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Mixing is discussed in relation to stirring as re®ected in the geometry of advected
interfaces, the behaviour of ®uid-element pairs and their separation rates. Stirring is
di¬erent in vortical, chaotic and turbulent ®ows because of qualitative di¬erences in
spatio-temporal ®ow structure, thus giving rise to di¬erent mixing laws. Important
applications of the mixing and stirring properties discussed in this review are chlorine
deactivation and ozone depletion in stratospheric mid-latitudes.
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1. Introduction

Fluid-mechanical mixing of scalar/tracer quantities such as chemicals, pollutants
and heat occurs as a result of ®ow advection and molecular di¬usion. Mixing occurs
over scales ranging from kilometres in the Earth’s mantle, the oceans and the atmo-
spheres to metres and centimetres in combustion engines and chemical reactors and
tens of micrometres in liquid-crystal ®ows. Topical cases where ®uid-mechanical mix-
ing is important are chlorine deactivation and ozone depletion in the stratosphere
(McIntyre 1995; Pyle 1995).

In all these cases, advection stretches blobs or clouds of scalar quantities so that
their bounding surface stretches and increases in area. This growth of surface area
is usually accompanied by folding of the surface. Surface stretching carries on after
folding, leading to repeated instances of stretching and folding of material surfaces.
This is the stretch-and-fold mechanism extensively studied in the theory of low-
dimensional nonlinear dynamical systems, but  rst mentioned in the context of tur-
bulent pipe ®ow by Reynolds in his 1883 seminal experimental paper (see Monin &
Yaglom 1975), which e¬ectively launched the study of turbulent ®ows. More recently,
the stretch-and-fold mechanism has also been studied in the context of stirring by
chaotic (Ottino 1989) and vortical (Flohr & Vassilicos 1997) ®ows.

In the next section we describe the properties that distinguish vortical, chaotic
and turbulent ®ows. All these ®ows generate increasingly small length-scales on the
tracer  eld by leading to increasingly small separations between consecutive folds of
stretched material surfaces. Mixing occurs when these length-scales are small enough
for molecular di¬usion to act perceptibly. However, qualitatively di¬erent ®ow  elds
generate increasingly small tracer scales in ways that are su¯ ciently di¬erent to
lead to qualitatively di¬erent mixing laws. Mixing in vortical and chaotic ®ows is
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Figure 1. Scalar spiral structure in a vortex at di® erent times. (a) Initial scalar concentration
¯eld. (b) Spiral interface curve starts to develop. (c) Spiral extends throughout the ¯eld and
accelerated di® usion is observed near the centre. The outer gradients are still sharply de¯ned.
(d) The entire scalar ¯eld has mixed. (Reproduced from Flohr & Vassilicos (1997) with permis-
sion.)

discussed in x 3 with an application to chlorine deactivation and ozone depletion
over the mid-northern latitudes presented in x 4. Stirring and mixing in turbulent
®ows is addressed in x 5. All the ®ows we consider here are incompressible.

2. Vortical, chaotic and turbulent °ows

Interfaces of scalar blobs are lines in two-dimensional ®ows and surfaces in three-
dimensional ®ows. Most of the emphasis here is on two-dimensional ®ows both for
simplicity of exposition and because three-dimensional ®ows remain less well under-
stood.

(a) Stretch and fold

Two-dimensional steady vortex ®ows have streamlines surrounding their core and
do not move. The local ®ow is a shear ®ow that causes ®uid elements on di¬er-
ent streamlines to separate linearly in time. Thus, the local shear across streamlines
stretches material lines, while the vortical nature of these streamlines folds the mate-
rial lines. What results is a spiral locally stretched by the local shear and folded
around the vortex (see  gure 1) with a length that grows linearly in time. This is
the stretch-and-fold mechanism in two-dimensional steady vortices, and it is qualita-
tively di¬erent from the stretch-and-fold mechanism in chaotic ®ows that we describe
next.
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Figure 2. (a) Material line in a blinking vortex at time t = 15T . The central region is magni¯ed
in (b), and the central region of (b) is magni¯ed in (c). (Reproduced from Fung & Vassilicos
(1991) with permission.)

The ®ow acquires chaotic characteristics as soon as the vortex starts moving back
and forth (Aref 1984; Ottino 1989). An extreme caricature of such a situation is the
blinking vortex introduced by Aref (1984). The vortex jumps between two points at
time-intervals T . Starting a material line between these two points, the vortex will
 rst stretch and wind the line around itself into a fold or spiral for a period T , then
jump to its other position from which it will stretch and wind the already folded or
spiral line into a further fold or spiral, and so on repeatedly, eventually producing a
stretched and folded structure that is qualitatively di¬erent from a simple spiral (see
 gure 2). This qualitative di¬erence is felt in the rate of growth of the line, which is
now exponential rather than linear (Ottino 1989).

A closer look, assisted by the theory of Hamiltonian dynamical systems (Lichten-
berg & Lieberman 1983; Ottino 1989), reveals that the ®ow is not necessarily chaotic
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Figure 3. Poincar¶e sections corresponding to 15 initial conditions in the blinking vortex for
di® erent periods T non-dimensionalized against the circulation ¡ of the vortex and the distance
b between the two positions of the vortex. Poincar¶e sections record all the positions of a ° uid
element at time intervals equal to the period T . Values of ( ¡ T )=(4 º b2): (a) 0.2; (b) 0.4; (c) 0.5;
(d) 0.6; (e) 0.8; (f) 1.4; (g) 2.0; (h) 4.0; (i) 6.0. (Reproduced from Aref (1984) with permission.)

everywhere (i.e. globally chaotic). An important critical length is the radius of the
instantaneous vortex streamline that has orbital time equal to T (Aref 1984; Wonhas
& Vassilicos 2001). When the spatial extent of the vortex oscillations is small com-
pared with that critical length (i.e. when T is large), the ®ow is fully chaotic inside a
region of a size comparable with that of the critical length (Aref 1984). This means
that ®uid elements visit e¬ectively every point inside that region (see  gure 3) and
material lines tend to eventually  ll it completely. However, it must be noted that
the time needed to  ll that region can be very long and in the meantime material
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Figure 4. Di® erent snapshots in the stirring by a blinking vortex of an initially square blob:
(a) t = 0; (b) t = T ; (c) t = 2T ; (d) t = 3T ; (e) t = 4T ; (f ) t = 5T ; (g) t = 6T ; (h) t = 9T ;
(i) t = 12T . (Reproduced from Aref (1984) with permission.)

lines can have very well de ned spiral shapes before they develop the stretched and
folded pro le characteristic of chaotic advection (see  gure 4). In the opposite limit,
where T is very small, the ®ow tends towards the limiting situation where two steady
co-rotating vortices generate a straining region (hyperbolic point) in between them
(see  gure 3), a circumstance which severely limits the extent of the chaotic regions,
as shown in  gure 3.

In the limit where T is large, and far away from the region where the vortex
moves and where chaotic regions thrive, the motion of ®uid elements is governed by
a near-integrable Hamiltonian dynamical system (Wonhas & Vassilicos 2001), which
means that a ®uid element’s velocity is that of the instantaneous vortex at the ®uid
element’s position (which, by itself is integrable) plus a small correction due to the
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periodic vortex motion (which makes the perturbed integral system non-integrable).
The Poincaŕe{Birkho¬ and Kolmogorov{Arnold{Moser (KAM) theorems (Lichten-
berg & Lieberman 1983; Ottino 1989) describe how non-integrable periodic pertur-
bations modify the properties of integrable Hamiltonian systems and can therefore
be applied far enough away from the chaotic region of the blinking vortex. We refer
to the references cited above for detailed accounts of these theorems. Here we only
need to say that all vortex streamlines with orbital times incommensurate with T
(i.e. integer multiples of the orbital time are not equal to integer multiples of T ) give
rise to closed periodic ®uid-element trajectories around the vortex. These trajecto-
ries are slightly distorted versions of the vortex streamlines. They correspond to the
celebrated KAM tori and constitute barriers to transport because any ®uid element
in them remains in them ad in nitum. However, they break-up as the perturbation
is increased. Vortex streamlines with orbital times commensurate with T give rise
to chaotic regions very thinly squeezed between KAM trajectories that they cannot
penetrate. Wonhas & Vassilicos (2001) conclude that the advection in these outer
regions is therefore dominated by KAM trajectories and that, at scales not too small
to resolve the exceedingly thin chaotic regions, it resembles the ®ow of a steady
vortex.

When the motion of the vortex is not periodic, as is the case of the stratospheric
polar vortex (e.g. McIntyre 1995), KAM trajectories do not exist and the ®ow devel-
ops chaotic behaviour everywhere, as it does in other non-periodic shear ®ows (see
those of Pierrehumbert (1994) and Antonsen et al . (1996)). Indeed, the Poincaŕe{
Birkho¬ and KAM theorems are not valid and do not have equivalents for non-
periodic time-dependent ®ows (Ottino 1989; Pierrehumbert 1994). However, it must
be stressed again, as in the case of the blinking vortex with large periodicity T
( gure 4), that the time needed for this chaotic behaviour to fully manifest itself
everywhere can be long. Wonhas (2001) has demonstrated that, when the di¬usivity
of the random motion is small compared with the circulation of the vortex, mate-
rial lines in a randomly moving planar vortex develop a well-de ned spiral structure
away from the region where the vortex moves and a more chaotic stretched and
folded structure closer to that region. More importantly, Wonhas (2001) has shown
that the size of this inner chaotic region grows slowly, in fact only di¬usively (as the
square root of time for a classical point vortex), which means that a lot of the ®ow
feels the action of the vortex but not that of the chaotic advection for a signi cantly
long time. Of course, there are other non-periodic, time-dependent ®ows, such as the
time-dependent, random shear ®ows of Pierrehumbert (1994), which manifest their
globally chaotic advection quickly everywhere.

(b) Pair separation

Incompressible two-dimensional ®ows are such that, at any point and any time,
there is a direction along which velocity gradients cause pairs of ®uid elements to
separate faster than in any other direction, and another direction along which par-
ticle pairs either contract (as in steady straining ®ows) or simply do not separate
nor contract at all (as in steady shearing ®ows). (This well-known statement has
its counterpart in incompressible three-dimensional ®ows.) We denote the locally
fastest growing separation by ¢ + (x; t) and note that it potentially has di¬erent
growth rates for di¬erent initial positions x. In steady vortex ®ows ¢ + ¹ t. How-
ever, there must be at least some points x in chaotic ®ows from which ¢ + ¹ eht
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with h > 0; otherwise interfaces would not grow exponentially as they indeed do in
such ®ows. The exponents h(x; t) are called  nite-time Lyapunov exponents when
they are calculated at  nite times and therefore vary with x and t (Antonsen et al .
1996). For asymptotically large times t, the exponents h(x; t) tend to well-de ned
time-independent values h (Oseledec 1968; Eckmann & Ruelle 1985), and in regions
of global chaos where ®uid elements eventually visit the entire region, the exponents
h are positive and the same for all initial positions x in that region (Ottino 1989;
Toussaint et al . 1995). In this case, h is called a Lyapunov exponent. However, the
time, Tcon v, needed for h(x; t) to start departing signi cantly from the neighbour-
hood of zero can be long (Eckhardt & Yao 1993; Toussaint et al . 1995), and the time
needed to converge to the Lyapunov exponent h can be even longer and comparable
with the time that ®uid-element trajectories take to  ll the globally chaotic region
( gures 3 and 4 give an indication of how long it can take to  ll that region). In fact,
a glance at  gures 3 and 4 suggests that for times t ½ Tcon v the time-dependence of
¢ + may not be exponential at all in many parts of the ®ow but perhaps even just
linear where, and as long as, the transient spiral interfacial structures are developing.
Where chaotic and regular regions coexist, h(x; t) tends to zero for su¯ ciently long
times in those regions that are regular and where we may therefore expect ¢ + ¹ t,
and towards di¬erent positive Lyapunov exponents in di¬erent chaotic regions (e.g.
Toussaint et al . 1995).

(c) Fractal geometry

The stretch-and-fold mechanisms and the increasing length of material lines inside
 nite regions of vortical and chaotic ®ows imply that a broad distribution of length-
scales develops on these lines. A measure of this distribution is the box-counting
function N ( ¯ ; t), which is a central quantity of fractal geometry. Given a grid of
resolution (grid-cell size) ¯ covering the two-dimensional space of the ®ow, the number
of cells containing a part of the material line at time t is N( ¯ ; t). This number is larger
for  ner resolutions, i.e. for smaller ¯ . The rate with which this number increases
with increasing resolution gives an indication of the amount of space that is  lled
by the line. Straight or otherwise regular lines are such that N ( ¯ ) ¹ ¯ ¡1. However,
for material lines in fully chaotic ®ow regions, N ( ¯ ; t) tends to a ¯ ¡2 scaling as
time advances and reaches that limit for times at least larger than Tcon v (Toussaint
& Carri³ere 1999; Ott & Antonsen 1989). This ¯ ¡2 scaling re®ects the space- lling
nature of lines in globally chaotic ®ow regions after long times, as can indeed be
witnessed from  gures 2 and 4. At transient times smaller than Tcon v, the scaling
of N ( ¯ ; t) is well approximated by ¯ ¡D(t), where D(t) takes values between 1 and 2
and in fact increases with time towards 2 (Fung & Vassilicos 1991). At the other
extreme, lines in steady vortices develop a spiral structure with scaling N ( ¯ ) ¹ ¯ ¡D ,
where D can take values between 1 and 2 (Flohr & Vassilicos 1997). The exponent
D is called the fractal or box-counting dimension or Kolmogorov capacity and is
well-de ned for many fractal and spiral geometries (Vassilicos & Hunt 1991). Where
chaotic and regular regions coexist, parts of the line become chaotically space  lling,
while others remain regular or develop spiral structures, and the form of N( ¯ ) must
be considered to result from a potentially intricate combination of these e¬ects.
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Figure 5. Schematic of the self-similar streamline topology
consisting of cat eyes within cat eyes.

(d) Turbulence

Instantaneous snapshots of the velocity  eld of a vortex or chaotic ®ow are smooth
and consist of one or a few vortices or other shearing motions of a given size. In con-
trast, instantaneous snapshots of turbulent ®ows are irregular and are made of an
entire hierarchy of eddies over a wide range of length-scales. This hierarchy of eddies
is most commonly described in terms of the energy spectrum E(k) of the turbu-
lence that measures the amount of energy in velocity ®uctuations of wavenumber,
k. Spatially homogeneous non-decaying turbulence is characterized by Kolmogorov’s
celebrated k¡5=3 form of E(k) over a wide range of wavenumbers (Monin & Yaglom
1975). A statistically homogeneous and non-decaying turbulent ®ow with such a
spectrum in two dimensions has been created in the laboratory by Paret & Tabeling
(1997), using electromagnetically driven thin, stably strati ed layers of NaCl solution.
Fung & Vassilicos (1998) numerically simulated such a two-dimensional statistically
homogeneous and non-decaying turbulence with a k¡5=3 energy spectrum by ran-
domly adding incompressible Fourier modes with the appropriate amplitudes. They
found that instantaneous snapshots of the turbulent velocity (in fact streamline)  eld
have a self-similar topology made of cat eyes within cat eyes ( gure 5). A pair of cat
eyes is a streamline structure consisting of two co-rotating vortices and one straining
hyperbolic point in between (see  gure 3a). The spatial irregularity of the turbulent
velocity  eld is therefore underpinned by this self-similar topology. Smaller cat eyes
have smaller time-scales determined by E(k) and are therefore essential in turbulent
mixing.

For progressively smaller viscosities of the ®uid, the self-similar topological struc-
ture of the turbulence acquires progressively more and smaller cat eyes more closely
packed against each other, and the velocity  eld therefore tends towards a spatially
singular velocity  eld with in nitesimally small spatial oscillations between in nitesi-
mally close stagnation points. This singular limit is not a peculiarity of the particular
turbulent ®ow discussed here (Paret & Tabeling 1997; Fung & Vassilicos 1998), but
of any turbulent ®ow with a k¡5=3 energy spectrum, though it may well be that other
types of singular topologies arise in other turbulent ®ows with such a spectrum.

The point has been made recently (Falkovich et al . 2001) that ®uid-element pairs
initially in nitesimally close to each other in a spatially singular velocity  eld sep-
arate neither linearly nor exponentially in time; and indeed Richardson’s law (see
Monin & Yaglom 1975) stipulates that in non-decaying homogeneous turbulent ®ows
with a k¡5=3 energy spectrum, hj¢j2i / t3, where ¢ = ¢(x; t) is the vector linking
a pair of ®uid elements together and the brackets signify an average over many such
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®uid-element pairs over all space. Jullien et al . (1999) have con rmed Richardson’s
law in the turbulent ®ow of Paret & Tabeling (1997), and so have Fung & Vassilicos
(1998) in their numerical model of that ®ow.

3. Mixing in vortical and chaotic °ows

The process of stirring the passively advected concentration  eld c(x; t) is described
mathematically by (D=Dt)c = 0 (Ottino 1989; Batchelor 1969), where D=Dt is the
time derivative following a ®uid element in its motion (D=Dt = @=@t + u ¢ r for a
velocity  eld u(x; t)). Stirring is perhaps more intuitive in terms of the vector ¢
linking a pair of ®uid elements that evolves through the action of velocity gradients
across ¢, i.e. D¢=Dt = ¢ ¢ ru (Batchelor 1969).

It is because stirring causes ®uid-element pairs to separate and therefore other
pairs to come close together by incompressibility that concentration gradients r c
increase in time, thus re®ecting the production of increasingly small scales in the
concentration  eld. This is expressed mathematically by the conservation law

D

Dt
(¢ ¢ rc) = 0; (3.1)

which is an algebraic consequence of the two previous equations. Hence, in the direc-
tion of fastest pair separation ( ¢ + ) the concentration gradients decrease, but they
increase in the directions in which pairs tend to converge towards each other. This
means that isoconcentration surfaces (or lines in two dimensions) tend to align them-
selves with the fastest growing pair separation and high concentration gradients build
up in the perpendicular direction. The rates of fastest and slowest pair-separation
growths determine each other by incompressibility, and they also determine the gen-
eration of concentration gradients and therefore of small scales on the concentration
 eld. Knowledge of ¢ + (x; t) therefore provides a complete description of stirring.
How much can ¢ + (x; t) tell us about mixing?

Mixing results from the interaction between stirring and molecular di¬usion and
is described mathematically by

D

Dt
c = µr2c; (3.2)

where µ is the molecular di¬usivity of the concentration scalar c. The spatially aver-
aged concentration hci /

R
dx c(x; t) remains constant in time and a measure of

mixing must therefore be the variance c02 ² h(c ¡ hci)2i, which, in the presence of
molecular di¬usion, is a decreasing function of time until it reaches zero, when c = hci
everywhere in the ®ow and the scalar concentration c is well mixed.

As originally argued by Durbin (1980), mixing occurs when ®uid elements are
brought together by stirring, and the scalar concentrations that they carry di¬use
molecularly into each other. Durbin (1980) further argued (but see also Falkovich
et al . 2001) that mixing measured by the variance c02 can be calculated from the
statistics of ®uid-element pairs, and therefore from knowledge concerning ¢ + (x; t).
In the general context of Durbin’s (1980) approach, a formula has been derived
(Antonsen et al . 1996; Wonhas & Vassilicos 2002a) for mixing in non-turbulent ®ows
that encapsulates di¬erent mixing behaviours and mechanisms in di¬erent types
of ®ow. This formula relates c02(t) to ¢ + (x; t) and to the initial concentration  eld
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c0(x) = c(x; 0) when no source of scalar ®uctuations is used to replenish the variance
lost through mixing (no scalar forcing),

c02(t) /
Z

dx (c0(x) ¡ hc0i)2 £ exp

·
¡ 2µa¡2

0 s2( ¿ )

Z t

0

d ½ ¢ 2
+ (x; ½ )

¸
; (3.3)

where a0 is some conserved characteristic area (in incompressible two-dimensional
®ow), ¿ is the local initial angle between the local scalar gradient and the local
direction of fastest pair separation and s( ¿ ) is either equal to sin ¿ in steady straining
or chaotic ®ows or is a constant independent of ¿ in steady shearing or vortical ®ows
without chaos.

We mention this apparently complicated formula for two reasons. The  rst reason
is conceptual: this formula directly relates the decay of the scalar variance, which is a
measure of mixing, to the growth of pair separations, which is a measure of stirring.
The second reason, which we detail in the rest of this section, is that it leads to
correct mixing rates (decay of c02(t) in time) in ®ows as di¬erent as globally chaotic
on the one hand and steady vortical on the other.

In the case of those globally chaotic ®ows where ®uid-element pairs quickly adopt
exponential separation rates everywhere in the ®ow (such as the ®ows of Pierrehum-
bert (1994) and Antonsen et al . (1996), and the Baker map of Wonhas & Vassilicos
(2002a)), ¢ + (x; t) ¹ eht with h(x; t) > 0 and equation (3.3) successfully predicts
superexponential decay of the scalar variance c02(t) for early times (Pierrehumbert
1994; Antonsen et al . 1996; Wonhas & Vassilicos 2002a). During this initial decay
period, more than 90% (in the ®ows considered in the references just mentioned) of
the scalar variance is lost, and the mixing mechanism behind this loss is rooted in
the exponential separation of ®uid-element pairs.

The decay of the rest of the variance for longer times turns out to be exponen-
tial (Pierrehumbert 1994; Antonsen et al . 1996). Antonsen et al . (1996) have argued
that the dominant long time contribution to the decay of scalar variance comes from
scalar gradients oriented close to the direction of fastest pair separation (¿ = 0; º )
because these gradients are the last to survive molecular di¬usion (see comments
under equation (3.1)). The long-term decay is therefore dominated by those expo-
nential terms in equation (3.3) with s( ¿ ) = 0 which survive superexponential decay,
and a further calculation based on equation (3.3) reveals that these surviving terms
decay only exponentially (Antonsen et al . 1996).

This long-term mixing mechanism based on long-term surviving scalar gradients
aligned in the direction of fastest pair separation is, however, not the only mechanism
that can lead to long-term exponential decay. Fereday et al . (2002) and Wonhas &
Vassilicos (2002a) have identi ed a di¬erent mechanism that is not incorporated in
equation (3.3), which also leads to long-term exponential decay and which is based on
how the spatial non-uniformity of velocity gradients a¬ects the global structure and
spatial variations of the entire scalar  eld. This global mechanism is not captured
by equation (3.3), which locally integrates pair trajectories, nor in any other local
trajectory theory predicting exponential scalar variance decay. The range of validity
of equation (3.3) and the circumstances when one or the other exponential decay
mechanism prevails are unknown and the object of current research. However, quite
surprisingly perhaps, equation (3.3) holds in it one more mixing mechanism, the
fractal/spiral decay mechanism.
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In the case of steady vortical ®ows, as in the case of any steady shear ®ow, pair
separations grow linearly, i.e. ¢ + ¹ t, and the argument in the exponential in equa-
tion (3.3) is proportional to t3 rather than to an exponential function of time. The
rate of scalar variance decay is therefore much slower in a steady vortex than it is in
globally chaotic advection, but this does not mean that the action of the vortex does
not accelerate scalar mixing. The mechanism whereby the vortex does accelerate
scalar mixing is based on the spiral gradient structure imposed on the scalar  eld by
the two-dimensional vortex (see  gure 1). It is striking how, in  gure 1, the scalar
concentration appears fairly well mixed near the centre of the vortex at a time when
the gradients at the outer arms of the scalar spiral remain sharp! This is the mark
of the fractal/spiral mixing mechanism. The spiral gradient structure introduces an
increased spatial decorrelation of the scalar concentration  eld, increased by com-
parison with the spatial decorrelation due to a single isolated sharp scalar gradient.
It is this spatial decorrelation that lies behind the well-known fact that sharp gradi-
ents decay quickly. Increasing this spatial decorrelation by stretching and folding the
line of high scalar gradients, and thereby creating a decorrelating accumulation of
gradients, increases the decay rate and mixing of the scalar  eld (Angilella & Vassil-
icos 1998) even further. In the case of the steady vortex, this gradient accumulation
occurs in a spiral way ( gure 1).

This mechanism can also be derived from equation (3.3) in the case of the steady
vortex where ¢ + ¹ t. Carrying out the spatial integration in equation (3.3) leads to
(Flohr & Vassilicos 1997; Wonhas & Vassilicos 2001, 2002a)

c02(0) ¡ c02(t) /
µ

² (t)

L

¶2¡D

(3.4)

for ² (t)=L ½ 1, where L is a length-scale characterizing the initial concentration
patch, D is the fractal dimension of the spiral gradient structure imposed on the
scalar  eld by the two-dimensional vortex (1 6 D < 2) and ² (t) ¹ µ1=2t3=2 is the
di¬usive microscale at time t. The mixing law (3.4) has been computationally veri ed
in both steady and weakly unsteady two-dimensional vortices (Flohr & Vassilicos
1997; Wonhas & Vassilicos 2001).

The mixing law (3.4) is a re®ection of the fractal/spiral mixing mechanism
described above because the fractal dimension D is a measure of the spatial decorrela-
tion of the scalar concentration  eld. The larger the value of D, the more space- lling
the line of sharp scalar gradients and therefore the higher the spatial decorrelation
of the scalar  eld leading to faster algebraic mixing. Mixing law (3.4) is in fact
valid quite broadly, including for the decay of fractal structures without ®uid ®ow,
in which case ² (t) ¹

p
µt (see Angilella & Vassilicos 1998). Wonhas & Vassilicos

(2002b) argue that (3.4) is valid whenever the fractal dimension D of the line of
scalar concentration gradients is strictly less than 2, which is not the case in globally
chaotic ®ows with small Tcon v everywhere. By the way, in the case of such globally
chaotic ®ows with superexponential followed by exponential mixing, the mixing rate
(d=dt)c02(t) is independent of di¬usivity or, at the very least, only logarithmically
dependent (Pierrehumbert 1994; Wonhas & Vassilicos 2002a). This contrasts with
the di¬usivity dependence of (d=dt)c02(t) caused by the fractal/spiral mixing mech-
anism, in which case such a dependence exists and is algebraic (from equation (3.4),
¹ µ1¡D=2). This qualitative di¬erence in di¬usivity dependencies plays an important
role in the following section.
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4. Chlorine deactivation and ozone depletion in the stratosphere

In a cold arctic winter, polar stratospheric clouds form and heterogeneous chemi-
cal reactions in these clouds produce chlorine monoxide radicals (Peter 1994). This
chlorine-activated air can subsequently be transported by stratospheric winds to
mid-northern latitudes (Pyle 1995), where it can catalytically deplete ozone with the
result of increasing ultraviolet radiation over densely populated areas. However, chlo-
rine monoxide may itself be deactivated before it has had the time to destroy ozone.
One such deactivation mechanism involves the reaction between polar air (rich in
chlorine monoxide) and mid-latitude air (rich in nitrogen oxides) (Chipper eld et al .
1997). For this reaction to occur, ®uid elements of polar and mid-latitude air need to
be brought into close proximity by stratospheric stirring and then di¬use into each
other.

Owing to the stable strati cation of the stratosphere, stirring by stratospheric
winds is two dimensional and therefore we might expect that our current understand-
ing of two-dimensional stirring and mixing might be applicable. Tan et al . (1998)
used such winds measured by the European Centre for Medium-range Weather Fore-
casts (ECMWF) to simulate on the computer the mixing and subsequent chemical
reaction of chlorine monoxides, ClO, originating from polar regions with nitrogen
oxides NOx in the mid-latitudes. These reactions deactivate chlorine monoxides by
producing chlorine nitrates, e.g. ClO + NO2 ! ClONO2.

The longitudinal and latitudinal resolution of the ECMWF wind measurements
is ca. 4¯, the time resolution ca. 6 h and the customary assumption is made that the
velocity  eld below this resolution acts as a turbulent di¬usivity µt on the chemicals.
Hence, Tan et al . (1998) integrated the following coupled equations (i = 1; 2), which
incorporate advection and di¬usion as in (3.2), but also a chemical reaction,

D

Dt
ci = µtr2ci ¡ ® c1c2; (4.1)

D

Dt
c3 = µtr2c3 + ® c1c2; (4.2)

where c1, c2 and c3 are the concentration  elds of ClO, NO2 and ClONO2 respec-
tively; ® is the chemical reaction constant and D=Dt = (@=@t) + u ¢ r , where u is
the ECMWF stratospheric velocity wind  eld.

Tan et al . (1998) solved these equations on the computer using a stratospheric
incompressible velocity  eld interpolated on the 475 K isentrope (an altitude of
ca. 20 km). They calculated the total amount of chlorine nitrate, ClONO2, produced
throughout the ®ow on di¬erent days and for di¬erent turbulent di¬usivities µt. They
found that the total amount of ClONO2 produced has a power-law dependence on
di¬usivity and that this power law is di¬erent on di¬erent days.

Solving on the computer for the advection of chlorine monoxide (i = 1) originating
from polar regions (i.e. solving (4.1) with ECMWF winds but without the di¬usion
and the chemical reaction terms) leads to a stretched and folded concentration  eld
exhibiting both spiral and chaotic features ( gure 6). The mixing, and therefore the
chemical reaction, between polar chlorine monoxide and mid-latitude nitrogen oxides
occurs across this stretched and folded interface in  gure 6. Wonhas & Vassilicos
(2002b) noted that the chemical reactions in the calculation of Tan et al . (1998) are
so fast that they are e¬ectively limited by the advection{di¬usion process rather
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Figure 6. Stereographic projections of an interface on di® erent days. Latitudes are depicted by
dotted lines in 10¯ intervals with latitudes 30¯ N to 60¯ N indicated by numerals 30{60. On
the ¯rst day of the simulation, 9 January 1992, the interface is aligned with the 60¯ N latitude.
(Reproduced from Wonhas (2001) with permission.)

than by the reaction speed. As a consequence, for small enough di¬usivity µt, and
for initial conditions such as those of  gure 6 and Tan et al . (1998), the total amount
of ClONO2 produced is proportional to the variance of c1 ¡ c2. The progress variable
c1 ¡ c2 is governed by advection and di¬usion alone, i.e. an equation such as (3.2).
Hence, the power-law dependence of the total amount of ClONO2 on di¬usivity µt

might suggest a fractal/spiral mixing mechanism quanti ed by a relation such as
(3.4) rather than chaotic mixing.

To test this suggestion, Wonhas (2001) integrated pair separations in the ECMWF
velocity  eld and calculated the fractal dimension of the interface in  gure 6 on
di¬erent days. He found that, statistically, pair separations can be  tted equally
well by linear as by exponential (Lyapunov) growth functions, and that the fractal
dimension D (Wonhas & Vassilicos 2002b) of the interface in  gure 6 is equal to 1
for the  rst three days but then increases above 1 until it reaches 1.48 on the last
day of the simulation (day 15). Wonhas & Vassilicos (2002b) used these values of D
with mixing law (3.4), where c02 is replaced by the total amount of ClONO2, and
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obtained di¬usivity scalings µ
1¡D=2
t that agree with those found by Tan et al . (1998)

for days beyond day 3. The di¬erent di¬usivity scalings for di¬erent days correspond
to di¬erent values of the time-dependent fractal dimension D.

It might be reasonable to expect the fractal dimension D to eventually converge
to the space- lling value of 2 and pair separations to eventually grow exponentially
(though, it must be said, Oseledec’s (1968) theorem does not state that h(x; t) must
necessarily tend to a non-zero asymptotic value, a common misconception in the lit-
erature). However, this chaotic behaviour does not appear to signi cantly in®uence
mixing for a time as long as half a month in the simulations of Tan et al . (1998) and
Wonhas & Vassilicos (2002b). The gradual appearance of global chaos might, how-
ever, explain the time growth of D, presumably towards the space- lling value of 2
that characterizes global chaotic advection. Nevertheless, the non-integral value of D
might also re®ect the spiral structure of the chemical concentration  elds ( gure 6).

This appears to be a case where the time Tcon v required for the symptoms of global
chaos to become detectable, i.e. well-de ned Lyapunov exponents (even if  nite-time
ones) and space- lling interfacial structure (i.e. D = 2), is at least of the order of a
month and therefore large enough for a lot of mixing and chemical reaction to occur
by transient non-chaotic processes such as fractal/spiral mixing.

5. Stirring and mixing by turbulent °ow

The idea that mixing as measured by the concentration variance is determined by the
statistics of how ®uid-element pairs are brought together by stirring (Durbin 1980;
Falkovich et al . 2001) is valid quite generally, including turbulent ®ows. However, the
explicit relation (3.3) between the concentration variance and pair separations has
been derived under the assumption that concentration ®uctuations occur over length-
scales much smaller than those characterizing the ®ow, an assumption not valid in
turbulent ®ows (except below the smallest (viscosity dominated) length-scale of the
turbulence).

In the speci c context of the classical phenomenology concerning statistically
homogeneous, isotropic and non-decaying turbulent velocity  elds (see Monin &
Yaglom 1975), Thomson (1996) derived an explicit relation between the decay of
the concentration variance and the average square pair separation, hj¢j2i(d=dt)c02 =
¡ 3

2
c02(d=dt)hj¢j2i. As in the case of equation (3.3), this relation applies when no

source of scalar ®uctuations is used to replenish the variance lost by mixing. From
Richardson’s law it then follows that c02 decays like t¡9=2 (Nelkin & Kerr 1981).
This mixing law is di¬erent from the algebraic decay (3.4) that originates in the
fractal/spiral mixing mechanism and also from the superexponential followed by
exponential decay characteristic of globally chaotic mixing.

An understanding of turbulent mixing must start with some understanding of
turbulent stirring and therefore of the mechanisms by which turbulence causes ®uid-
element pairs to move apart. According to Richardson (see Monin & Yaglom 1975)
the eddies that are most e¬ective in separating ®uid elements are those that have a
size comparable with the instantaneous separation between the two ®uid elements.
This idea is part and parcel of the classical phenomenology of turbulence (Monin &
Yaglom 1975) which leads to Kolmogorov’s k¡5=3 energy spectrum, Richardson’s t3

law and the t¡9=2 mixing law. To model the Richardson pair-separation mechanism
requires a velocity di¬erence and a decorrelation time for every separation spanning
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the entire range of eddy scales. These velocity and time-scales can be derived from
the energy spectrum of the turbulence.

Lagrangian stochastic models of turbulent-pair dispersion have been developed
using continuous Markov processes and the entire range of velocity and time-scales
just mentioned (Thomson 1990; Heppe 1998). By their very nature, these models
cannot take into account the topology of the velocity  eld, such as  gure 5. Does
this topology have an e¬ect on turbulent pair dispersion?

Fluid-element accelerations are given by Du=Dt = a, and the topology of the
velocity  eld is to a large extent determined by the incompressibility of the velocity
 eld u. This incompressibility operating on the previous equation implies

r ¢ a = s2 ¡ 1
2
!2; (5.1)

where s is the strain matrix and ! is the vorticity vector. Hence, r ¢ a is large and
positive most often in straining regions around hyperbolic points of the ®ow where
s2 is large and !2 close to zero. Close ®uid-element pairs can separate signi cantly
where and when their accelerations strongly diverge, i.e. where and when r ¢ a is
large and positive. Provided the streamline structure of the turbulence is persistent
enough in time, such separation events will therefore most often occur where close
®uid-element pairs meet hyperbolic points. Straining regions surrounding hyperbolic
points take pride of place in the cat-eye streamline structure of  gures 3a and 5.
As previously conjectured by Fung et al . (1992), provided streamline structures in
the turbulence have some persistence, ®uid-element pairs travel close to each other
without separating signi cantly until they hit a straining region around a hyperbolic
point and then separate violently. Some computational support for this view has been
obtained by Fung & Vassilicos (1998) in their kinematic simulation of the turbulent
®ow of Paret & Tabeling (1997). Kinematic simulations are models of turbulent
dispersion that do not use continuous Markov processes but, instead, use numerically
constructed incompressible velocity  elds with a manageable number of modes and
a speci ed energy spectrum (see Fung et al . 1992). These simulations are inherently
non-Markovian (in the sense that no delta correlation in time is used or assumed),
and, if the energy spectrum they are given has a shape characteristic of turbulent
®ow, they incorporate all the velocity and time-scales required in Richardson’s picture
of pair separation. What they also incorporate, that Lagrangian stochastic models
do not, is a ®ow topology, simply by virtue of being given a velocity  eld. This
velocity  eld is essential for modelling the e¬ect of straining regions on turbulent
pair dispersion. The laboratory observations of Jullien et al . (1999) con rm that
®uid-element pairs travel close to each other for a long time until they separate quite
violently. This behaviour is in agreement with the very large ®atness factors of their
relative velocities found in turbulence (Yeung 1994). These large ®atness factors are
reproduced by kinematic simulation (Malik & Vassilicos 1999) but not by Lagrangian
stochastic modelling, which under-predicts them by up to one order of magnitude
(Heppe 1998).

Fung & Vassilicos (1998) con rmed that kinematic simulation reproduces Richard-
son’s law. A link between Richardson’s law and the self-similar cat-eye streamline
topology of  gure 5 has been proposed by Davila & Vassilicos (2002) in terms of
the fractal dimension Ds of the spatial distribution of straining hyperbolic points
in the two-dimensional turbulence. By varying the power p of the energy spectrum
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E(k) ¹ k¡p in their kinematic simulation they  nd that

hj¢j2i / t4=Ds (5.2)

and that the value of Ds corresponding to the Kolmogorov spectrum k¡5=3 is 4/3
(in three dimensions they  nd a power law t6=Ds and Ds = 2 when p = 5=3).

6. Summary

Exponential pair separation is not pervasive in spatially smooth time-dependent
®ows. Lyapunov exponents might appear at asymptotically long times, but this
asymptotic behaviour can occur after a long time, Tcon v, in a majority of the ®ow and
therefore be of restricted relevance to mixing. In the case of the stratospheric polar
vortex, the spiral structure in  gure 6 is transient, but what might be its e¬ects on
mixing and rates of chemistry last for at least half a month, if not more. Asymptotic
behaviour should not detract from the potential importance of transient mechanisms
when this transience is long lived.

Concentration variance measures mixing and is determined by ®uid-element pair
statistics. When global chaotic behaviour sets in quickly, exponential pair separation
leads to superexponential variance decay in the short term. In the longer term,
variance decay is exponential.

In steady and weakly unsteady two-dimensional vortices it is the spatial decorrela-
tion of the concentration  eld produced by the  eld’s spiral structure and measured
by the fractal dimension D that causes accelerated mixing. Albeit accelerated, this
decay of the concentration variance is only algebraic in time. Such a mixing mecha-
nism occurs wherever spiral or fractal structures that are not space  lling exist.

In turbulent ®ows, ®uid-element pairs separate according to Richardson’s law.
Recent laboratory and computational research is showing that ®uid-element pairs
travel close to each other for a long time, until they separate quite suddenly. There
are arguments and evidence to suggest that straining regions around hyperbolic
points play an important role in the violent separation events, and that the self-
similar topology of the hyperbolic points’ spatial distribution (in the form of cat
eyes within cat eyes in two dimensions) is closely related to Richardson’s power law.
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