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ABSTRACT. A spiral vortex sheet modelled as in Moffatt (1992) yields similarity ex-

ponents £, for the velocity field’s statistics — {(6uy(r))?) ~ ré~ which have the same
properties as the £, derived in the # - model (linear in p plus a constant). A superposition
of such spiral vortex sheets with different Kolmogorov capacities Dy yields results for ¢,
that resemble closely the results of the multifractal model of turbulence ( e.g. £3p is the
Legendre transform of a function Dx(o) characteristic of the multispiral structure of the
velocity field). Unlike the multifractal and the § - models, the multispiral and the spiral
f - models of turbulence carry an important difference between even and odd statistics;
a breaking of symmetry (left/right) is needed for the odd p statistics not to vanish and
for the properties of intermittency and non-linear energy dissipation to be incorporated
in the model.

The method used here for the solution of these two models of homogeneous and
isotropic turbulence (the spiral # - model and the multispiral model) is a generalisa-
tion of the method used in Vassilicos & Hunt (1991) to derive the relation between the
power spectrum (p = 2 statistics) and the fractal dimension (Kolmogorov capacity D) of
interfaces. It is more general than is needed here ( e.g. it does not depend on the specific
spiral structure of the velocity field); it is of use, in particular, when a field’s structure is
not fractal in the Hausdorff sense, but has nevertheless non-trivial Kolmogorov capacities.

1. Introduction

In 1941 Kolmogorov published two papers dealing, respectively, with the
second and the third order statistics of the small scale relative velocities
bu(r) = u(x + r) — u(x) between two points of space x and x + r in a
homogeneous and isotropic turbulent flow (r = |r|). (These papers can be
found most easily in a special issue of the Proceedings of the Royal So-
ciety of London, series A, vol. 434 (1991), celebrating Kolmogorov’s ideas
50 years on). Under the assumptions that the Reynolds number is large
enough, that the small scale velocity field is homogeneous, isotropic and
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universal-independence from large scale forcing, and from boundary and
initial conditions-and that the mean rate of energy dissipation ¢ of the tur-
bulent fluctuations is the same everywhere in space (sufficiently far from
the boundaries), Kolmogorov recognised that the relative velocity statistics
within the inertial range of length scales can only depend on € and r (the
second hypothesis of similarity), and used dimensional analysis to show that

((6u(r))?) = Cqe?/3r?/3 (1a)

when n € r € L (L is an integral length scale and 7 is the Kolmogorov
viscous length scale). The value of the constant C; in (1a) is not specified
by Kolmogorov’s theory, but it is expected to be universal.

From the Navier-Stokes equations he was able to deduce that, for homo-
geneous and isotropic turbulence,

(¢ bu(r))’) » — e, (16)

(% is a unit vector along r), in that same inertial range of length scales where
his dimensional arguments lead, in fact, to the conclusion that

((bup(r))’) =~ Cyler)”’® (1¢)

for p=2,3,4,.. (byy=1- 6u). According to the theory, the dimensionless
constants Cp are all universal (note: C; in (1a) is not the same as in (1c)).

A consequence of this theory-specifically of (1c)-is that the small scale
turbulent fluctuations are statistically self-similar in space; this is because
the statistics of A/36uy(r’) are the same as these of fu(r) when r' = A~r
for any positive real number A which represents, therefore, a dilation of
space.

The assumption of statistical independence of the small scales from the
large energy containing scales has recently been questioned (e.g. see Hunt
et al (1988), Brasseur & Yeung (1991)); this raises the related question
of whether the statistics of the small scale turbulence are indeed univer-
sal or not. Frisch (1991) argues that all Cp~except for p = 3-cannot be
universal. Nevertheless, he recovers formulae (1c) by turning Kolmogorov's
theory on its head and assuming that the small scale turbulence is statis-
tically self-similar in space; it is now an assumption (not a consequence as
in Kolmogorov) that there is a single exponent h such that the statistics of
AR§u(r') are the same as those of Suy(r) when r' = A~'r (A € Ry). The
value h = 1/3 is then deduced from (IL)

The question of the universality of C), will not be discussed in the present
paper. Here we will concentrate on obtaining scaling laws of the type

((Buy(r))P) ~ 7, (2)



429

for inertial range values of r. The experimental measurements of Anselmet
et al (1984) have shown that such scaling laws do indeed exist in ranges of
length scales within the inertial range of small scale turbulence, but that the
powers £, may not equal p/3 as predicted by Kolmogorov’s theory. There
have been a few attempts to derive £, theoretically by ‘correcting’ several
aspects of Kolmogorov’s theory (log-normal model, f-model, multifractal
model; none of these approaches provide a universal means of estimating
Cyp, and neither will the one presented here).

The present paper investigates how, if the properties of self-similarity and
space-fillingness (the property that ¢ is the same everywhere in space) are
redefined,

(i) the exponents £, may match the experimental findings and

(ii) the structure of small scale turbulence is consistent with the hypotesis
that it is dominated by vortex tubes with a spiral internal structure.

She et al. (1991) find that, in DNS of homogeneous isotropic turbulence,
the fine scales are dominated by vortex tubes; the internal structure of these
vortex filaments seems to be spiral with a few turns (She, private commu-
nication). In similar numerical calculations, Ruetsch & Maxey (1992) have
identified vortex sheets in a turbulent velocity field which undergo Kelvin-
Helmholtz instability and lead to isolated, single spiral structures. Spiral
structures of vorticity have also been recently seen in similar numerical sim-
ulations by Brasseur & Lin (private communication).

The statistical self-similarity in space of the small scale turbulent fluctu-
ations aroused Mandelbrot’s interest who suggested that turbulent velocity
fields may have a fractal structure with a non-integer Hausdorff dimension
(see Mandelbrot (1982) and references therein). A pattern of spirals with
smaller spirals on them-and so on to increasingly smaller scales-is a good
example of a fractal. Experimental measurements of the Kolmogorov ca-
pacity (or box dimension) using the box-counting algorithm were made for
various interfaces in various turbulent flows (see Sreenivasan (1991)); the
non-integer value which was obtained does not imply that the structure of
these interfaces (and by inference, the structure of the velocity field distort-
ing them) is fractal. Some single spirals can have a non-integer Kolmogorov
capacity even though they are smooth objects and their Hausdorff dimen-
sion equals their topological dimension (see Vassilicos & Hunt (1991)). In
fact, the spiral that arises from numerical integration of a vortex sheet’s
instability driven evolution by Krasny (1986) does not have a cascade of
smaller spirals on it-it is not fractal-and it is such that its intersections
with the x-axis (corresponding to the sheet’s initial configuration) are at
a distance z, ~ n~? from the centre of the spiral (Moffatt (1992)) (where
n numbers the successive coils of the spiral and its intersections with the
z-axis from large z inwards-towards z — 0). The Kolmogorov capacity of
these intersections is Dx = 1/3 (if z, ~ n™%, Dk = 135, see Vassilicos &
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Hunt (1991)), which is non-integer. If, as Ruetsch & Maxey (1992) seem to
observe, Kelvin-Helmholtz instability of vortex sheets is an important mech-
anism in the generation of small scale turbulence, then it may be safer to
assume that the small scale turbulence has a spiral structure characterised
by non-integer Kolmogorov capacities Dx, than to assume it to have a frac-
tal structure characterised by non-integer Hausdorff dimensions Dp.

The assumption that the mean rate of dissipation is the same everywhere
in space (the space-filling property of Kolmogorov turbulence) was criticised
very early on by Landau (e.g. see Frisch (1991)). The intermittent charac-
ter of small scale turbulence, i.e. the fact that the turbulent activity, and
therefore the energy dissipation, do not occur equally everywhere in space,
contradicts Kolmogorov’s assumption of space-fillingness.

The first attempt to remedy this shortcoming of Kolmogorov’s 1941 the-
ory came in 1961 from Obukhov and Kolmogorov themselves (see Frisch
(1991) for a discussion and references) who proposed to replace the original
theory with the so-called log-normal model. A central role in this model is
played by €., the spatial average of the mean rate of dissipation over a ball
of radius r; the logarithm of €, is assumed to have a gaussian (normal) dis-
tribution with variance 02 = A+ puln(ro/r) where u is a positive parameter.
This assumption replaces the assumption of space-fillingness under which e,
would equal ¢ for all r, and both A and gz would vanish. Clearly, what is
done in the log-normal model, is to broaden the distribution of In ¢, from a
delta function (implicit in Kolmogorov’s assumption of space-fillingness) to
a gaussian with a finite variance that is a function of Inr.

It is precisely the dependence of 2 on In r which leads to divergent results
from Kolmogorov’s original theory; in the log-normal model,

& = /3 - 15p(p - 3). 3)

The intermittency is incorporated in the theory because u is positive, and
therefore extreme events carry more weight than otherwise.

A particular consequence of (3) is that £, decreases with p for large enough
values of p; this is shown by Frisch (1991) to be in contradiction with the
basic physics of incompressible flow. Frisch (1991) lists and discusses a few
more problems of the lognormal model.

A second attempt to replace the assumption of space-fillingness by some-
thing that would allow the property of intermittency to tie in with inertial
range scaling laws has been made with the #-model (see, again, Frisch (1991)
for references). The f-model addreses the assumption of space-fillingness
more directly than the log-normal model does; rather than a change in the
probability distribution of ¢,, it involves a change in the spatial distribution
of turbulent activity. Specifically, one starts (as Frisch (1991) does in order
to recover Kolmogorov’s 1941 results without having to assume universality)
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from an assumption of self-similarity in space, but modified as follows: there

exists a single exponent A a.nd a fractal sub-set S, of x-space, such that
if x € Sp, then Sup(x,r) ~ vk as r — 0; the Hausdorff dimension of S}, is
2+Dyg(0< Dy < < 1). It appears easy to estimate the statistics (averages
over space) of such §u:

((Buy(F))) ~ rohr?=(24Da) = goht1-D @)

as r — 0 (x is omitted because of homogeneity). Kolmogorov’s assumption of
space-fillingness corresponds to the extreme situation where the Hausdorff
dimension of S is 3 (i.e. Dy = 1). In this case one recovers §, = p/3
(h = 1/3 is, like previously, derived from (1b)). Otherwise, the S-model
gives

. & =ph+1-Dy. (5)

The experimental values of £, obtained by Anselmet et al. (1984) may not
agree with either the log-normal or the #-model. They find that £, increases

with p over the entire accessible range of p, but that =2 %r geems to decrease
with p. This led to the introduction of the multnfractaf model as a way of
keeping with the idea that the turbulent activity is concentrated on fractal
sets within the flow, and yet fit the experimental data. Similarly to the
B-model, the multifractal model of inertial range turbulence starts from an
assumption of self-similarity in space (see Frisch (1991)): there exists a range
of exponents A € (hmin, Amaz), and different fractal sets S; of Hausdorff
dimension 2 + Dy(h) for each of these exponents h, such that if x € §j,
then uy(x,r) ~ r* as r — 0 (0 < Dy(h) < 1 for all h). Equation (4) is now
replaced by

((Eu()P) ~ [ dus(h) roi1-Duh (6)

as r — 0. The measure u(h) corresponds to the weight of the different
scalings. Using the method of steepest descents it then follows that & is the
Legendre transform of Dg(h), i.e.

&, = ming(ph + 1 — Dy(h)). (7)

One can always find a function Dy(h) for which (7) fits the experimental
values of £,. Unfortunately, Hausdorff dimensions Dy cannot be measured
directly in practice, so that it is difficult to check experimentally whether the
multifractal model is just another irrelevant way to fit the data, or whether
it really captures some fundamental property of small scale turbulent struc-
ture.

On the other hand, Kolmogorov capacities are easily accessible in practice
via the box-counting algorithm. But, as we have already pointed out previ-
ously, a non-integer value of Dy is by no means a proof that the examined
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geometry is fractal, and if it is not, Dg > Dy = 0, and the above multi-
fractal and f-models do neither apply nor work. The exponent h, directly
sensitive to the singular (non-differentiable) structure of the turbulence, can-
not be used to derive (4), (5) and (6), (7) when S} are nearly everywhere
smooth, non-fractal sets characterised by non-integer values of Dy . Here we
introduce an exponent o which characterises the sparse-isolated—singular
behaviour of the flow by holding information about the spatial extent over
which portions of the velocity field are smooth and non-singular.

The object of the present paper is to derive the structural exponents
& from the assumption that the small scale turbulence is predominantly
smooth and spiral structured rather than fractal (or multifractal). The anal-
ysis of this paper applies to both 2-d and 3-d turbulence: the picture to hold
in mind in the 2-d case is one of weak patches of vorticity wrapping around
stronger patches of vorticity (homogeneously and isotropically distributed
about the plane), thus producing spiral patterns (see Gilbert (1988)); in the
3-d case, the picture we refer to is one of a homogeneous and isotropic distri-
bution of vortex filaments with a spiral internal vortex sheet structure. The
analysis in the sequel is essentially 1-dimensional, but the results are valid in
more than 1 dimensions because of homogeneity and isotropy. The results
in section 2 are written for 3-d turbulence. To obtain the 2-d turbulence
results, replace the velocity u by the vorticity w in the sequel’s formulae.

2. The Spiral f-Model and Multispirals
2.1. THE SPIRAL 5-MODEL

The turbulence is assumed to be homogeneous and isotropic as Re — oo, so
that a line in any direction through the flow should cut across a sufficiently
large number of spiral vortex sheet structures, some of which very near the
centre of the spiral accumulation. The points of intersection of these spiraling
sheets with the line are assumed to have a non-trivial Kolmogorov capacity
Dy (Dk < 1). 1t is also a consequence of the homogeneity and the isotropy
of the small scale turbulence that the value of Dy is independent of the 1-d
cut chosen to probe the flow.

The velocity field )| sampled along a 1-d cut is assumed to be smooth
between the points where the cut intersects the spiral vortex sheet structure
of the flow. Across these points of discontinuity, u) undergoes sudden jumps.
A simplifying assumption in this paper is made with the replacement of the
word ‘smooth’ by the word ‘constant’. We take u| to be effectively constant

between the points of discontinuity; %ﬂ is indeed very small in the regions
between jumps (where u) is smooth) compared to the sudden increase in

%ﬂ on the points where vortex sheets intersect the cut (z is the coordinate
along the 1-d cut).
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Between two consecutive such points we assume | to be proportional to
{? when the consecutive points of discontinuity are at a distance ! from each
other; specifically, as | — 0,

lu (D] ~ 1°. (8)

This is the assumption which replaces the # — model. It is not totally ad
hoc; it is a reformulation of Moffatt’s (1992) modeling of the velocity field
inside a spiraling vortex sheet (see Appendix A). The singularity exponent
o which replaces k, is defined with reference to the regions where the flow
is smooth—constant. The exponent % used in the 8-model is defined instead
on the set Sy, i.e. at these points where the flow is singular. In order to
obtain (4) and (5) it is therefore essential to assume S;, to be fractal. This
assumption is not madg here.

It is shown in Vassilicos & Hunt (1991) (see also Appendix B) that the
probability density function ng(l) for two consecutive points of discontinuity
to be at a distance ! from each other is

ng(l) ~ 1~Do (9a)

as [ — 0, when these points have a non-trivial Kolmogorov capacity Dy,
and

Dy = Dg. (95)

We want to calculate ((F - §u(x,r))?), where the average is either taken
over the entire 3-d x-space, or over many realisations of the 3-d turbulent
fiow, or both. Because of homogeneity and isotropy,

(- 6u(x,r))?) = ((u)(z + ) — v (z))"), (10)

where z and z + r are points on an arbitrary 1-d cut through the flow at a
distance r = |r| from each other, and where the average on the right hand
side of (10) is either taken over the entire 1-d z-space of the cut, or over
many realisations of u) on that cut, or both.

As is well known,

p-1 L. .
((uy(z+7) = w(2))P) = (W)L +(~1)P) + Y (~1)P=3Ci(ui (2 + 1)l ().

j=1
(11)
For 1 < j < p— 1, the contributions to these statistics can be decomposed
as follows:

. . +oo
(wj(z + r)u)(2)) = 3 Ty(rip, 5), (12)

q=0
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Fig. 1. To(r;p,j) carries the contribution from situations like (a). Ti(r;p,J),
T(r; p, 5) and T5(r; p, §) correspond respectively to (b), (c) and (d).

where T,(r;p, ) is the average of ui’l(z + r)uﬁ_J (z) over all configurations
where there are exactly ¢ points of discontinuity between z and z + r (see
figure 1).

The probability density ng(l) does not hold enough information to enable
a calculation of T, when ¢ > 1. For ¢ = 0 though, one can easily see that

+00 S ——
Toripd)= [ ma(yuuf () (13)

the overline indicates an average over the distribution of signs (+ or —) of
| which has not been specified, and which holds essential information, as
will clearly appear in the sequel, as to the difference between odd-p statistics
and even-p statistics.

In order to evaluate the integral (13) one needs to introduce an integral
length scale. This can be done on the grounds that beyond a certain length
scale L (i.e. for I > L), different physics take over, which may be dominated
by boundary conditions and which would imply a much faster fall off of no({)
than a power law. For simplicity we set ng({) = 0 when { > L, and therefore
obtain, from (8) and (9a), that

LPot1=Do i1
7o 1=y~ (/LY (14)

asr/L — 0. Also, if po +1 — Dy > 0,

To(r;p,3) = To(0; p, 5)(1 — (r/L)Po+1~Do), (15)

TO(T; P, j) ~
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Note that Do < 1, and therefore it is sufficient that o > 0 for (15) to be
valid for all positive integers p.

In order to calculate Ty(r;p,j) when ¢ > 1, we need to introduce the
probability density functions n,(!) which determine the chance for exactly
g points of discontinuity to be between two other such points that are at a
distance ! from each other. One can show (see Appendix B) that for spiral
accumulation patterns of the form z, ~ n=%,

ng(l) ~ 17Da (16)

asl — 0,and D, = 1+-a < 1.In fact, it appears that in general (see Appendix
B), when ¢ > 2, D,_; = Dg,; Dk, are the generalised dimensions (gener-
alised Kolmogorov capacities in fact) introduced by Hentschel & Procaccia
in 1983 (D}(o L D}( = Do)

If the generic structure of the turbulence is not only characterised by D,
but also by D;, D, Dj, elc... as defined by (16) (which are not greater than
1, and may not be in general equal to each other-see Appendix B), then
Ti(r;p,7) can be estimated as follows:

L § — -
Tiripd)= [ m@dl [ F0= L) noh)dh,  (17)
and a trivial calculation leads to:
T1(0; ,7) — Ta(r; p, j) ~ (r/ LYo +2~Do=Ds (18)

for small r/L.
When g > 2, Ty(r; p,j) can be shown to be of O[(r/L)P7+3~Do=Dq=Dg-2]
because

T,(rip,5) < / “ ()l /0 " ng_a(l) dly /0

r

-l

uﬂ(lg)uﬁ"j(l . ll — lz)no(lg) dlg.

It follows, therefore (see (B9)), that to leading order in r/L, o
(ul(z + )7 (2)) = To(ri 2, 5) + Ta(r; 2, ), (20)
which implies that if poc + 1 — Dg > 0,
(uf) — (wl( + r)uh(2)) ~ (r/L)Po+1 Do (21)
asr/L — 0.

This result applies whether p is even or odd. It reflects the fact that
at small distances, a space varying quantity like | is well autocorrelated
with itself if it remains, on average, approximately constant over these small
distances. This is the meaning of the approximation in (20).
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Fig. 2. If (a) is more likely than (b) then the odd —p statistics of the relative
velocities are strictly negative.

In order to recover turbulence statistics in terms of relative velocities
(which are traditionally linked to the notion of ‘turbulent eddies’) we need
to combine (21) with (11). The result is different for odd and even p; when

p is even,
((uy(z +r) — uy(2))P) ~ (r/ L)% (22¢)

as r/L — 0, and
& = po + 1 - Dq. (22b)

When p is odd though, the small-scale relative velocity statistics depend
vitally on the distribution of the signs of .. From (11) it is easily seen, for

example, that if this distribution is such that ("ﬂ(m'i'r)uﬁ_j(z)) - (uﬁ-j(z +
r)u‘l’i(z)) for all positive integers 7 < p — 1, then ((u"(z +7) - u"(z))p) =0
when p is odd.

One can check that To(r; p,7) = To(r; p,p— j) irrespective of the distri-
bution of signs of u)| (see (13)). It follows that

(ul(z + r)ul~(2)) = (7 (2 + r)ul(2)) = Ta(r; p, 5) - Ta(rip,p— 7) (23)

at leading order in r/L. For {(u)(z+7)—u(z))?) to be strictly negative when
pis odd, it is enough to assume (see (11) and (23)) that the velocity F-u =
is more often negative on the right (towards t) of a point of discontinuity
and positive on the left (towards —#) than positive on the right and negative
on the left of such a point (see figure 2). This is an assumption about the
skewness of the velocity field.

This additional assumption concerning the spatial distribution of signs of
u)| is essential in order to incorporate intermittency in the model. The spiral
assumption is not enough in itself, even though it represents a very natural
departure from space-fillingness. There can obviously be no intermittency
if the odd-p moments of the relative velocity vanish. Furthermore, it is a
consequence of the Navier-Stokes equations that ((u(z + r) — u(z))3) < 0
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(see (1b)). Here all odd statistics are negative. Specifically, when p is odd,
((wy(z + 1) — wy(2))") = Cp(r/ L) (24a)

as r/L — 0 (from (11), (18) and (23)); Cp, < 0 (whilst it is obvious that
Cp > 0 for even integers p), and

& =po+2—Dy— D, (24b)

The spiral structure is said to be space-filling when Dy = D; = 1. This
corresponds to a spiral that is as slow to wind in as possible, and fills in
this way the space around its centre of accumulation. In the limit where Dy
and D, tend to 1, £, tends to po; in the context of the spiral S-model, the
space-fillingness of the energy dissipation, which is assumed in Kolmogorov
1941, is interpreted as' being the limit when the spiral sheets of dissipation
(where the velocity derivatives are high) has such a slow inwards winding
(or accumulating) pattern that Do = D; = 1. One indeed recovers the
Kolmogorov expression for £, in that limit, and the spiral -model allows,
in general, for the spirals not to be space-filling, i.e. for Dy, Dy < 1. Thus,
the turbulent velocity field is intermittent.

It is not clear from the literature why the conventional 3-model makes
no distinction between odd and even p statistics. In Appendix A we show
how Moffatt’s (1992) result for p = 2 can be recovered within the framework
of the spiral S-model. Note, before closing this subsection, that (22) is valid
when po+1— Dy 2> 0, and (24) is valid when po+2— Do — D; > 0. All the
p-statistics of the relative velocities may or may not converge as r/L — 0;
there may be an upper bound pmqz, such that &, is positive when p < pmaz,
and such that when p > p,,z, these p-statistics diverge.

2.2. MULTISPIRALS

The small scale turbulence is now assumed to be made of different spiral vor-
tex sheet structures of different Kolmogorov capacities Dg (Dg < 1). For a
spiral of a given Dy, the magnitude of the velocity u; between two consecu-
tive points of discontinuity is still given by (8), but now ¢ is a function of Dg.
In other words, we assume the existence of a spectrum of exponents o (as in
the multifractal model where a spectrum of exponents A is assumed) which
correspond to spiral singularities of Kolmogorov capacity Dg (o) = Dg(o).
We also have to assume the existence of a function Dy(o) for the calculation
of the odd-p statistics to be feasible. Equations (21), (22a,b) and (24a,b) are
now respectively replaced by:

(uf) — (uj(z + r)uf ™ (2)) ~ / dp(o)(r/LPoH=Pol), - (25)
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((uy(z + ) —u(2))) = Cp f dp(o)(r/L)P ¥ =Polo) (26)

where C}, > 0 when p is even, and
(uya +7) = w2 = C, [ du(@)(r/Lypo+2-Dule-D)  (a7)

where C}, < 0 when p is odd. The measure (o) corresponds to the weight of
the different local spiral velocity fields. As usual, the three formulas above
are valid when r/L — 0.

Using the method of steepest descents we obtain the following results:
& = ming(po + 1 — Do(0)) (28a)
when p is even.
£ = ming(po +2 — Do(0) - Di(0)) (28b)

when p is odd. And for all positive integers p, and 1 < 7 < p— 1, we have
that ) ) _
(uf) = (= + r)uf ¥ (2)) ~ (r/L)mine(po+1=Do(e)), (29)

2.3. SCALAR INTERFACES: THE CASE 0 =0

When a scalar F is released in the turbulence, and before molecular diffusion
has had time to act (we assume the molecular diffusivity of the scalar to be
much smaller than the viscosity of the fluid), we may effectively represent
F by an extremely contorted interface such that F = 41 on one side and
F = -1 on the other side of the interface. Turbulent interfaces are known
by experiment (see Sreenivasan (1991)) to have non-trivial Kolmogorov ca-
pacities Di.; experimental measurements appear to imply that D} = 1/3
above, and D% = 1 below the Kolmogorov viscous length scale.

The analysis of subsection 2.1 applies here with & = 0 (it would not apply
if F' did not change signs across the interface). One can indeed write that

(F(z +71) = F(z))’) ~ (r/L)* (30)

as r/L — 0, with £, = 1 — D} when p is even. (The relative p-statistics
of F' vanish for odd p). As noted by Vassilicos & Hunt (1991), the value
Dj; = 1/3 implies £, = 2/3, and Dj, = 1 implies & = 0, in agreement with
theory and the measured statistics of passive scalars. £, does not depend on
p for passive interfaces, but only on whether p is even or odd; one may expect
£, = 2/3 in the inertial range, for all even positive integers p (in the limit
of infinite Prandtl number and subject to the right initial conditions where
a passive scalar can indeed be regarded as a step function F equal to either
+1 or -1). It is not known how Df,< relates to the generalised Kolmogorov
capacities Dgo(o) and Dg2a(0o) of the turbulent velocity field.
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3. Conclusion

The multispiral model gathers in a single picture the fractal properties of the
turbulence, the inertial range scaling laws of the turbulent statistics and the
observed smoothness of the velocity field with localised singularities which
appear in the form of thin and elongated vortex tubes that have an internal
vortex sheet spiral structure.

The property of intermittency can also be incorporated provided that the
following assumption is made: as one samples the velocity f - u = u| along
a linear cut through the flow in the direction ¥, %) jumps more often from a
positive to a negative value than from a negative to a positive one at those
points where the cut crosses a vortex sheet. This implies that the odd-p
statistics of the turbulence do not vanish, which is a necessary condition for
the average turbulent energy dissipation not to vanish either, and for the
turbulence to be skewed. The turbulent velocity field is then more or less
intermittent as the accumulation patterns of the turbulent structures are
more or less space-filling.

The main results of this paper are equations (28) and (29); the singu-
larity exponents o characterise the spatial extent over which the velocity
field is smooth, and Dy(c) and D,(c) are, respectively, the generalised Kol-
mogorov capacities Dgo(o) and Dg2(o) (see Appendix B) characterising
the accumulation pattern of the spiral structures corresponding to the ex-
ponents o. Formally, the results of this paper do not depend on the existence
of spiral structures, but on the existence of isolated accumulation patterns
of some kind. Spiral structures seem to be the most plausible accumulation
patterns, and a class of them are known to have the properties assumed here
(non-trivial generalised Kolmogorov capacities—see Appendix B).

Formulae (28) can be tested by experiment; £,, Dko(c) and Dgo(0o)
are measurable unlike the Hausdorff dimensions of the multifractal model
which are not. It is indeed surprising that multifractals make no distinction
between even and odd p statistics. Such a distinction is central if one aims
at an understanding of the dynamics (e.g. the energy dissipation) of the
turbulence.
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Fig. 3. From Moffatt (1992); the velocity profile on a transversal through the centre
of the spiral vortex sheet.

Appendix A: Moffatt’s (1992) Spiral Model

Moffatt (1992) assumes the following velocity profile on a transversal through
the centre of a spiral vortex sheet (see figure 3): between two intersections of
the sheet with the linear cut, the velocity is u, ~ n®, and these intersections
are loca.tedb at z, ~ n7% (n = 1,2,3,...). Let 6z, = 2, — Ty4q ~ n~°" 1

Un ~ 8zn '*°, 50 that o = —% (see (8)). It is shown in Vassilicos & Hunt

(1991) that Dy = ﬁ, and thcrefore a straightforward application of the
results in subsection 2.1 gives

2b+1
14a

£2=20+1-Dp=1- (A1)

provided that 20 + 1 — Do = § — b > 0. (A1) has indeed been obtained by
Moffatt (1992) using Fourier methods under the condition b < §.

Appendix B: The Generalised Kolmogorov capacities

One can find in Vassilicos & Hunt (1991) the following relation, valid as

€— 0; .
N, &)+ L / no(l)dl = L (B1)

where N(0,¢) is the minimum number of boxes of size ¢ needed to cover
the points of a set (here the points of discontinuity of v), and ng(!) is the
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probability density function for two consecutive points of discontinuity to
be at a distance [ from each other.
(B1) can be generalised as follows (g > 2): for € — 0,

L
N(g,€)e+ L/ ng-1(l)dl = L; (B2)
[ 4

N(gq,€) is the minimum number of boxes of size € needed to cover part of
the set so that each box covers at least g points of that set; n,_;(l) is the
probability density which determines the chance for exactly ¢ — 1 points of
the set to be between two other points of that set at a distance [ from each
other.

It is shown in Vassilicos & Hunt (1991) that for (spiral) 1-d accumulation
patterns of the form z, ~ n™* (a > 0),

N(0,¢) ~ ¢ Pxo (B3a)
and i
Dko = it (B3b)
The same proof can be used to show that for ¢ > 2,
N(g,€) ~ ¢ Pxq (B4)
and )
Dgg = ire (B5)

If we now assume a set of points to have non-trivial generalised Kol-
mogorov capacities Dko and Dk, Dka, etc. as defined by (B4) (which
were first introduced under the denomination of generalised dimensions by
Hentschel & Procaccia (1983) in the more restricted context of fractals),
then by differentiating (B1) and (B2) with respect to ¢ we obtain (g > 1)

ng-1(l) ~ I7De=1, (B6)
Do = Dgo (B7a)

and for ¢ > 2
Dy_1 = Dg,. (BT7b)

It is clear that N(g,€) > N(q¢',¢) if ¢ < ¢, and therefore
Dko 2 Dk2 2 Dk3 2 Dgyq 2 ... (B8)

which implies, in particular, that all generalised Kolmogorov capacities are
not greater than 1 as Do < 1. From (B7) and (B8),

12Dg2Dy2D, 2 ... (B9)



442

References

ANSELMET, F., GAGNE, Y., HOPFINGER, E.J. & ANTONIA, R.A. 1984 High-order velocity
functions in turbulent shear flows. J. Fluid Mech. 140, 63.

BRASSEUR, J.G. & YEUNG, P.K. 1991 Large and small-scale coupling in homogeneous
turbulence: analysis of the Navier-Stokes equations in the asymptotic limit. In the pro-
ceedings of the eighth symposium on turbulent shear flows. September 1991, Munich,
Germany.

Frisch, U. 1991 From global scaling, a la Kolmogorov, to local multifractal scaling in
fully developed turbulence. Proc. R. Soc. Lond. A434, 89.

GILBERT, A.D. 1988 Spiral singularities and spectra in two-dimensional turbulence. J.
Fluid Mech. 193, 474.

HENTSCHEL, H.G.E. & PROCACCIA, 1. 1983 The infinite number of dimensions of proba-
bilistic fractals and strange attractors. Physica 8D, 435.

HunT, J.C.R., Kamaw, J.C. & GAYNOR, J.E. 1988 Eddy structure in the convective
boundary layer: new measurements and new concepts, Q. J. R. Meteorol, Soc. 114,
827.

Krasny, R. 1986 Desingularisation of periodic vortex sheet roll-up. J. Comp. Phys. 65,
292

MANDELBROT, B.B. 1982 The Fractal Geometry of Nature. W.H. Freeman, New York.

MoFFaTT, H.K. 1992 Spiral structures in turbulent flow. In the proceedings of the .M. A.
conference: ‘Fractals, wavelets and Frourier transforms: new developments and new
applications’. December 1990, Cambridge, England, (ed. M. Farge, J.C.R. Hunt &
J.C. Vassilicos). Clarendon Press, Oxford.

RUETSCH, G.R. & MaxEy, M.R. 1992 The evolution of smali-scale turbulence in homo-
geneous isotropic turbulence. Phys. Fluids A (submitted).

SHE, Z.-S., JACKsSON, E. & ORszaAG, S.A. 1991 Structure and dynamics of homogeneous
turbulence: models and simulations, Proc. R. Soc. Lond. A434, 101.

SREENIVASAN, K.R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rey. Fluid
Mech. 23, 539.

VassiLicos, J.C. & HunT, J.C.R. 1991 Fractal dimensions and spectra of interfaces with
application to turbulence. Proc. R. Soc. Lond. A435.



