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Structures with isolated singularities and structures with nonisolated singularities (fractal structures) arise in
many different physical situations such as in vertical and turbulent flows, chaotic mixing, clouds, shear layers,
lightning, snowflakes, and flames, to name but a few. Whereas the mathematical description of the instanta-
neous geometry of many fractal structures has been widely explored, less attention has been devoted to the
evolution of such structures under the action of physical fluxes. Do space-filling properties, for example, affect
the way in which physical fluxes act on the structure? Here we consider the effects of molecular diffusion on
scalar fields with singularities that are in the field itself rather than in the field’s environment. These singu-
larities may be simple power-law singularities in which case the stronger the singularity the faster its early
decay by diffusive attrition; or may be fractal or isolated spiral singularities, in which case early diffusive
decay is accelerated by the space-filling properties of fractal or spiral structures, and the diffusive length scale
is a simple function of the geometry and structure of the field.

PACS number(s): 47.53.+n, 05.60.+w

Let us first consider a one-dimensional on-off scalar field
6o(x) characterized by sharp discontinuities on a set of
points x that has fractal properties as in Fig. 1. In Fig. 1(a)
this set of points is spiral and in Fig. 1(b) this set of points is
fractal. The spiral set of points of discontinuity has only one
accumulation point, whereas the fractal set of points of dis-
continuity has accumulation points arbitrarily close to any
point of the set. The spiral singularity is an isolated singular-
ity and the fractal set is a set on nonisolated singularities.
Both fractal and spiral singularities may be characterized by
a well-defined nonintegral fractal dimension D which mea-
sures the degree to which the structure is space filling. This
fractal dimension is the Kolmogorov capacity [1] of the set
of points of discontinuity of the scalar field 6y(x) and is
defined by covering all the points in the set with the mini-
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FIG. 1. (a) One-dimensional spiral on-off function 6y(x) ob-
tained, for example, by cutting through the two-dimensional spiral
on-off function of Fig. 4. (b) One-dimensional fractal on-off func-
tion 6y(x) obtained, for example, from the zero crossings of the
Brownian sample function in Fig. 3.
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mum number of segments of length /. If the number N(/) of
such segments has a well-defined power-law dependence on
I, that is

1 -D
N(l>=N(L)( z) : ()

in a range of length scales /<<L where L is some large scale
defining the overall spatial extent of the fractal or spiral
structure (Fig. 1), then the exponent D is the Kolmogorov
capacity of the set of points of discontinuity on the structure
and O0=D=1. The structure is not space filling when D=0
and is totally space filling when D = 1. It has been shown [1]
that when this fractal dimension D is well defined, the Fou-
rier power spectrum I'o(k) of the one-dimensional on-off
field 6y(x) is such that

To(k)~k™2" 2
in the limit of large wave numbers k, and
2p=2-D. (3)

For simplicity, we assume here that I'y(k)=C (kL) *F for
kL>1 and I'¢(k)=0 for kL=1, where C is a constant. If
such a fractal or spiral on-off scalar field y(x) is somehow
suddenly subjected to molecular diffusion with molecular
diffusivity «, then the initial field 64(x) [with initial power
spectrum I'g(k) at time t=0] will become 6(x,t) at time
t=0 according to

0 0 = il 7 4
gt. (x7t)_Kax2 (x>t) ( )

and 6(x,0)= 6y(x). Equation (4) is the well-known diffu-
sion equation that is traditionally solved by means of the
Fourier transform 8(k,t)=(1/\2m) dx 6(x,f)e’**. De-
fining the wvariance (or “‘average energy”) 6%(¢)
=(1/L) [ 3| 6(x,t)|?dx, it follows from Plancherel’s identity
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that 6%(¢)= [T (k,t)dk where T'(k,t)=(1/2L)|6(k,t)|* and
I'(k,0)=Ty(k). Equation (4) implies that

_‘f_?(t)— -2 f dk K°T (k,t) %)
dt ToeK ’

and
T(k,t)=Tg(k)e 2%k, (6)

Note that C=(1—D)L6*(0) if D<1, and Egs. (5) and (6)
lead to

d— K =
Eﬁ (t)——2i—2(1~D)0 (0)

—(1+D)/2
Kt + 2
X| — dy yPe 2", 7

(LZ) J’M/L rY ( )

where we have made use of the change of variables
y =k\/z. Hence, at the early stages of decay when
kt/L*<1, the variance (or average energy) of a structure that
is characterized by a fractal dimension D and is either fractal
or spiral decays according to

D+1\(2kt\0"P2 [t
e

where I is Euler’s gamma function. The classical '/ result
is recovered when D =0, that is when the structure is either
not fractal, not spiral, or spiral with D=0 (such as logarith-
mic spirals [1], for example). The closer D is to 1 the more
space filling is the structure of sharp gradients. Even though
the space-filling properties of spirals and fractals are qualita-
tively different (Fig. 2) they can be quantitatively measured
by the same fractal dimension (or Kolmogorov capacity) D.
From (8) we conclude that the more space filling the struc-
ture of singularities, the faster the early decay of the struc-
ture’s average energy.

The integral or correlation length scale %(¢) is a measure
of the distance over which the function 8(x,) is significantly
correlated with itself. %£{(¢) can be computed from the power
spectrum as a weighted average in the following way [2]:

62(0)— 6%(¢) _
6%(0)

, = T(k,t)
H)y=| k' —=— 9)

0 6%(1)
Firstly, note that the initial integral length scale

Z(0)=[(1-D)/(2—D)]L and tends to 0 as D— 1. Fractal
and spiral structures that are more space filling are autocor-
related over a smaller spatial extent. Secondly, inserting ex-
pressions (6) and (8) in Eq. (9) it turns out that

D+1\[2xt\(1 7P~
=%

ol 7))

in the limit of early times when «t/L2<€1. It should not be
surprising that %{(¢) is an increasing function of time be-

(%(t):u%’(O)[1+I‘(

(10)
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FIG. 2. (a) The Peano curve is a totally space-filling fractal
curve. Its generating pattern has 9 straight line segments of length
1 each. Subsequent iterations are obtained by replacing each
straight line segment by the original generating pattern rescaled to
be smaller by a $ factor. It becomes clear after a few iterations that
the Peano curve comes arbitrarily close to any point inside a square
of sidelength 3 and diagonal length 1. The fractal dimension D of
the Peano curve’s intersection with a straight line is D=1. (b) A
very space-filling spiral for which D is close to 1 (left) and a spiral
that is much less space filling for which D is close to 0 (right).

cause molecular diffusion smoothes out sharp gradients and
is thereby a correlating mechanism. The excess length scale
o(t)=_A(t)— #4(0) is therefore a measure of the distance
over which the effects of molecular diffusion are appreciable
on the structure at time ¢. At the early stages of decay,

a=0z 4 _p V2kt\ 7P
5(t)~$(0)(z'§) =2_D\/2Kt( LK) .

(11

Molecular diffusion takes less time to smooth out sharp gra-
dients that are packed together in a fractal or spiral way, than
it takes to smooth out isolated discontinuities. In fact, the
more space-filling the packing of discontinuities, the longer
the spatial extent &(¢) over which diffusive attrition has
rubbed off the fractal or spiral structure at an early time 7.
The classical result &(z)~ \/E is recovered when D =0, and
only when D=0 is the diffusive length scale §(¢) indepen-
dent of the initial condition L.

Dimensional  analysis leads to  &(¢)=&(¢,«,L)
=kt f( \/E/L) but the function f cannot be determined
from dimensional arguments. However, Egs. (1) and (11) im-
ply that f(\xt/L)~(N2t/L) P=N(\/xt)/N(L) when
\/E/L <1. In this particular context, fractal and spiral geom-
etries with D #0 correspond to Barenblatt’s self-similarity of
the second kind [3] for which the dependence on L is not lost
in the limit where L —oo. Barenblatt’s self-similarity of the
first kind corresponds to D=0. The dependence of f and
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P T R R AR S 2-2D (2kt\'"7P
1 : &) 3—2DL( L2) (14)
2.00] -
5 One way in which a realization of a FBM 6y(x) (Fig. 3)
fo(z) 0.00 differs from an on-off function (Fig. 1) is that [4]
([ 6o(x+7)— g(x)])*)~r*! where the brackets {---) sig-
—2.004 nify an average over x and H=1—D. Hence, in the limit
] ¥ Vt<L,
~4.00
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FIG. 3. A realization of a fractional Brownian motion.

8(t) on the initial condition L when D #0 comes from the
fact that the ratio of the number of segments N(y/xt)/N(L)
is multiplied by 2P if L is replaced by 2L when D#0,
whereas N( \/F)/N(L) is invariant under such a dilation
when D=0.

N( \/TJ) is the minimum number of segments of length
Vkt needed to cover the points of discontinuity where the
effects of diffusion are mostly felt. Equations (1) and (11)
imply

8(t)~ \ktN(Vkt) (12)

for the earliest times of decay, which means that the diffusive
length scale &(¢) is proportional to the total length of the
fractal covering by segments of size Vkt. The closer D is to
1, the more space-filling the covering by segments of size
Jkt, the larger the total diffused length \ktN(\/xf), and
therefore the faster the early decay by diffusive attrition.
Let us replace the initial field 6,(x) with a realization of a
fractional Brownian motion [4] (FBM) (Fig. 3). The high
wave number power spectrum of FBM is given by (2) with

2p=3-2D, (13)

where D is the fractal dimension of the zero crossings of
6o(x). If we assume, as we did before for the sake of sim-
plicity, that T'y(k)=0 for kL<1 and T'o(k)~ (kL) 2P for
kL>1, then the above calculations can be reproduced to
yield

H
5(r>~JEN(JE)(@) .

(15)

It is instructive to compare Eqgs. (12) and (15). The diffusive
length scale &(t) of a diffusing FBM realization is propor-
tional to the total length of the fractal covering of zero cross-
ings by segments of size \/;;, but is also proportional to the
rms ([ 6y(x+ \/E) - 30()()]2>1/2~(\/_I§)H. The two effects
multiply each other and as a result the early diffusive decay
of a FBM realization is much faster than that of a spiral or a
fractal on-off function. The closer D is to 1, the more space-
filling is the covering of zero crossings by segments of size
Jkt and the smaller is the exponent H=1—D so that the
early decay by diffusive attrition is faster on both accounts.

The initial field with the simplest singularity would be the
power-law singularity 8y(x)~(x/L)™? where x<L (Fig. 4),
setting 6y(x)=0 where x>L and 2g<1 for the initial vari-
ance #*(0) to be finite. The initial high wave number power
spectrum I'(k) may be defined if g>0 and is of the form
(2) with p=1—gq. By the exact same method as above we
obtain for \/F<L that

(16)

it (1-20)2
L?

6(t)~L(
which we reinterpret as follows:

8(1)~ Vit By (k). a7

The stronger the power-law singularity (that is, the larger the
value of g), the faster the early diffusive decay of the field. It
is instructive once again to contrast Egs. (17) and (15).
There exist examples of two-dimensional fluid flows with
a power-law singularity at the origin. Any steady flow with
circular streamlines and azimuthal velocity u=u(r) in polar
coordinates (7, ¢) is an exact steady and incompressible so-

FIG. 4. The horizontal line represents the in-
terface at time #=0 and the spiral represents the
interface at a time ¢ such that 0<t<<t,. The
value of the scalar field is 1 below the interface

and 0 above. The center of the vortex is at the
center of the spiral, and the vortex turns anti-
clockwise.
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lution of the Euler equation provided that the pressure gra-
dient dp/dr balances the centrifugal force p(u?/r), where
p is the density of the fluid. Such flows may have a power-
law singularity u(r)~r~ 9. Flows outside a thin rotating cir-
cular cylinder with suction through the porous wall of the
cylinder [5] have an azimuthal velocity u=u(r)~r! %
where R is a Reynolds number and are steady incompressible
solutions of the Navier-Stokes equation. Spiral flow singu-
larities can be generated on a two-dimensional on-off scalar
tracer field (Fig. 4) by a steady azimuthal velocity field that
has a power-law singularity u(r)~r 9. Assuming, for the
sake of argument, that at =0 the interface between the re-
gion where #=0 and the region where =1 is a straight line
and that the singular velocity field u(r) is centered at a point
on that line, then the interface instantly adopts a spiral ge-
ometry under the action of the vortex (Fig. 4). We expect that
the effect of molecular diffusion on the scalar field 6 is sig-
nificant only after the spiral has formed. Hence, the spiral
structure of 6(r,,t) is initially given by

ad u(r)y 9

Y 0+ r 9 0~0 (18)
which, considering the condition at =0, admits the solution
O0(r,p,t)=H(¢d—[u(r)/r]t—m) where H is the Heaviside
on-off function. The spiral interface is, therefore, of the form
é~u(r)/r~r 179 and the Kolmogorov capacity of its
point-intersections with a straight line cutting through the
center of the spiral is [1] D=(1+¢q)/(2+q). If, again for
the sake of argument, we imagine a situation where the vor-
tex is somehow suddenly removed at a time ¢, when the
molecular diffusion has not had enough time to act signifi-
cantly, then the evolution of the field 6 at subsequent times
t=t, is governed by

I o= V2 19
EO—K 6 (19)
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with initial condition 6y(r,®)=0(r,d,tq)=H(d—[u(r)/
r]to). The method developed by Gilbert [6] to calculat€ the
power spectrum of two-dimensional spiral singularities can
be trivially reproduced for the power spectrum of the initial
(at t=ty) scalar field 6, leading to (2) with 2p=3—2D.
Solving (19) by two-dimensional Fourier methods, Egs. (5)
and (6) remain valid, and the method described in this paper
[7] leads to

1-D
8(t)~L ( K—t) ~L (20)

L2

2
—JZ—K—’N( &B}

for \kt<L. A comparison between (12) and (20) suggests
that the power 2 in the right hand side of (20) is nothing but
the Euclidean dimensionality of the flow.

To summarize, the results (12), (15), (17), and (20) give
the diffusive length scale’s dependence on the geometry and
structure of a singular tracer field in specific one- and two-
dimensional situations. The diffusive length scale of one-
dimensional spiral or fractal fields is proportional to the total
length \/}_tN( \/;;) of the covering of points where sharp
gradients lie by segments of length Jt. The more space-
filling the sharp gradients, the larger the number N( \/E) and
the longer the diffusive length scale &(¢). To obtain L &(¢)
for a two-dimensional spiral field, the total length
VktN(\Jkt) must be squared. If the initial field 6, has a
simple power-law singularity, 6(¢)~ NPT 6o( \/E), and if the
fractal geometry of a field supports a random singular struc-
ture characterized by a Hurst exponent H (FBM), diffusive
attrition is further accelerated and the purely geometrical es-
timate kN ( \/7<_t) must be multiplied by (\/E/L)H for an
accurate estimation of &(¢).
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