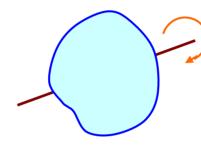
Flow Structure in a Precessing Sphere

Shigeo Kida (Kyoto University)

S. Goto, N. Ishii, M. Nishioka, K. Nakayama, N. Honda

Flow in a Rotating Container



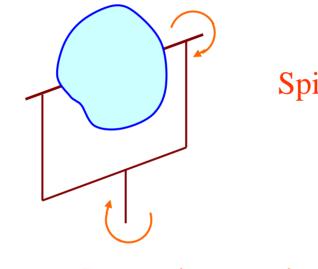
Spin rotation

Flow structure is simple.

Solid-body rotation

It can be proved from NS equation.

Flow in a Precessing Container



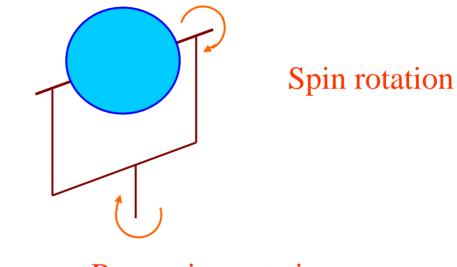
Spin rotation

Precession rotation

Flow structure is non-trivial.

Flow can be turbulent.

Flow in a Precessing Sphere



Precession rotation

Flow structure is non-trivial.

Flow can be turbulent.

Outline

- 1 . Introduction
- 2 . Experiment State Diagram
- 3 . Numerical Simulation Stability boundary Flow Structure
- 4 . Asymptotic Analysis Flow Structure
- 5 . Summary

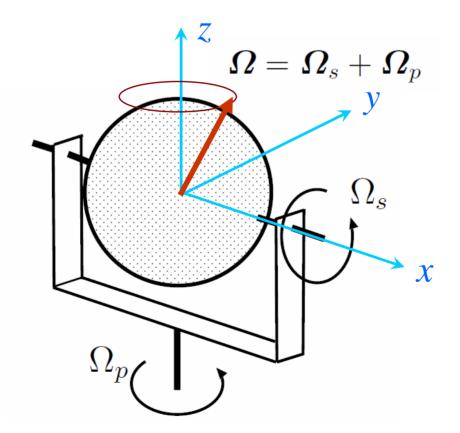
Outline

1. Introduction

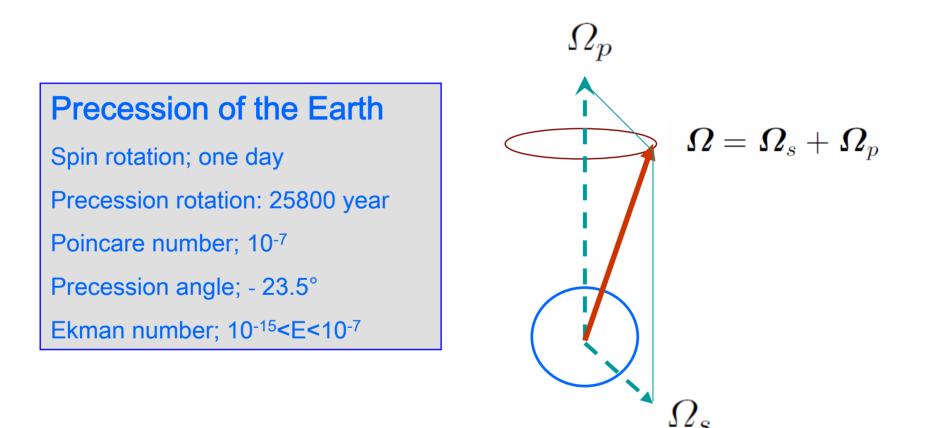
- 2 . Experiment State Diagram
- 3 . Numerical Simulation Stability boundary Flow Structure
- 4 . Asymptotic Analysis Flow Structure
- 5 . Summary

Precessing Sphere

We consider the motion of an incompressible viscous fluid in a precessing sphere, where the spin angular velocity Ω_s and the precession angular velocity Ω_p are perpendicular to each other.



Research on Precessing Sphere/Spheroid/Spherical Shell



Research on Precessing Sphere/Spheroid/Spherical Shell

related to Geodynamo

Experiment

Vanyo et al. 1995: Experiments on precessing flows in the Earth's liquid core Vanyo & Dunn 2000: Core precession:flow structures and energy

Numerical

Lorenzani & Tilgner 2001: Fluid instabilities in precessing spheroidal cavities Tilgner & Busse 2001: Fluid flows in precessing spherical shells Tilgner 2005: Precession driven dynamos

Our Motivation

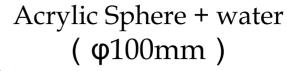
[1] to make a compact turbulence generator

[2] to understand the flow dynamics as one of the standard systems

[3] to contribute to geophysics such as geodynamo

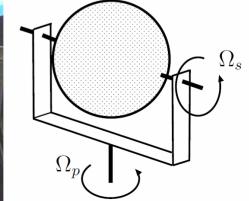
Outline

- 1 . Introduction
- 2 . Experiment State Diagram
- 3 . Numerical Simulation Stability boundary Flow Structure
- 4 . Asymptotic Analysis Flow Structure
- 5 . Summary



Spin axis

Precession axis



Control of rotation speed

Pulse motors (1 pulse = 0.072°) Rotation speed can be controled with high accuracy

Spin axis

2 Pulse motors

Precession axis

Visualization / Measurement

Video camera

Laser light

Laser sheet (perp. Spin axis) and video camera are on precession frame

Velocity field on the sheet is measured by PIV

Governing Equations (in Precession frame)

$$\frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{u} \times \boldsymbol{\omega} - 2 \frac{R_p}{R_s} \boldsymbol{z} \times \boldsymbol{u} - \nabla P + \left(\frac{1}{R_s} \nabla^2 \boldsymbol{u}\right)$$
Non-dimensional

$$P = p + \frac{1}{2} |\boldsymbol{u}|^2 - \left(\frac{R_p}{R_s}\right)^2 \frac{1}{2} (\boldsymbol{r} \times \hat{\boldsymbol{z}})^2$$

Modified pressure

 $\nabla \cdot \boldsymbol{u} = 0$

b. c.

$$u = \hat{x} \times r$$
 on $|r| = 1$

Control Parameters

Spin Reynolds number R_s (Reciprocal of Ekman number)

$$R_s = \frac{a^2 \Omega_s}{\nu}$$

Precession Reynolds number $R_p = \frac{a^2 \Omega_p}{\nu}$

When $a=5 \,\mathrm{cm}$, $v=0.01 \,\mathrm{cm}^2/\mathrm{s}$, $\Omega_s=2\pi n$, $R_s=1.6 imes10^4 \,n$

Control Parameters

Reynolds number

$$Re = \frac{a^2 \Omega_s}{\nu} \quad (\equiv R_s)$$

 $\Gamma = \frac{M_p}{\Omega_s} \quad \left(\equiv \frac{R_p}{R_s}\right)$

Poincare number

Visualized Flow

Re=15,000

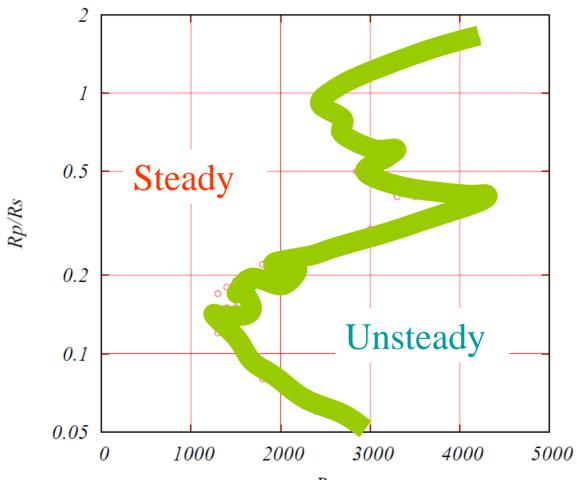
Solid –body rotation

Flow in a Rotating Container

Re=15,000 √=0.1

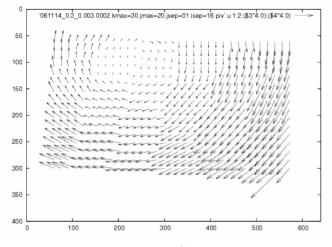
Turbulent state

Stability Boundary

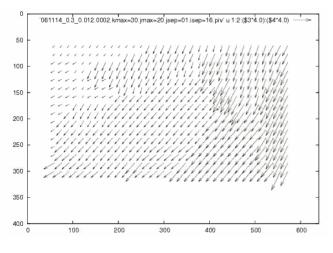


Rs

Velocity Field (animation)

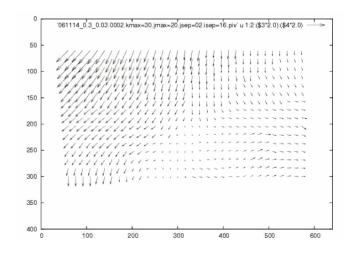


Steady: $R_p/R_s = 0.01$



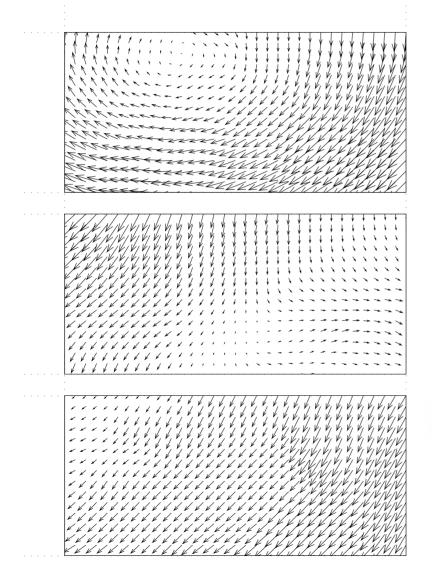
Periodic: $R_p/R_s = 0.04$

 $R_s \approx 4,500$



Aperiodic: $R_p/R_s = 0.1$

Velocity Field (snap) $R_s \approx 4,500$



Steady: $R_p/R_s = 0.01$

Periodic: $R_p/R_s = 0.04$

Aperiodic: $R_p/R_s = 0.1$

Judged from two-time correlation function

Two-Time Correlation of Velocity

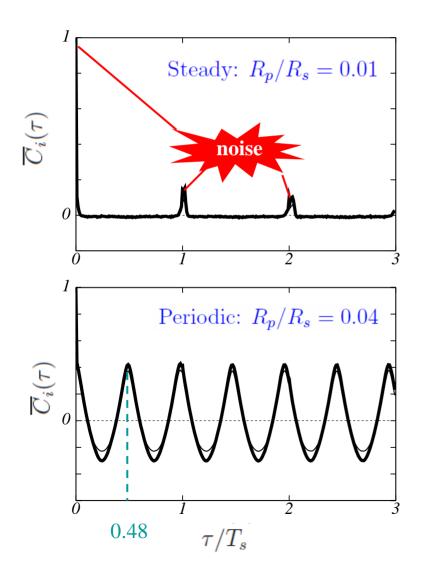
$$C_i(\boldsymbol{x},\tau) = \frac{\langle [u_i(\boldsymbol{x},t) - m_i(\boldsymbol{x})][u_i(\boldsymbol{x},t+\tau) - m_i(\boldsymbol{x})] \rangle}{\sigma_i(\boldsymbol{x})^{-2}}$$

(i = 1, 2)

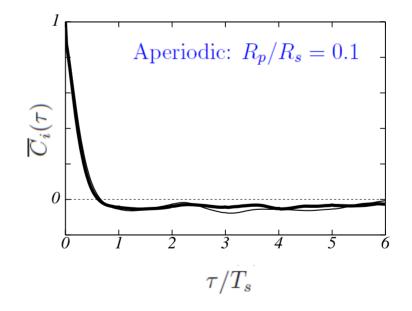
 $m_i(\boldsymbol{x}) = \langle u_i(\boldsymbol{x},t) \rangle$

 $\sigma_i({m x})|^2 = \langle (u_i({m x},t)^2) - m_i({m x})^2$

Two-Time Correlation of Velocity



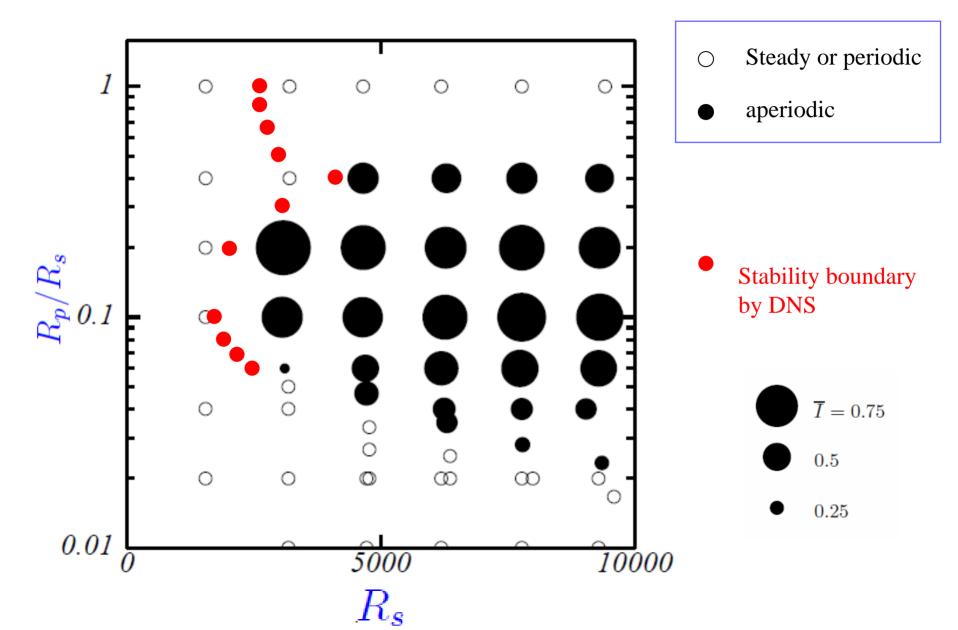
 $R_s \approx 4,500$



Fluctuation Magnitude

$$I(\boldsymbol{x}) = \sqrt{\frac{\langle |\boldsymbol{u}(\boldsymbol{x},t) - \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle |^2 \rangle}{\langle |\boldsymbol{u}(\boldsymbol{x},t)|^2 \rangle}}$$

Fluctuation Magnitude



Outline

- 1 . Introduction
- 2. Experiment State Diagram
- 3 . Numerical Simulation Stability boundary Flow Structure
- 4 . Asymptotic Analysis Flow Structure
- 5 . Summary

Stability of Steady Flows

By DNS

Governing Equations (in Precession frame)

$$\frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{u} \times \boldsymbol{\omega} - 2\frac{R_p}{R_s}\hat{\boldsymbol{z}} \times \boldsymbol{u} - \nabla P + \frac{1}{R_s}\nabla^2 \boldsymbol{u}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

b. c.

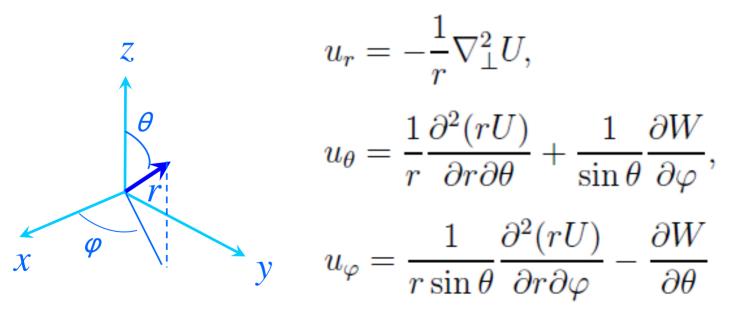
$$u = \hat{x} \times r$$
 on $|r| = 1$

Poloidal / Toroidal Representation

① Incompressible (solenoidal)

② Spherical geometry

$$\boldsymbol{u} = \nabla \times (\nabla \times (\boldsymbol{v})) + \nabla \times (\boldsymbol{v})$$



Vorticity

$$\boldsymbol{\omega} = \nabla \times \nabla \times (\boldsymbol{r}W) + \nabla \times (\boldsymbol{r}(-\nabla^2 U))$$

$$\omega_r = -\frac{1}{r} \nabla_{\perp}^2 W$$
$$\omega_{\theta} = \frac{1}{r} \frac{\partial^2 (rW)}{\partial r \partial \theta} + \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} (-\nabla^2 U)$$
$$\omega_{\varphi} = \frac{1}{r \sin \theta} \frac{\partial^2 (rW)}{\partial r \partial \varphi} - \frac{\partial}{\partial \theta} (-\nabla^2 U)$$

Governing Equations (in Precession frame)

$$\frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{u} \times \boldsymbol{\omega} - 2\frac{R_p}{R_s}\hat{\boldsymbol{z}} \times \boldsymbol{u} - \nabla P + \frac{1}{R_s}\nabla^2 \boldsymbol{u}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

b. c.

$$u = \hat{x} \times r$$
 on $|r| = 1$

Poloidal / Toroidal Equations

Numerical Scheme (Time Integration)

$$-\nabla_{\perp}^{2} \left(\nabla^{2} - R_{h} \frac{\partial}{\partial t} \right) W = G$$
$$-\nabla_{\perp}^{2} \left(\nabla^{2} - R_{h} \frac{\partial}{\partial t} \right) (-\nabla^{2} U) = H$$
$$U = 0, \qquad \frac{\partial U}{\partial r} = 0, \qquad W = \sin \theta \cos \varphi \qquad (\text{on } r = 1)$$

Adams-Bashforth / Crank-Nicolson Scheme $a t = 2\pi/1000$

$$-\nabla_{\perp}^{2} \left(\nabla^{2} - \frac{2R_{h}}{\Delta t} \right) W^{t+\Delta t} = \nabla_{\perp}^{2} \left(\nabla^{2} + \frac{2R_{h}}{\Delta t} \right) W^{t} + 3G^{t} - G^{t-\Delta t}$$
$$-\nabla_{\perp}^{2} \left(\nabla^{2} - \frac{2R_{h}}{\Delta t} \right) (-\nabla^{2}) U^{t+\Delta t} = \nabla_{\perp}^{2} \left(\nabla^{2} + \frac{2R_{h}}{\Delta t} \right) (-\nabla^{2}) U^{t} + 3H^{t} - H^{t-\Delta t}$$
$$U^{t+\Delta t} = 0, \qquad \frac{\partial}{\partial r} U^{t+\Delta t} = 0, \qquad W^{t+\Delta t} = \sin \theta \cos \varphi \qquad (\text{on } r = 1)$$

Numerical Scheme (Spatial Differentiation)

Fourier – Legendre – Jacobi Expansion32×42×85dealiased

$$U^{t}(r,\theta,\varphi) = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} \sum_{j=1}^{[(N-l+1)/2]} \widetilde{U}^{t}_{jlm} \Phi^{l}_{k}(r) \breve{P}^{|m|}_{l}(\cos\theta) e^{im\varphi}$$
$$W^{t}(r,\theta,\varphi) = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} \sum_{j=1}^{[(N-l+1)/2]} \widetilde{W}^{t}_{jlm} \Phi^{l}_{k}(r) \breve{P}^{|m|}_{l}(\cos\theta) e^{im\varphi}$$

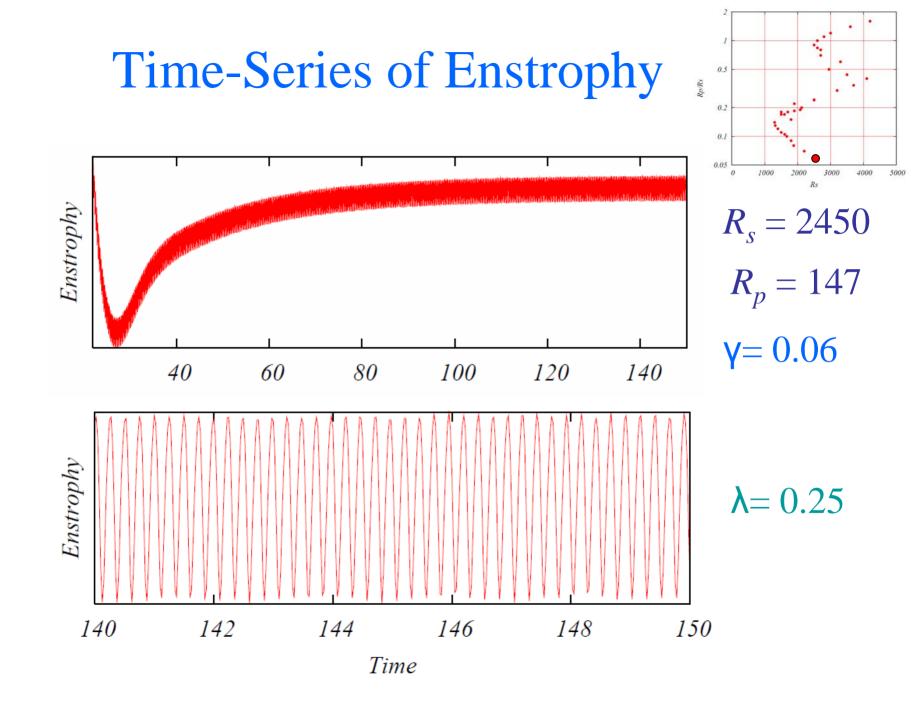
$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left((1-r^2)r^2\frac{\mathrm{d}}{\mathrm{d}r}\right)\Phi_k^l - \frac{l(l+1)}{r^2}\Phi_k^l + k(k+3)\Phi_k^l = 0$$
$$(0 \le r \le 1, \ 0 \le l \le k, \ k+l = \mathrm{even})$$

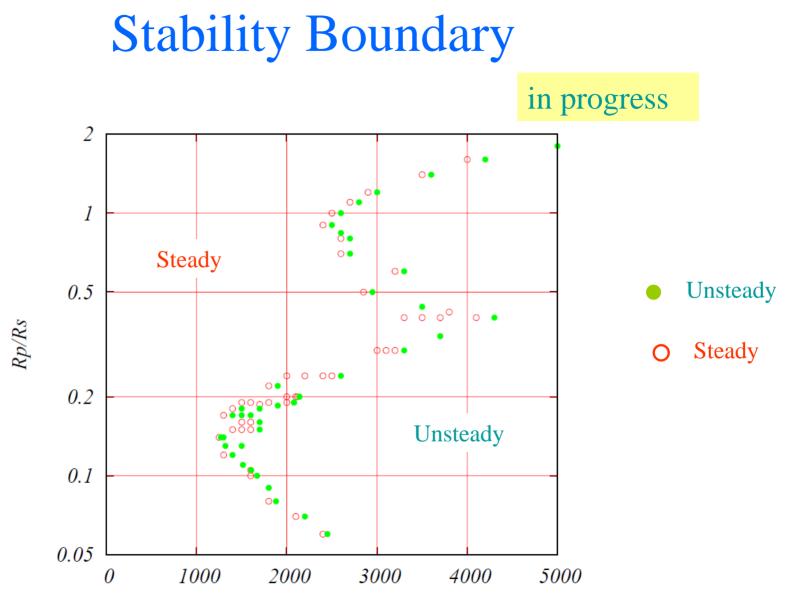
Orthogonal Relation

$$\int_0^1 \Phi_n^l(r) \Phi_{n'}^l(r) r^2 \mathrm{d}r = \delta_{nn'}$$

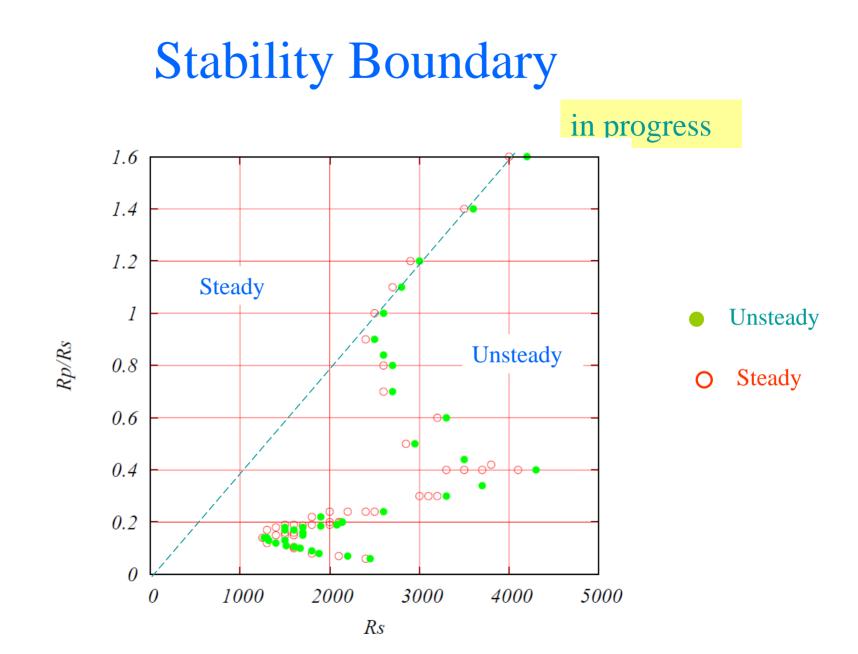
Matsushima & Marcus (1995)

Poloidal / Toroidal Equations

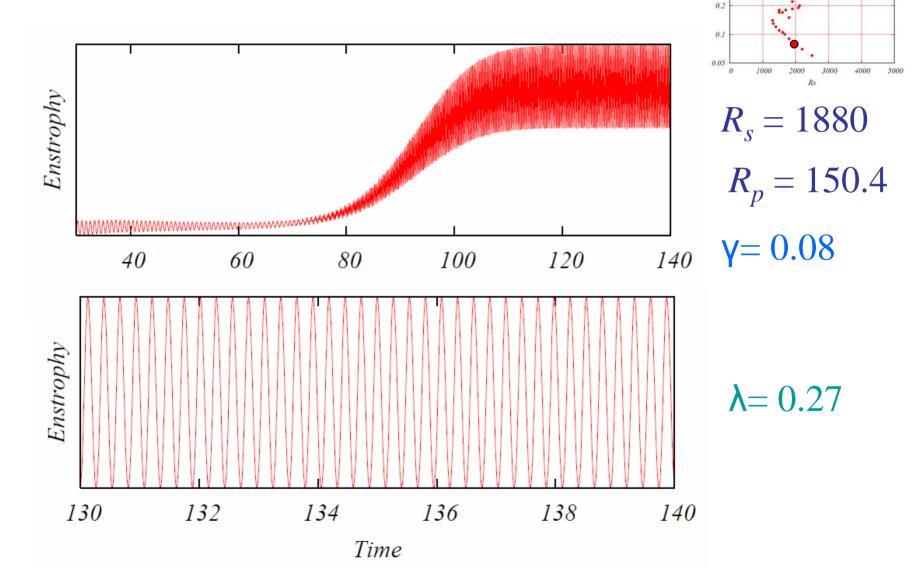




Rs

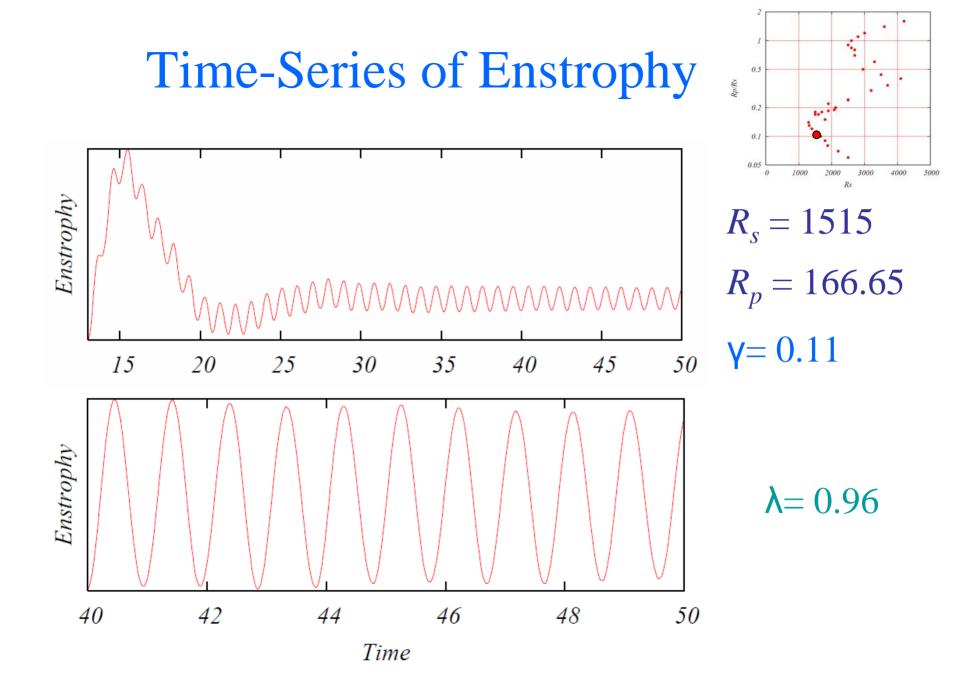


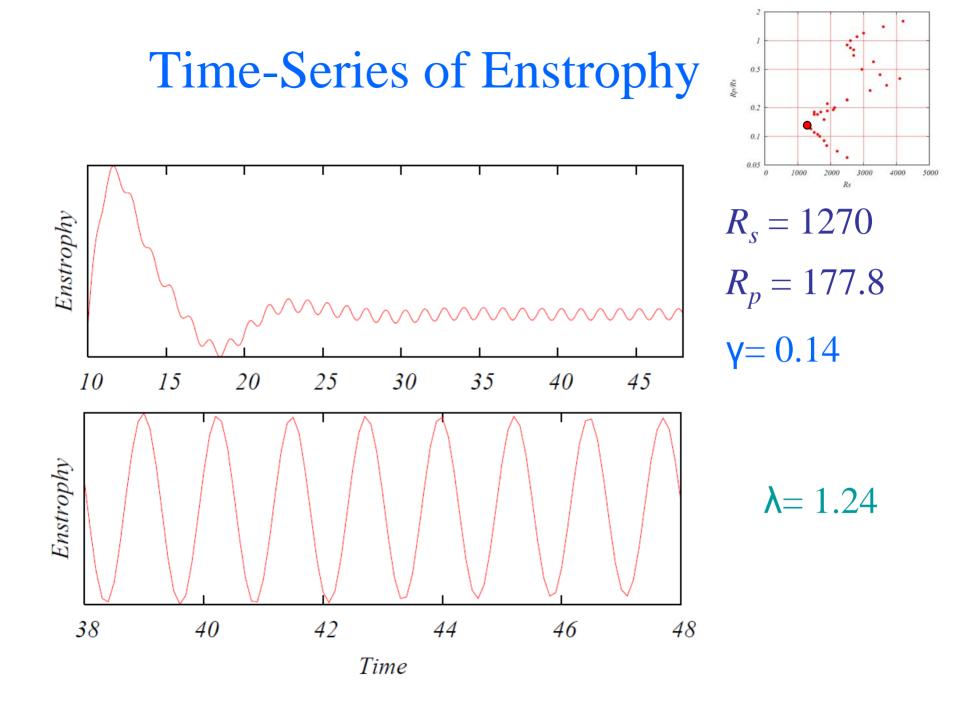
Time-Series of Enstrophy

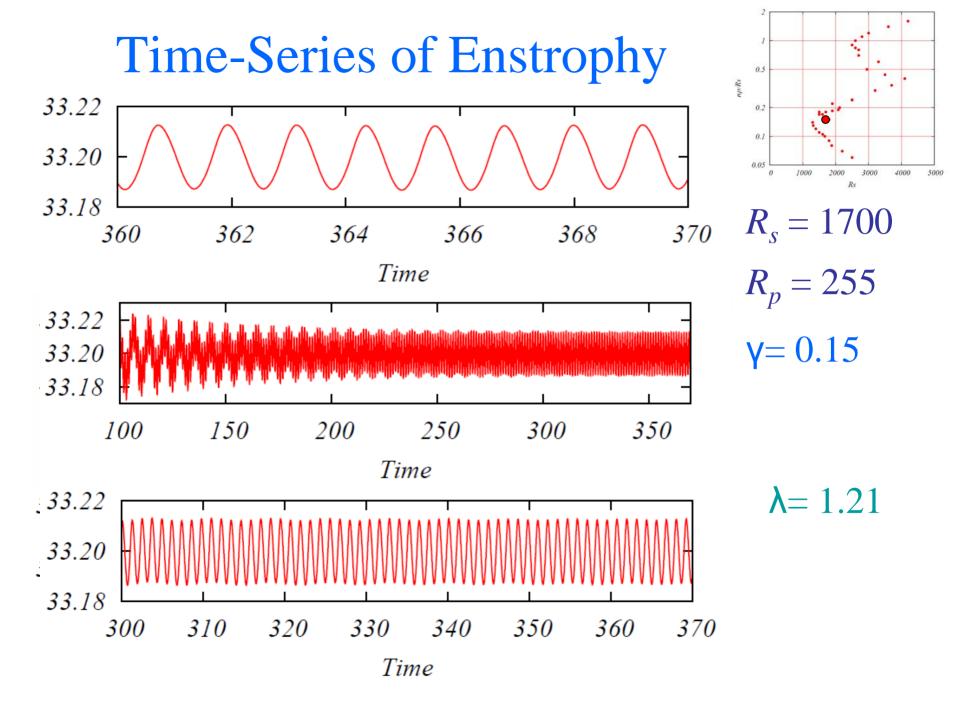


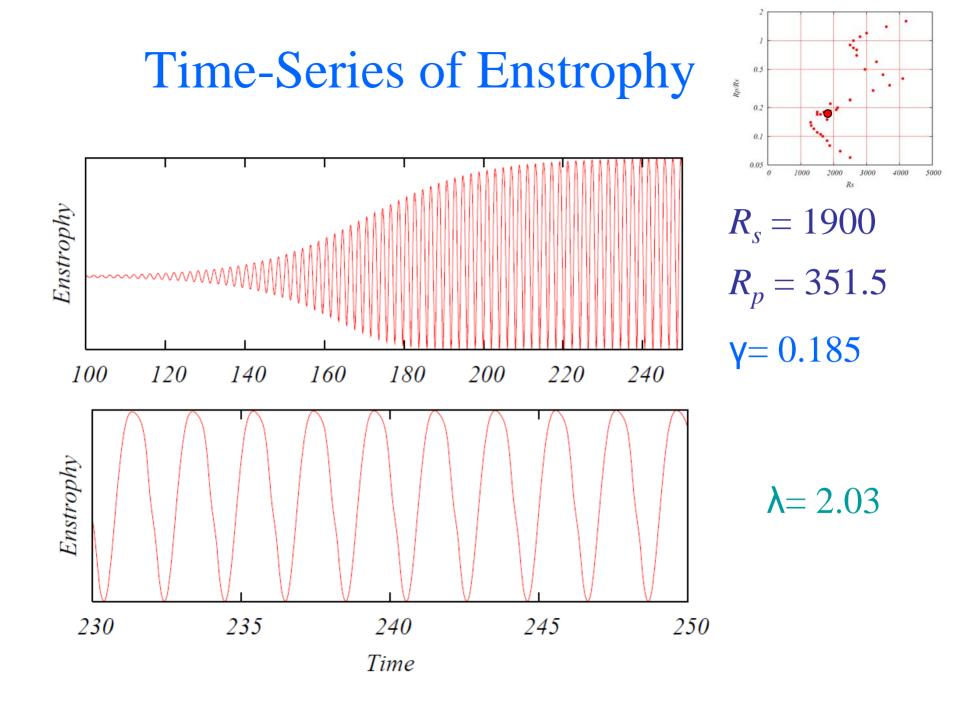
0.5

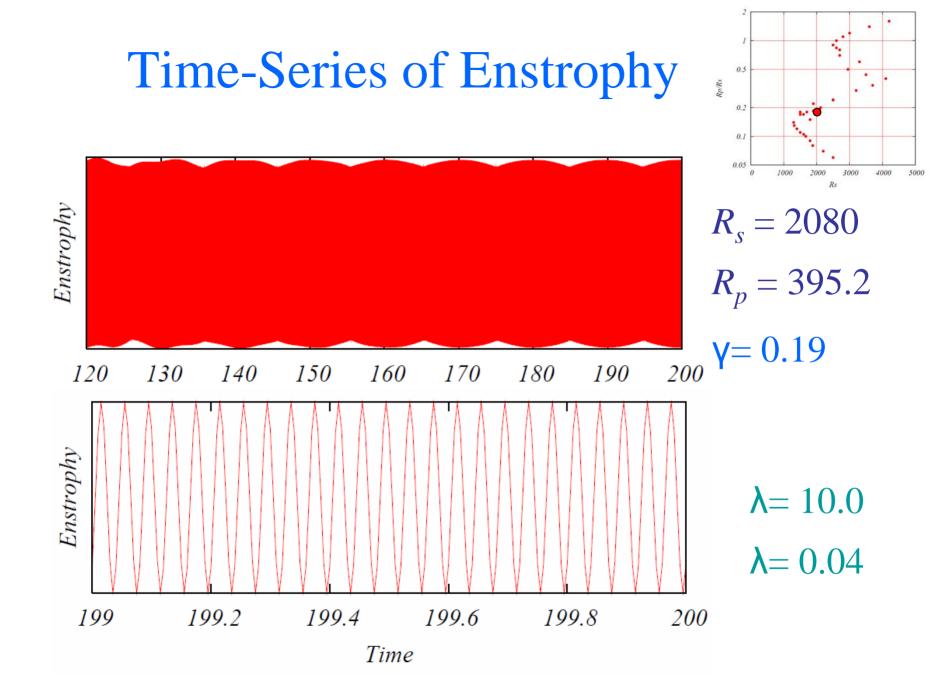
Rp/Rs

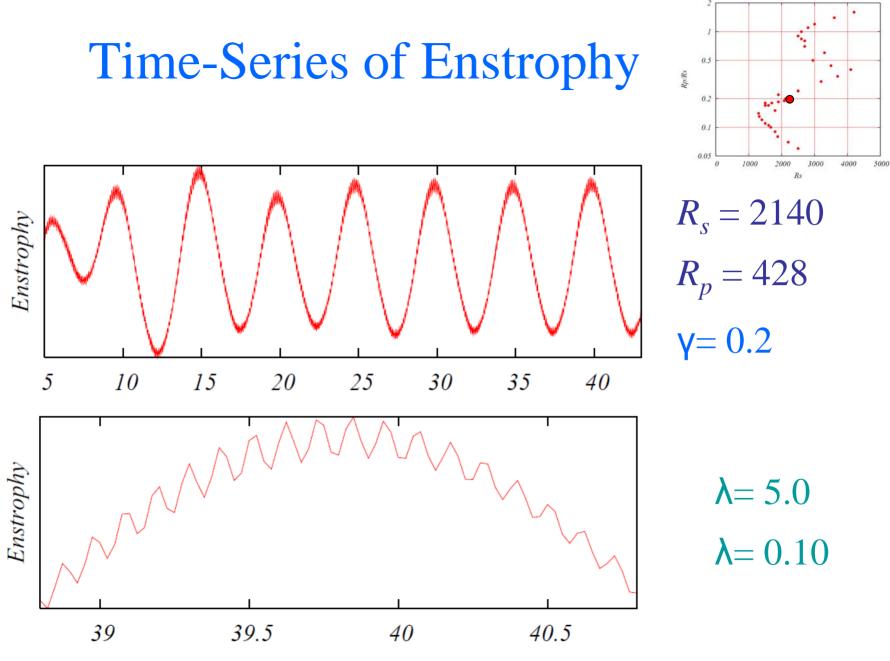




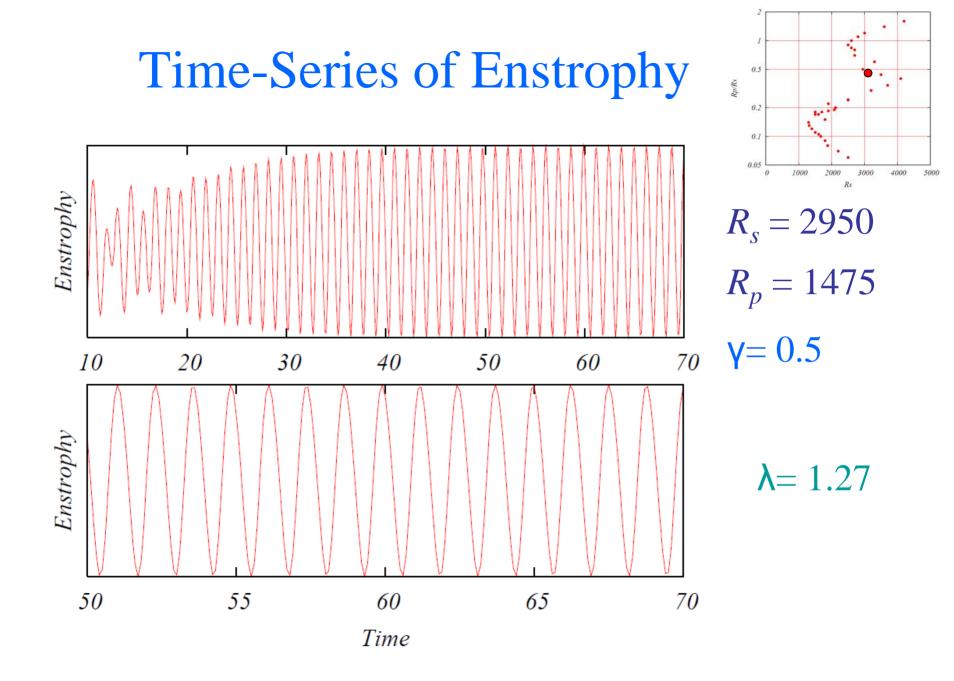


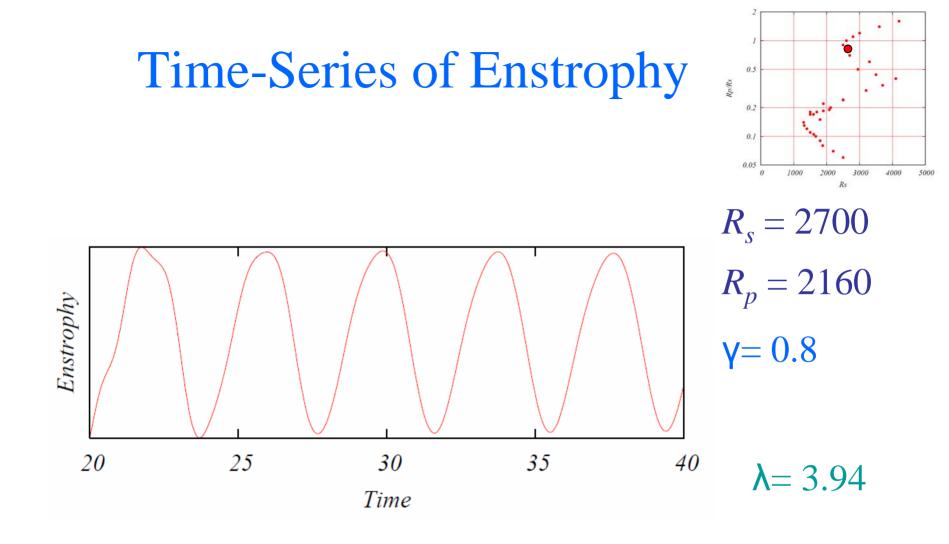


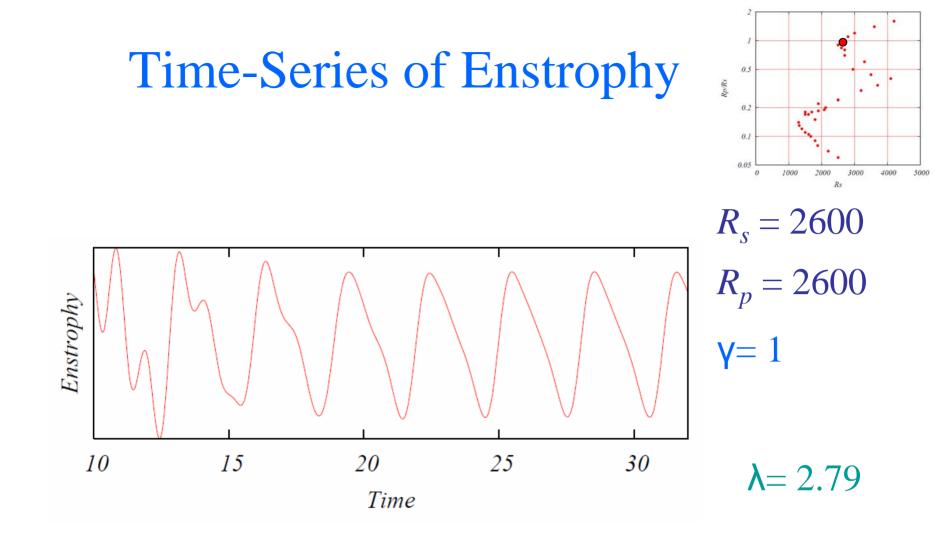


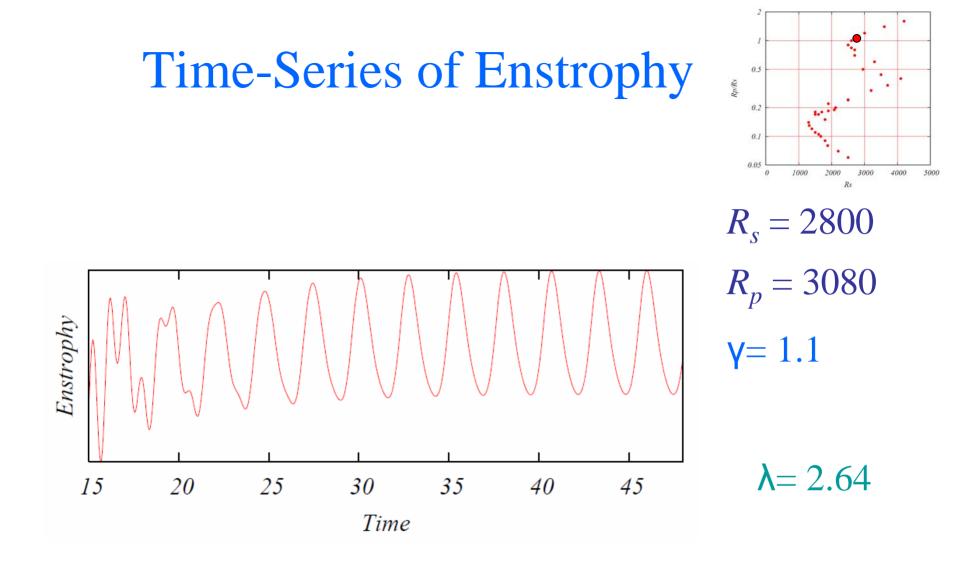


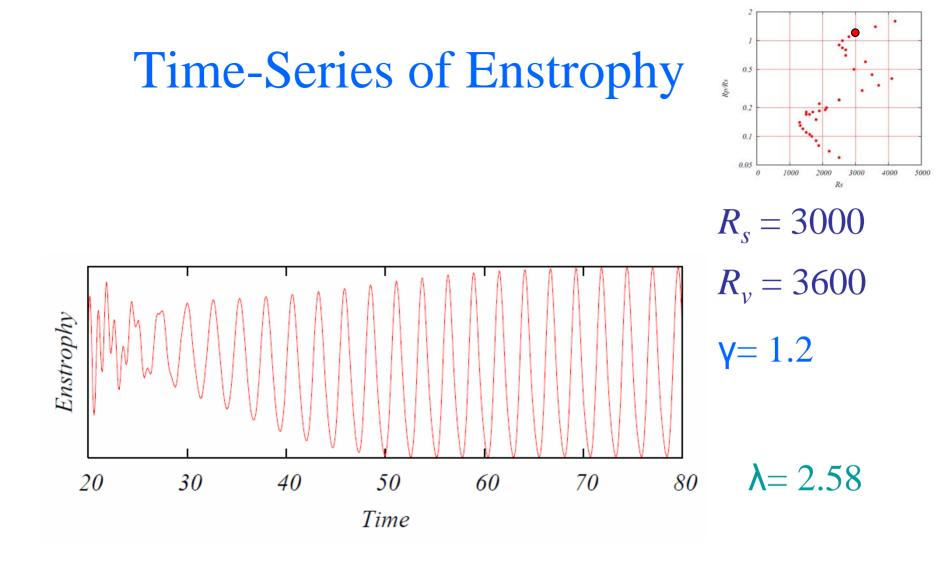
Time











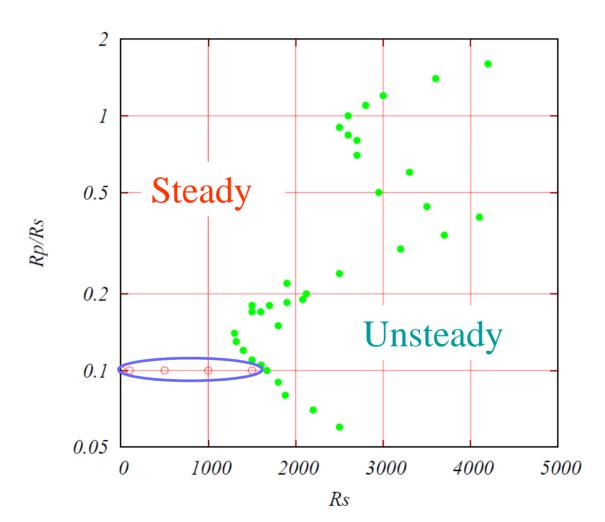
Outline

- 1 . Introduction
- 2 . Experiment State Diagram
- 3 . Numerical Simulation Stability boundary Flow Structure
- 4 . Asymptotic Analysis Flow Structure
- 5 . Summary

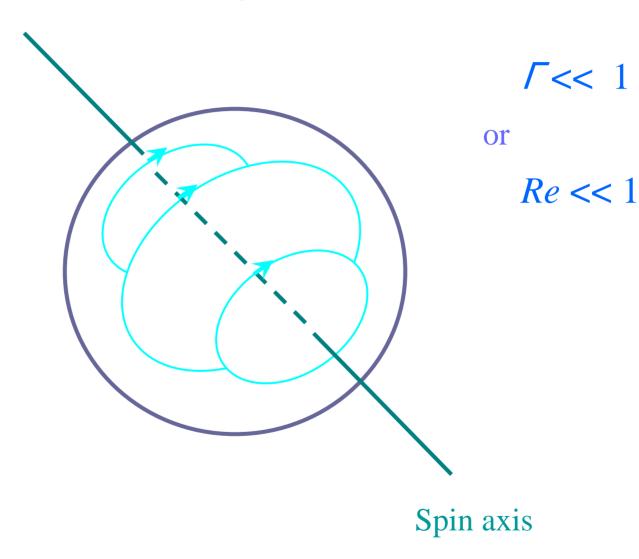
Flow Structure

Steady States

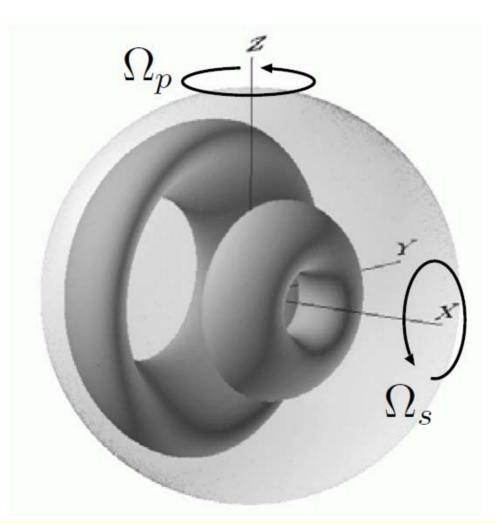
Stability Curve



Solid-Body Rotation



Streamline Tori

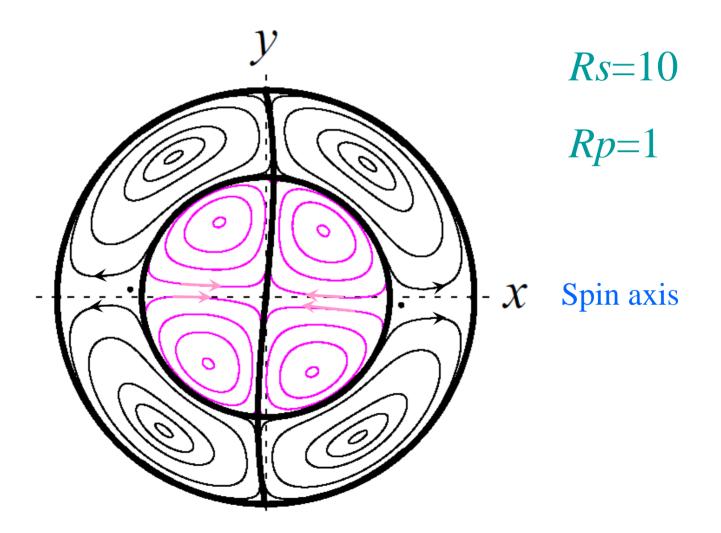


Rs=10

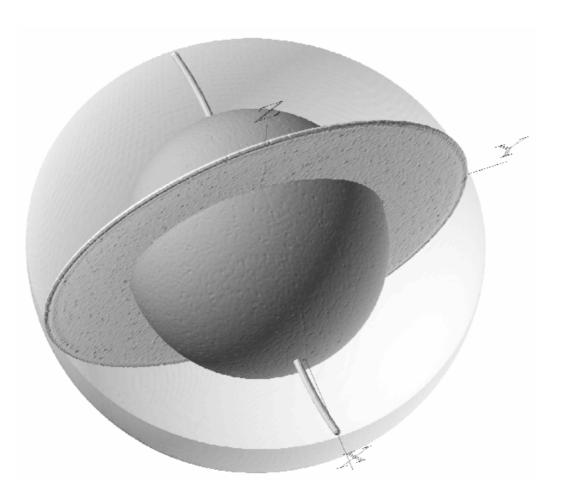
Rp=1

The whole surface of a torus is covered by a single streamline.

Cross-Section of Streamline Tori

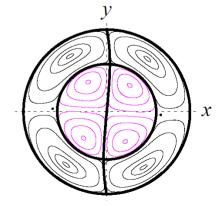


Separatrix Surfaces

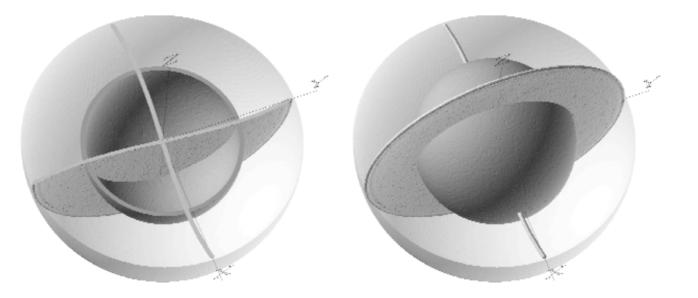


Rs=10

Rp=1



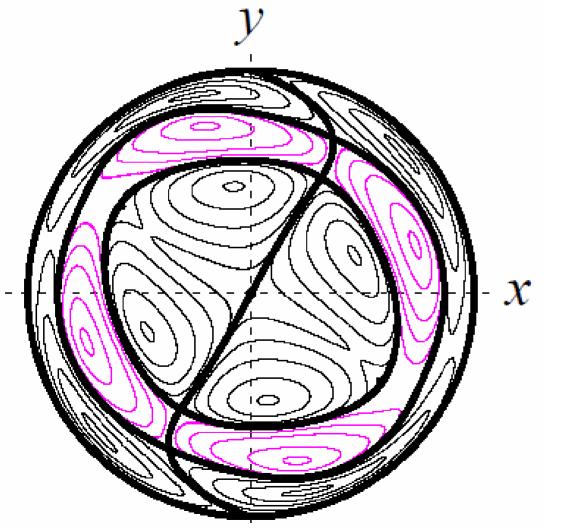
Separatrix Surfaces



Rs=10

Rp=1

Cross-Section of Streamline Tori

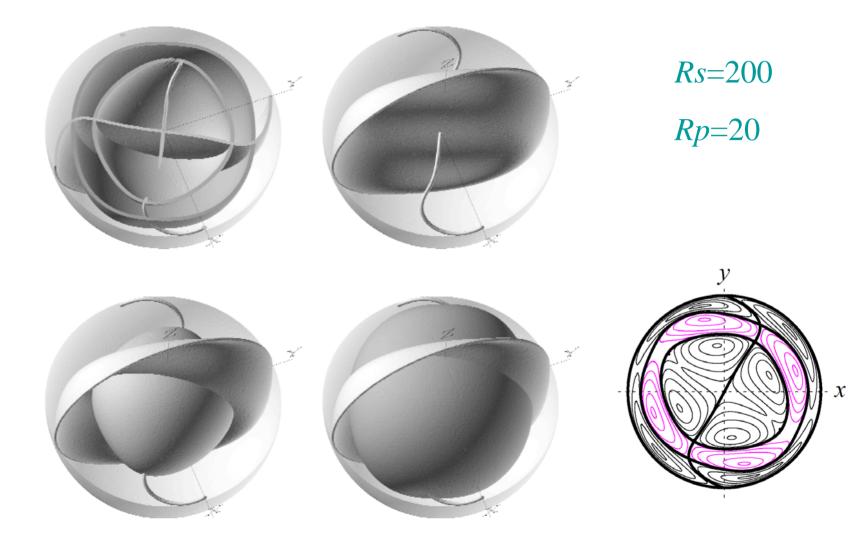


Rs = 200

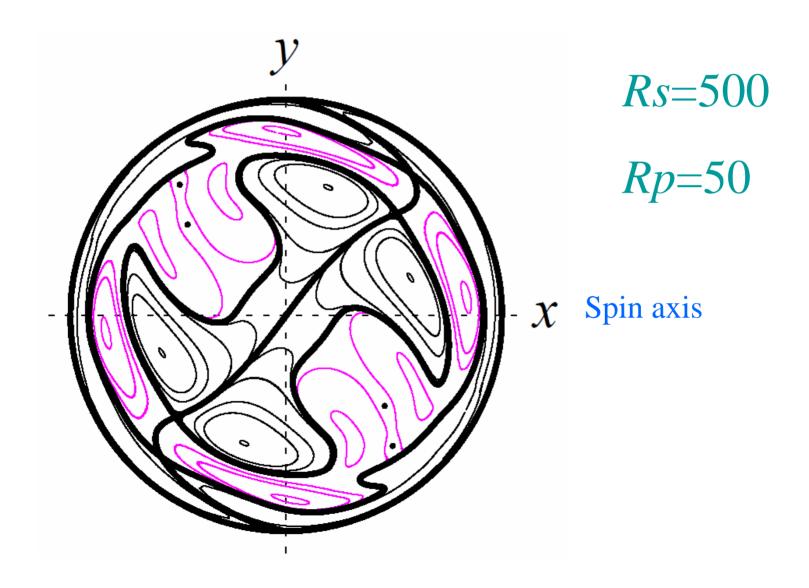
Rp=20

Spin axis

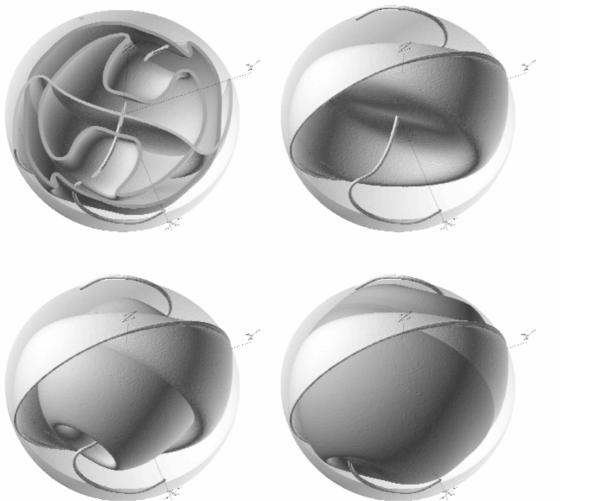
Separatrix Surfaces



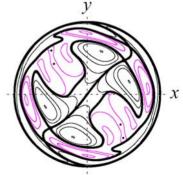
Cross-Section of Streamline Tori



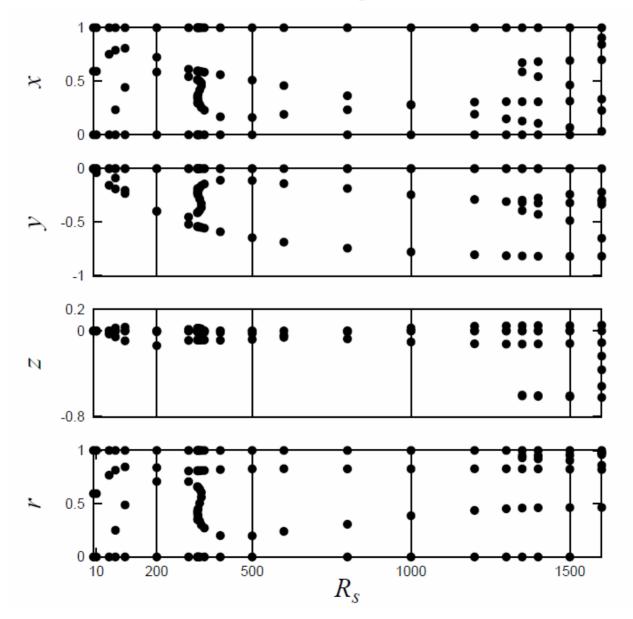
Separatrix Surfaces



Rs=500 *Rp*=50



Location of Stagnation Points



Outline

- 1 . Introduction
- 2 . Experiment State Diagram
- 3 . Numerical Simulation Stability boundary Flow Structure
- 4 . Asymptotic Analysis Flow Structure
- 5 . Summary

Asymptotic Analysis

In the double limit of small Reynolds numbers and large times

$$R_s \frac{\partial \boldsymbol{u}}{\partial t} = R_s \boldsymbol{u} \times \boldsymbol{\omega} - 2\Gamma R_s \hat{\boldsymbol{z}} \times \boldsymbol{u} - R_s \nabla P + \nabla^2 \boldsymbol{u}$$

$$P = p + \frac{1}{2} |\boldsymbol{u}|^2 + \frac{1}{2} \Gamma^2 (\boldsymbol{r} \times \hat{\boldsymbol{z}})^2$$

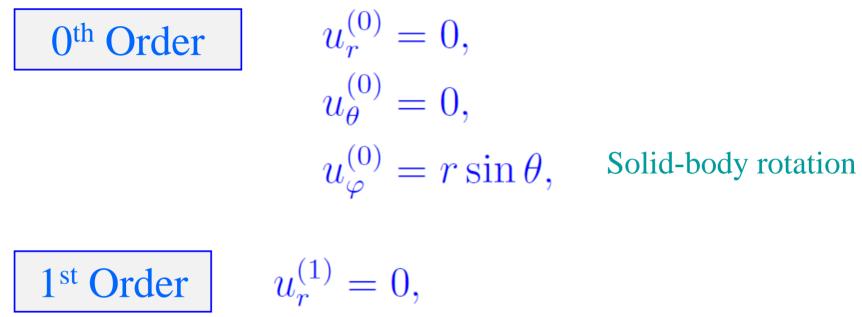
$$\Gamma = \frac{R_p}{R_s} = \frac{\Omega_p}{\Omega_s} = O(1)$$

$$\overline{R_s} \ll 1 \quad R_p \ll 1$$

$$\boldsymbol{u} = \boldsymbol{u}^{(0)} + R_s \boldsymbol{u}^{(1)} + R_s^2 \boldsymbol{u}^{(2)} + \cdots,$$

$$\boldsymbol{\omega} = \boldsymbol{\omega}^{(0)} + R_s \boldsymbol{\omega}^{(1)} + R_s^2 \boldsymbol{\omega}^{(2)} + \cdots,$$

$$P = P^{(0)} + R_s P^{(1)} + R_s^2 P^{(2)} + \cdots$$



$$u_r^{(1)} = 0,$$

$$u_{\theta}^{(1)} = \frac{\Gamma}{10} (1 - r^2) r \sin \varphi,$$

$$u_{\varphi}^{(1)} = \frac{\Gamma}{10} (1 - r^2) r \cos \theta \cos \varphi,$$

Differential rotation around y-axis

2nd Order

 $u_r^{(2)} = \frac{\Gamma}{420} r(1 - r^2)^2 \sin \theta \cos \varphi (\Gamma \sin \theta \sin \varphi + \cos \theta),$

$$u_{\theta}^{(2)} = -\frac{\Gamma}{2520} r(7r^2 - 3)(1 - r^2)(\Gamma \sin 2\theta \sin \varphi + \cos 2\theta) \cos \varphi,$$

$$u_{\varphi}^{(2)} = -\frac{\Gamma}{2520}r(7r^2 - 3)(1 - r^2)(\Gamma\sin\theta\cos2\varphi - \cos\theta\sin\varphi)$$

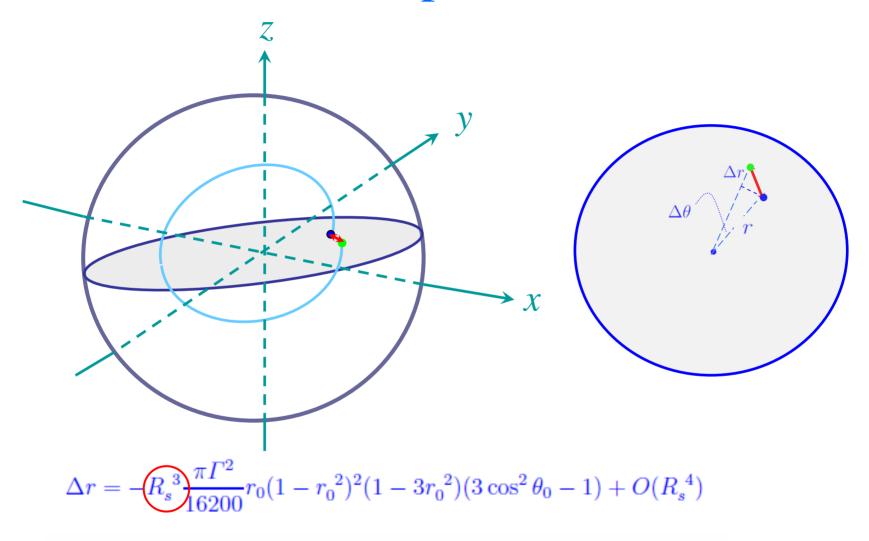
$$-\frac{\Gamma^2}{1400}r(9-5r^2)(1-r^2)\sin\theta$$

3rd Order

$$\begin{split} u_r^{(3)} &= \left[\frac{\Gamma^3 (58 - 15r^2)}{623700} + \frac{\Gamma (5 - 3r^2)}{249480} \right] r (1 - r^2)^2 \sin 2\theta \sin \varphi \\ &+ \frac{\Gamma^2 (10 - 3r^2) r (1 - r^2)^2}{113400} (3 \cos^2 \theta - 1) \\ &- \frac{\Gamma^2 (148 - 69r^2) r (1 - r^2)^2}{1247400} \sin^2 \theta \cos 2\varphi, \end{split}$$

$$\begin{array}{l} \boxed{\mathbf{3^{rd} Order}} u_{\theta}^{(3)} = -\frac{\Gamma^3}{249480} r^3 (1-r^2) (13-9r^2) \sin^2 \theta \sin 3\varphi \\ \\ -\frac{\Gamma^3}{12474000} r (1-r^2) (4884-4555r^2+1275r^4) \sin \varphi \\ \\ +\frac{\Gamma^3}{2494800} r (1-r^2) (232-663r^2+195r^4) \cos 2\theta \sin \varphi \\ \\ -\frac{\Gamma^2}{2494800} r (1-r^2) (148-287r^2+87r^4) \sin 2\theta \cos 2\varphi \\ \\ -\frac{\Gamma^2}{226800} r (1-r^2) (30-85r^2+27r^4) \sin 2\theta \\ \\ -\frac{\Gamma}{2494800} r (1-r^2) (99-250r^2+135r^4) \sin \varphi \\ \\ +\frac{\Gamma}{249480} r (1-r^2)^2 (5-3r^2) \cos 2\theta \sin \varphi, \end{array}$$

Poincare Map of Streamline



 $\Delta \theta = \underbrace{R_s^3}_{32400} \frac{\pi \Gamma^2}{(1 - r_0^2)(3 - 22r_0^2 + 27r_0^4)\sin 2\theta_0} + O(R_s^4)$

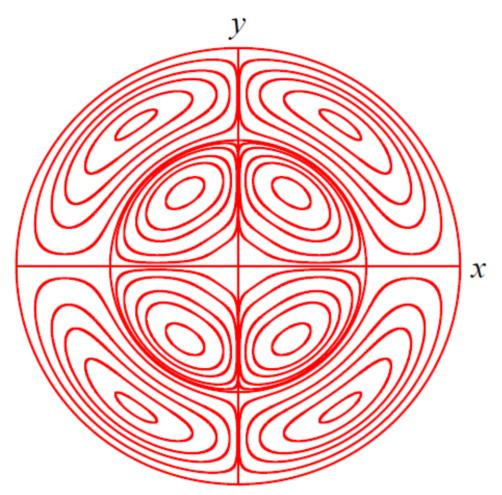
Cross-Section of a Streamline Torus

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\frac{2r(1-r^2)(1-3r^2)(3\cos^2\theta-1)}{(3-22r^2+27r^4)\sin 2\theta} \qquad \begin{array}{l} R_s \ll 1\\ R_p \ll 1\\ r_0 \to r, \ \theta_0 \to \theta, \ \Delta r/\Delta\theta \to \mathrm{d}r/\mathrm{d}\theta \end{array} \qquad t = O(R_s R_p^{-2})$$

$$r^{3}(1-r^{2})^{2}(\frac{1}{3}-r^{2})(1-\cos^{2}\theta)\cos\theta = \text{const.}$$

$$(1 - x^2 - y^2 - z^2)^2 (\frac{1}{3} - x^2 - y^2 - z^2)(y^2 + z^2)x = \text{const.}$$

Cross-Section of a Streamline Torus

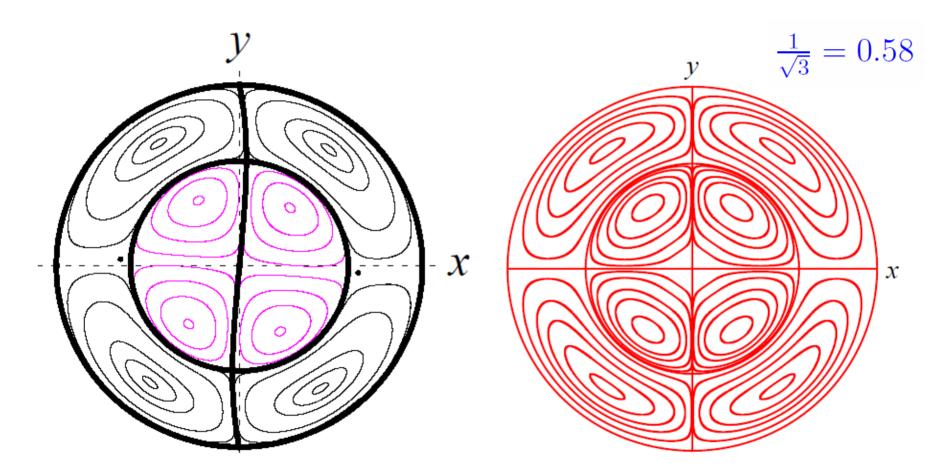


 $R_s \ll 1$ $R_p \ll 1$ $t = O(R_s R_p^{-2})$

 $r^{3}(1-r^{2})^{2}(\frac{1}{3}-r^{2})(1-\cos^{2}\theta)\cos\theta = \text{const.}$

Comparison: DNS & Theory

 $R_{s}=10, R_{p}=1$



 $r^{3}(1-r^{2})^{2}(\frac{1}{3}-r^{2})(1-\cos^{2}\theta)\cos\theta = \text{const.}$

Summary

① The state diagram of flows in a precessing sphere was constructed experimentally.

② The stability curve of steady flow was revealed partially by DNS.

③ The toral structure of streamlines was observed by DNS. So far no chaotic streamline has been found.

④ An analytical expression was obtained for the streamline tori in the double limit of small Reynolds numbers and large times.

Future Problems

- ① Complete the stability curve
- ② Clarify the characteristics of critical modes
- ③ Perform the linear stability analysis
- ④ Raise the speed of the numerical code

⑤ Examine the turbulence characteristics, such as intensity, mixing, etc.