taylor microscale is directly related
to the normalised energy dissipation rate. From the general definitions of the Taylor
microscale A(= (5v¢2/¢)Y/?) and Rex(= (¢2/3)/2)\/v) it follows that (no summation over
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i is implied),

15 L
citk) o = i 6.2
: Rex A (6.2)

The dimensionless dissipation constant C’;(k) is independent of local Reynolds number
Rey if and only if LZ(-ik)/)\ is proportional to Rey; it is proportional to 1/Rey if and only
if Lz(lk )/ A remains constant during turbulence decay and ngk ) /) is therefore independent
of Re,\.

Note that for off-centreline measurements only two mean-square velocity gradients are
measured, (Ou/0r)? and (Jv/dx)?2. Based on the results from §5 we choose £°° as our
dissipation estimate. Since £/¢*° ~ constant, at least for the centreline, the functional

form of Lgf ) /X versus Rey does not meaningfully change, and therefore the physical
interpretation is not jeopardised. Instead, the fact that we always underestimate £ by
23% just leads to an offset of the Lgf ) /X versus Re) plots, analogous to what has been
shown in Valente & Vassilicos (2011), figure 9.

Turning now to the results and starting with L(l) /X and L /)\ versus Rey for the
centreline (figure 13a) it is clear that both ratios are approx1mately constant throughout
the assessed region of the decay (1 < x/Zpeak < 4). This is the behaviour recently discov-
ered for L(l)/)\ by Seoud & Vassilicos (2007), Mazellier & Vassilicos (2010), Valente &
Vassilicos (2011, 2012), Gomes-Fernandes et al. (2012) and Discetti et al. (2013). This
behaviour is now found to extend to L(l) /X (at least for the near-field decay region of
RG115) and has been associated with nonequlhbrlum by Valente & Vassilicos (2012). A
remarkable new finding which is reported here for the first time (in the near-field decay
region of RG115) is that this behaviour occurs along three different streamwise lines
with the same numerical constant for Lgé) /X (the centreline (y = 0,z = 0) and the lines
(y=-M/4,z=0) and (y=-M/2,z =0)) but not for Lﬁ)/)\ (see Figure 13a). Along the
streamwise line (y = —M /2, z = 0) which lies within the wake of the lower bar of RG115’s
central mesh, L(l) /XA ~ Rey corresponding to the classical equilibrium behaviour where

C: 1M s independent of Rey. It is interesting that the classical equilibrium behaviour
for Lﬁ)/)\ and C!() is associated with L(l)//\ ~ constant and C2") ~ 1/Rey in the
near-field field decay region of RG115 turbulence. Clearly the large eddies become less
anisotropic as one probes them by moving downstream along the (y = =M /2,2 = 0) line
because Lﬁ) /Léé) decreases proportionally to Rey as Re) decreases. We do not know of

any other relation such as L(l) /L(l) Rey in the literature to describe the large-scale
anisotropy’s dependence on ReA It will be worth revisiting canonical free shear flows
such as wakes and jets in future studies because, to our knowledge, only measurements
of C! M have been reported in such flows in support of o M . constant for high enough
Reynolds numbers (e.g. see Sreenivasan 1995; Pearson et al. 2002; Burattini et al. 2005).
It will be interesting to know whether 03(1) ~ 1/Rey and L(l)/L( ) ~ Rey also hold in
such flows or whether these relations are only valid in grid-generated turbulence. Note
that a mixed behaviour Lﬁ) /A~ A+ BRe) (A and B are dimensionless constants) is
observed along the intermediate streamwise line (y = —M /4,0) and that the downstream
distances of our measurements relative to the bar thickness range within 95 < x/ty < 305
which would typically be considered the far wake

Considering now the integral length-scales based on the transverse separations (figure

13Db), the results show that Lg) /A ~ constant for both the centreline and behind the bar.
This observation behind the bar also leads to the observation that Lﬁ) /Lg) ~ Rey. On
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the other hand, at the centreline Lﬁ)/ A increases as the flow decays, which would imply
that C2 ) grows with decreasing Rej.
Note that, using the definitions of the Kolmogorov microscale, n(= (v3/¢)Y/*), and

of the Taylor microscale, it follows directly that £/n o £/ Re;/ 2, Therefore, for £/A

/2

increasing faster than Re;\1 as Rey decreases, ¢/n increases during decay. We checked

that Lﬁ) /A and L/ increase faster than Regl/ % which leads to the unusual situation

where Lﬁ)/n and L/7n increase during decay. We are unable, at this point, to give a
definitive explanation for this behaviour, but as discussed in §4 it may be related to
periodic shedding from the bars which is contaminating the correlation functions, in
particular BS).

Lastly, the data from one-component longitudinal traverses for the several grids (see
table 2) are presented in figure 14. Here we use the isotropic definitions of the Taylor mi-
croscale A% (= (15vu2/e)/?) and Re°(= u’ A\/v). The RG115 and FSG3'x3’ data behind
the bar clearly follow Lﬁ) /X o< Rey, whereas Lﬁ) /X ~ constant is a better approximation
for the RG115 at the centreline. For the FSG3’x3’ centreline data, on the other hand, a
mixed behaviour, Lﬁ) /A~ A +B Re,, seems to be a better approximation, similar to the
behaviour of the RG115 data at y = M /4 (i.e. half way between the centreline and the bar,
see figure 13a). (We confirmed that this behaviour is not due to any misalignments of the
probe relative to the centreline.) This was hypothesised in Valente & Vassilicos (2011) to
be a consequence of the confining walls, but as can be seen from the comparison between
the FSG3'x3’ versus FSG18”x18” data and RG115 versus RG230 data, confinement does
not meaningfully change the slope of Lﬁ) /X versus Rey (c.f. figure 14). The cause for
this mixed behaviour is unclear, but it is plausible that it may be a consequence of the
turbulence generated by the additional fractal iterations. Note that, the smaller fractal
iterations have a smaller wake-interaction length-scale, . (see §3.1). Extrapolating the
observation from Valente & Vassilicos (2012) that the extent of the nonequilibrium region
is around 2x,, leads to the possibility that the turbulence generated by the two small-
est fractal iterations transition earlier to equilibrium at z » 1.22pcax and = ~ 2.225cak,
respectively, leading to the mixed behaviour. This is, however, no more than a tentative
conceptual explanation at the moment which will require further investigation.

The centreline data for the RG60 is also included for reference in figure 14. It straddles
both nonequilibrium and equilibrium turbulence, as can be educed from the change in
slope from horizontal (from Rey ~ 180 to Rey ~ 120) to Lﬁ)/)\ o< Rey.

7. Main Conclusions

The region of decaying grid-generated turbulence, where nonequilibrium dissipation
behaviour has been previously reported, i.e. Tpeak < Z $ 5 Zpeak, has been experimentally
investigated in the lee of both low-blockage RGs and FSGs.

The geometrical differences between the grids can strongly influence the transverse
profiles of turbulent transport and production as well as their downstream evolution.
There are stark differences between the FSGs and the RGs in the transverse profiles of
the turbulent transport throughout the assessed region of the flow. The chocking due to
the developing boundary layers on the confining walls leads to distortions in the mean
velocity and turbulent production transverse profiles on some of our grids though not all
of them. This is an effect that is negligible upstream but becomes increasingly noticeable
far downstream, particularly if the test section is excessively long for its width. Our
findings demonstrate that the new nonequilibrium dissipation law C. ~ Re};/Re} is



30 P. C. Valente and J. C. Vassilicos

present in the flow irrespective of all these effects on the various transverse profiles and
that m ~n ~ 1 is a good approximation, in fact a little better for the RGs than for the
FSGs.

We have also shown by studying the RG115-generated turbulence in more detail, that
the well-known equilibrium dissipation law and the new nonequilibrium dissipation law
can coexist in different regions of the same flow. Specifically, the one-dimensional surro-
gate of the normalised energy dissipation follows the previously reported nonequilibrium
form at the centreline, i.e. Lﬁ)/)\ ~ constant (equivalent to cr® Rey! from (6.2)) ,
but behind the bar it follows the classical equilibrium law Lﬂ) /A ~ Rey (equivalent to
C’E1 S constant). However, it is perhaps remarkable that when the transverse integral
scale is used, the nonequilibrium form Lgé) /A ~ constant is recovered both at and off cen-
treline. This finding is significant because (i) it implies that Lﬁ) /Léé) ~ Rey in the lee of
a bar of the grid and (ii) it indicates that different integral length-scales can lead to very
different time scales and to apparently contradictory behaviours of the corresponding
surrogates of the normalised energy dissipation rate.

Using two-point /two-component measurements to obtain the correlation functions for
transverse separations (Bﬁ) and Bg)) and their corresponding integral length-scales
(Lﬁ) and ng)), it is found that Lg) /X » constant both along the centreline and behind

the bar. The observation behind the bar leads to the conclusion that Lﬁ) /Lg) is also
proportional to Re) along a straight line normal to the grid crossing a bar of the grid.

P.C.V would like to thank Jovan Nedic for the help preparing the 3’x3’ wind tunnel
and acknowledges the financial support from Fundagao para a Ciéncia e a Tecnologia
(grant SFRH/BD/61223/2009, cofinanced by POPH/FSE).
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