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Scalings of scalar structure functions in a velocity field with coherent vortical structures
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In planar turbulence modeled as an isotropic and homogeneous collection of two-dimensional noninteracting
compact vortices, the structure functiofig(r) of a statistically stationary passive scalar field have the fol-
lowing scaling behavior in the limit where the d&et number Pesoo: Sp(r)~const-In(r/L Pe ) for
L Pe B<r<L, Sy(r)~(r/L Pe 3e(1=D) for | pe ¥?<r<L Pe '3 whereL is a large scale anB is the
fractal codimension of the spiral scalar structures generated by the vortices§/2/3). Note thal_ Pe %2
is the scalar Taylor microscale that stems naturally from our analytical treatment of the advection-diffusion
equation. The essential ingredients of our theory are the locality of interscale transfer and Lundgren’s time
average assumption. A phenomenological theory explicitly based only on these two ingredients reproduces our
results and a generalization of this phenomenology to spatially smooth chaotic flows idndg (¢ gener-
alized power spectra for the advected scalar fields.
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I. INTRODUCTION isotropic and takes place on the integral sdal@he generic
scaling behavior of the structure functi@~rr, r<L, of

The theory of turbulent passive scalars has received mugpassive scalars in the Kraichnan model was established in
attention recentlf1-3]. The mixing of a scalar field in a  Refs.[1-4]. The scaling exponents of this formalism are of
velocity fieldv is governed by the advection-diffusion equa- the form¢,={,(d,h,p) wherehe[0,2] is the Hdder expo-
tion nent in Eq.(1.2). In the context of this model Balkovsky and

LebedeV[5] and Chertko\ 6] used the instantonic formalism
30X, +V(X,1)- VO(x,t)=kV20(x,t) + f(x,t), (1.1)  in a d-dimensional space to find the scaling exponents for
o largep. It was also shown in the instantonic formalism that

wherex denotes the molecular diffusivity of the scataand lim,_... {,=d(2— h)2/gh [5] which is independent gf. The
f(x,t) is an external sourceforcing) driving the scalar. The  scaling exponents were also calculated using other tech-
mixing of a scalar fieldd is characterized by its structure niques in the limitsh—0 [2,7], d— [8,3], andp— [5],
functions Sy=([0(x+r)—0(x)1")=([56(r)]") for any  anda 2-h expansion of, was proposed in Ref4]. It was
numberp. If we want to findS; then we need models of the fong that¢, does depend op for small values o in the
velocity fieldv. Kraichnan model.

The model that has attracted much attention recently is our work lies in the opposite extreme of the Kraichnan
the Kraichnan modél1] where the velocity field/ is consid-  model. We work in the regime where we have a persistent
ered to be incompressible, statistically isotropic, white noisgsortical velocity field frozen in time in two dimensions. The
in time (& correlated and Gaussian. Furthermore, it has ho-important differences between this model and the Kraichnan
mogeneous increments with power law spatial correlations model are in the structure of the velocity field infinitely cor-

related in time in this model but delta correlated in time in

(Lvi(r,t) —vi(0,0]v;(r,) —v;(0,0]) the Kraichnan model; and vortical in space in this model, but
o Gaussian in the Kraichnan model. In this model, the velocity

=28()r" (h+d—1)8;—h '_21 , (1.2  fieldis that of spatially distributed noninteracting two dimen-

r sional(2D) vortices with compact structure. We consider the

spatial distribution of vortices to be dilute in that they are far
where the scaling exponehte ]0,2[ andd is the dimension from each other and, therefore, maintain their structure and
of space so that,j=1,2, ... d. The above tensorial struc- spatial position for an indefinite period. We also consider this
ture of the velocity field is in conformity with incompress- distribution to be homogeneous and isotropic and the veloc-
ibility. The Kraichnan model also assumes a forcii(g,t) in ity field to be incompressible, that -v=0. The model of
Eq. (1.1 that is an independent Gaussian random field withthe velocity field considered here is an artificial model of
zero mean. The forcing is white in time and its covariance igplanar homogeneous turbulence where the emphasis is on the
assumed to be a real, smooth, positive-definite function witltoherent vortex aspect of the flow. In order of presentation,
rapid decay in space so that the forcing is homogeneoushe first aim of this model is to demonstrate that in the case

of the unforced scaldif =0 in Eq.(1.1)] we can quantify the

statistics of the turbulent scalar field in terms of the scalar’s
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structure functions for the scalar field in the case where the As time proceeds, the patch winds around the vortex and
scalar is forced and in a statistically steady st@ec. V). builds up a spiral structure and decays due to diffusion. The
Such a spectrum has been recently observed by Jeitiah, characteristic timé) 1is the inverse angular velocity of the
[9] in a 2D turbulent flow with well defined, albeit short vortex atL. This defines a Riet number Pe Q,L%« 1. We
lived, coherent vortical structures. nondimensionalize Ed2.1) by using the following transfor-

In the next section we discuss the scenario of a decayingnhations:
scalar field in an isolated vortex. In Sec. lll, we define struc-
ture functions and calculate the spectrum of higher order L~r—r, Qgt—t, Q' Q(r)—Q(r), L?V2-V?,
correlation functions for a single spiral created by a single
vortex and decaying by the action of molecular diffusion. Inand Eq.(2.1) takes the form
Sec. IV we generalize our analysis to many noninteracting
vortices and calculate the scalings of the structure functions 1
of the decaying scalar field. In Sec. V we calculate the gen- 90+ Q(f)c7¢0=P—eV29- (2.2
eralized power spectra and the corresponding structure func-

:;&”;;Jeiftftgagyaﬁgag'%”a%zgﬁ'i; iﬂ;ﬂstzyﬁ]af’ﬁ'ggg e, the nondimensionalized variables we haér)=r"*,
ge op bp grEal- . andrg representsy/L sinceL=1. Considering finite diffu-

Viwe dlscuss the phenomenology bghlnd ke scallmgs of sivity «, the form of the general solution of the evolution
the generalized power spectra. Section VII contains conclu:=

sions, discussion and the obtainment of thén(k) ! scal- _equatlorqz_.Z) for any |r_1|t|al f|§ld B in the limit of larget,
. : . j.e., t>1, is the following[11]:

ings of the generalized power spectra in smooth chaoticC

flows.

o(r,t)=2 fo(r,pyente= e,
n
Il. PASSIVE SCALAR IN A PLANAR VORTEX
The advection of a decaying passive scalar field by a

single planar vortex has been studied by Flohr and Vassilicos
[11]. We use the formulation used in R¢L.1], namely,

1
fn(r,t)zfn(r,O)exp{—§n29’2Pe1t3 , 2.3

wherer =|r| and ¢ is the azimuthal angle antis an integer.
3,0+ Q(1)3,0=kV20, 2.1y Q' is the derivative of() with respect tor. The angular

Fourier coefficients ,(r,t) are time dependent and the initial

condition is fully specified by ,(r,0). We do not go in to the

whered,= g/t anddy=dld¢ and€(r)=Q(r/L)"*andL  getails of the solution of Eq2.1) which can be found in Ref.
is the maximum distance of the scalar interface from theqy],

center of the vortex. This equation describes the advection
and diffusion of a scalar field in the azimuthal plane
=(r,¢) by a steady vortex with azimuthal velocity compo-
nentu,(r)=rQ(r)= LQ(r/L)1" S and vanishing radial and
axial velocity components. Direct numerical simulations and |n this work we concentrate in finding the scaling proper-
experiments in the laboratory have demonstrated the exisies of the structure functions of the scalar field in a planar
tence and importance of coherent vortices in two-turbulence consisting of coherent vortices. The two point

dimensional turbulence and in two-component turbulence irqual timepth order structure function is defined as follows
stably-stratified flow with and without rotation of the refer-

ence frameg[12—-15. Note that axial velocity fields of the So(r, 1) =([O(x+r,t)— 6(x,1)]P)=([ 56(r 1) ]°).

form uy(r)= LQo(r/L)}"S have been used in Refs. P (3.2
[10,11,16—2]and that their large wave number energy spec-

trum has the fornE(k)~k~°*2° for 1/2<s<2 with the ap- S, depends only on the magnitude of the distance between
propriate large scale bound. We chossel to ensure that two points, when the ensemble average is taken over an iso-
U4(r) does not increase with increasingnds<2 to ensure  tropic and homogeneous distribution of the scalar field. The
that the energy spectrum is steeper than. The initial sca-  overbar denotes ensemble averaging and the brackets imply
lar field o= 6 (x,t=0) is characterized by a regular inter- space averaging(( . . ) fd?x).

face betweerdy# 0 andf,=0 with minimal distance, and Let us first calculaté[ 56(r,t)]P) for one 2D vortex. We
maximal L from the rotation axis. By regular structure we use the binomial expansion as follows:

mean that the interface has no irregularities on scales smaller

thanL. Nothing else needs to be specified about the initiak[ o(x+r,t)— 6(x,t)]P)

scalar field6y(x). Such a patchy initial condition where all

IIl. STRUCTURE FUNCTIONS OF PASSIVE DECAYING
SCALAR IN ONE VORTEX

the nonzero scalar is confined within a regular interface ~ =(8°(x+r,t))+(=1)P(6°(x,1))

mimics well initial conditions in certain laboratory experi- p-1

ments where scalar is injected in the flow in the form of + Co (= 1) P~ U(x+r.1)0%x.t 3.2
blobs (e.g., Ref[9]). qzl ap( ~DHOTHOAHTH X)), 32
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where C, is the binomial coefficient of the expansion. In

order to calculaté[ §6(r,t)]°) we first determine
(09X, 1) P~ 9(x+71,1)) =Bpg(r,t), (3.3

which is the gth term in the binomial expansion of
([86(r)]Py as shown in Eq(3.2). Now we write the above
as

izf d?x 69(x,t) 0P~ U(x+r1,t)=Bpy(r,t), (3.4
I-A

wherelL 4 is a large scale over which the spatial average may

be calculated. The Fourier transform of E§.4) is given by

. 1 _
qu(k,t)=zf e KB (1, 1)d%r. (3.5

Substituting Eq.(3.4) in Eg. (3.5 and after some standard
manipulations we get

Fook,t)= !
pgr ™ 2 L2

f 69(x,t)e'k* d?x
LA

><J OP~A(x’ t)e Tk X'g2y’, (3.6)
Now if we integrate Eq(3.6) over a circular shell irk space
we get

2m

Fpq(k,t)= . dAK)F (ki ), (3.7)

where dA(k)=kd¢,, k=|k|, and ¢, is the angle ofk.

Fpq(k,t) could be called the generalized power spectrum of

the scalar field in Fourier space. Substituting E3) and
Eq. (3.6) in Eg. (3.7 we get the following

—; 2 ik-x
qu(k,t)—(z Lz)f dA(k)fd X e

LA

X

q
> fn(x,t)e[i”<¢ﬂ(x)t>l] deX!e*ik<x’
n

X (3.9

p—q
zfm(xf,t)e[imw'—s}(x')tn] '
m

wherex=|x| andx’'=|x'|. After some standard manipula-
tions Eq.(3.8) leads to

_ 1! Jkd¢kfdxx‘1n(kx)27r(i)“ei”¢k
(2wL3)
> fofo, - foon, o e "0

n,nl,nz .. .nq,l
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FIG. 1. The two cased and Il) when the center of the vortex is,
respectively, outside a scalar patch and inside it.

><Jdx'x'e‘mm;(kx')zw(—i)m
X FrmyFm, - -

mmg,My...My_q—1

% efimQ(x’)t, (3.9

where we have changed summation variables in accordance
with the following conditions:

I’l=n1+n2+l’l3 - .nq

and

.My

m:ml+m2+m3+ .. p—q-

(3.10

All the f,'s andf,’s are functions of time and ofx andx’,
respectivelyJ,(kx) is the Bessel function that has been sub-
stituted in place of the integral representation

eino exl —ikx cog ¢ — ¢y) Jdp=2m(i)"e" %, (kx).
(3.1)

After integrating Eq.(3.9) with respect tog, and summing
over m we get the following relation:

Foq(k,t)
: jd kxJy(kx)277(i)"
- X KX X)2 (i
(27L3)
—inQ(x)t
Xn,nl,nzz,,nq_l f“lfnz e 'fnfnl.__fnq_le e x
Xf dXIX’Jtn(kX,)Zﬂ'(—i)_n
><ml,mz...mp_q_1 fmlfmz e 'ffnfml_,_fmpiqi1
xeme. (3.12

We now have two cases to stuthee Fig. 1 In case | the
vortex center is outside the scalar patch and its nearest dis-
tance to the scalar interfacerig. In Case Il the center of the

016304-3



M. A. I. KHAN AND J. C. VASSILICOS PHYSICAL REVIEW E65 016304

vortex is inside the scalar patch and its nearest distance to theis becausd , decays with a time scale that is much larger

scalar interface isq. In view of the above we can write Eq. than the decay time of the nonzero harmoni§] that f, is

(3.12 as considered to be a constant and, therfore, subtracted away
from the @ in case Il. The same reasoning can be applied for

o % _ case |. Hence all tha;'s andm;’s are nonzero in the above
fo + ffo dx kxJ(kx)2m(i)" equation and in the rest of the paper.
X > f f
nNp.Ny...Ng—1 1

Foq(k,t) =

2
(27l To take into account the fact that diffusion gradually

wipes out the spiral structure of the scalar field near the
vortex center(a fact not taken in to account in Rgf16]
where the spiral structure is assumed to exist wholly intact
X @~ inQx)t until finally destroyed by viscosily we follow Flohr and
Vassilicos[11] and define a critical radiug, which gives a

n2 et fn—nl...—anl

dx (kx)2m(—i) " measure of this diffused region. This critical radius is defined
. in the limit Pe— for timest<Pé&"®, which are such that
fo(r,t)=1,(r,00 for r<p,
X frn, Fm, - - .f_n_ml_,__mp#1 " "
my.My...Mp_q—1 but
X ginf(x)t (3.13

[fa(r,t)|<|fa(r,0 for r>p,

In Eq. (3.13 we have four terms of the form as shown below )
see Eq.(2.3. Hence, we sekn?Q'?(p)Pe 1t3=1, which

o o o @ implies
f dxf dx’(...)+f dxf dax'(...)
0 0 0 o 1 1/[2(s+1)]

_ 22 pe143
" g " " p(t)=|zn“s"Pe "t
+f dxf dx’(...)+f dxf ax'(...),
o 0 o o

This critical radius is time dependent and grows with time. It
(3.19  can be thought of as a diffusive length scale over which the

harmonics inn have diffused and the spiral structure has
with the integrands denoted by, (. ) being the same as EQ. peen smeared out.

(3.13 for all the terms of the above. For case |, terms con- | view of the above, the integrals in E¢8.15 can be
taining fgo( ...) arezero sincef,=0 in the regime &x further divided as

<rq for all n, even forn=0, since there is no scalar patch in

the region G<x<ry. Therefore, contributions only come * P *

from the term dx dx+ | dx

dex Xfxdx,xl( ). The only significantly nonzero contribution comes from the
rangep<x<1 in the integrals and similarly fox’'. Hence
we get the following:
For case Il we can legitimately replageby 6—f, and get
the same result as in case I. Hence the only contributing term  Fpq(K;t)
is the following:

f dx kxJ,(kx)2(i)"

Fpqg(k,t) (27T|_A)
dx kxJ,(kx)2(i)" % fof e in0t
(27'rLA f h n,nl,nzz...nq,l nn, n—ny...-ng_;
X > fo fn, - .f,,,nl___,nHe*"‘W)t xj dx'x'J* (kx")2m(—i) "
nng,Ng...Ng_q p
X | dx'x'J* (kx)2m(—i)~" X frfm ... f e _
f"o n( ) 7 ( ) O Mo m,; 'm, n=mp...—my o 4
X g0t 3.1
XS e m (319
_1’ 2, P Now for largekx, i.e., kx>1, we can use the asymptotic
X eneNt, (3.15  expansion for the Bessel function
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v2o Uik - This D is such that 1/ D<2/3 because £s<2 and gives
[(—i)n+ (W2l (j)n+ (12)gikx], a measure of the space-filling property of the spiral. Hence
(3.17) after doing the summations in E(3.21) we can show that
the power spectrurf ,o(k,t) scales like
This is appropriate for our analysis if the Fourier modes are _(3-2D)y2(1-D) .
to resolve at the very least the distamggrom the center of T pa(K;)~K t [constt higher order termis
the vortex to the scalar patch interface, i.escHr,. After (3.24
substituting Eq.(3.17 in Eq. (3.16} we use the method of in the limit Pe— and in the range<k< \Pet for times
st.atlonary phase to evaluate the integrals where the phasei%t<Pel’3, which is the range of times for which the scalar
given by patch has a well-defined spiral structure in the range of wave
® =kx—nQ(X)t. (3.18 numberg<k</Pet (ot_)tained fromp<x,<1). The higher
order terms are functions of/t, and decay faster than
The approximation for a general integral of this type is(k/t)"* in the ranget<<k< Pet, and can, therefore, be ne-

known to be glected.
We notice that as time runs forward the spiral range (

1
In(kx)~ ( 27k X

b . <k< \/Pet) shifts to higher values df that is solely due to
1(x)= L f(Oexgix ¥ (t)]dt the vortex continuously wrapping the scalar field in to finer
and finer spirals thus generating scales that have higher wave
- numbers. This range also shrinks as it shifts to higher values
~ Wf(t* yexd ixW(t*) + w/4], of k because of the action of diffusion. In the next section we

generalize our results to the case of multiple spirals gener-

(3.19 ated by a dilute collection of noninteracting vortices that may

be representative of a turbulent velocity field with coherent

wheret* is thet where the derivative of the phase is zero. vortical structure, perhaps obtained in the experiments of Jul-
The condition of stationary phase gives lien et al.[9].

0=0"=—k=nQ’(xn)t, (320 v, STRUCTURE FUNCTIONS OF PASSIVE DECAYING
SCALAR IN A FLOW CONSISTING OF MANY

which picks out pointx,, where the contribution to the inte- IDENTICAL NONINTERACTING VORTICES

gral is maximum. Finally what we get is

All the analysis in this section is carried out in dimension-

Fpq(k,t) alized variables so we invert the transformations of Sec. Il.

Let us consider many non interacting vortices randomly dis-

- 2mK tributed over 2D space and sufficiently far apart so that we

nngtong-1 NJQ"(Xp) |t can safely describe the velocity field in terms of compact
vortical structures characterized by

X, )
X\ 5] fnfn ---fnfnfnf...fn7 x| s X
2mk) T e Q(x)=(20(—) it *<1,
L L
X Zm fmgfm, - - )
e 0(0=0 if =>1,
XFonomy—my= mmy g (3.21)

where thex's are measured from the center of each vortex at

wheref,=f,(X,,0) and similarly forf ,,. Now from the con- x., for all m and

dition of stationary phasé3.20 we can find

snt| Ys+D)
Xn= (T) : (3.22

min|x,,—X,|>L for all m andn. (4.2

For the calculation of the generalized power spectrum and
structure functions we need only to consider the scalar
where we have usef(r)=r"°. The stationary phase con- patches within a distanck of each vortex because these
tributes only whenp<x,<1 because the spiral structure scalar patches acquire a spiral structure and thereby dominate
only exists in that range of distances from the center of thehe scaling of the structure functions. The scalar field at dis-
vortex. The relation between the fractal codimensiol-  tances larger thah from all vortices contributes a@(r/L)
mogorov capacityD of the scalar spiral and the power law term to the structure function for<L because the interfacial
of the decay of the azimuthal velocity of the vortex14,22  structure of the scalar field far from the vortices remain regu-
lar. As we show in this section, this term is negligible in the
D= S r/L<1 limit compared to the dependence of the structure
(3.23 . .
functions caused by the scalar spiral structures around the
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vortices. It is, therefore, sufficient to consider thg(x,t) ~ whereJo(kr) is same as Eq(3.11) with n=0. After substi-
consists only of the local scalar fields,(x—x,,,t) in the  tuting Eq.(4.4) in Eq. (4.5 and integrating we find
vicinity of vortices labeledn and write

r\2(-D) 1
Sp(r,t)~| = (Qt)27DP) in the ranges—>—
L Qet” L
006 = 2 (X=X, 1), (4.2
m Qot 2
o _ _ _ >\/—— and 1<Qt<Pe? (4.6)
Every scalar spiral in the right-hand side of E4.2) is lo- Pe
calized within a distancé of x,, and the condition(4.1)
ensures that they do not overlap each other. V. STRUCTURE FUNCTIONS OF STATISTICALLY
Now we can generalize E@3.6) to include the effect of STATIONARY PASSIVE SCALAR

many noninteracting vortices with nonoverlapping scalar spi-

rals as shown below To achieve a statistically stationary passive scalar field we

may imagine that, as scalar patches take spiral shapes and
1 decay, more scalar patches are introduced in to the flow as
5 > f 6% (x,t) e’ *d?x may well happen in an experimental setup in the laboratory.
2mly m This procedure soon leads to a situation where many scalar
spirals coexist in the flow all in different stages of their evo-
XJ- 6P 9(x’ tye K X d2x, (4.3 lution. Assuming the rate of regular injection of the scalar
blobs to balance exactly the rate of scalar dissipation, we can
expect to have a statistically stationary scalar field. In this
case, the averaging over many spirals in different stages of
their evolution(which is involved in the calculation of the
generalized power spectra and structure funcjionay be
assumed, in the spirit of Lundgré¢0], to be equivalent to
averaging over the lifetime of a single spiral. Hence, to ob-
. (4.0 tain the generalized power spectra of the statistically station-
27-r|_f\ ary scalar we average the previous section’s results over time
in the range & Qo t<P&”3, which represents the life time of

This asymptotic relation is valid whefist<kL<\Pel),t  the spirals. The spiral structure lies in the rangex,<L
which is found from the conditiop<x,<I in dimensional- which implies Qo t<kL<.Pekl,t. This spiral range of
ized form and & Qyt<Pe"? in the limit Pe—o. wave numbers together with the time range of the spiral
Assuming the distribution of the scalar spirals over thegives the range of)yt over which we can average for a
two dimensional space to be homogeneous and isotropic, tigiven value ofkL. This leads to a time averagéd,q(k,t),

power spectrunt ,q(k,t) = 27kF ,4(k,t) where the bar im- which takes the form

plies ensemble averaging over the dlstr'lbutlon of many spi- qu(k)~(kL)‘1 where <kL<Pé®, (5.1)
rals (because vortices are noninteracting and spirals are,

therefore, statistically independent from each othgr, it doeS_qu(k)N(kL)—U—GD) P&(1-D) where P&3<klL<pPée'2
make sense for the average over space already included in (5.2)

the definition oﬂipq(k,t) to be taken over an idealised space
where there is only one spiral, and for the ensemble averagequations(5.1) and (5.2) are the result of averaging.4)

to be taken over the distribution of many spijalBrom Eq.  over the time ranges 4Qt<kL and 1<Qot<Pe/KL)?,

(3.2 we can show that for a homogenous distribution ofrespectively. These time ranges are determined by the respec-
scalar spirals the odd order structure functions vanish. Onl§ive wave number ranges in Ed8.1) and(5.2). Finally Eqgs.

the even order structure functions do not vanish, that is fof5.1) and(5.2) give the following structure functions:

p=even. Hence from Eq3.1)

Foq(k,)=

Since the integrals are independent of ths we can take
them out of the sum. Hence we get the same result as in E
(3.24) multiplied by the number of vortices per unit area, that
is,

qu(k,t)N(kL)—(3—2D)(Qot)2(1—D)%

r
Sy(r)~consttIn T) where L Pe ¥3<r<L,

Sp(r,t)=([O(x+r,t)— 0(x,1)]°) g 13
=([46(r,01%) 5.3
_ 6(1-D)
p—1 [ [ r ~1/2 ~1/3
Nf 2_(;1 quelk<r qu(k,t)kdkd¢ Sp(l’)"‘ rém where L Pe ““<r<L Pe *~.
(5.4
Nf (1_eik'r)qu(k't)dk de In Egs.(5.3) and(5.4) Sy(r) is a time average of,(r,t) in

Eq. (4.6). Note that{,=0 with a logarithmic correction in
_ B the rangelL Pe "3<r<L and that{,=6(1-D)<]2,3 in
f [1=Jo(kr)]Fpq(k,ydk, 49 ihe dissipative rangk Pe Y2<r<L Pe 13,

016304-6



SCALINGS OF SCALAR STRUCTURE FUNCTIONS INA.. .. PHYSICAL REVIEW &5 016304

A

Letting time vary by a small amoudt, the distance between
two coils changes by

Sl ot
- TS
e}
R o1 the minus sign indicating thdtis decreasing. Identifying
’ with 27/l for the purpose of Eq.6.1) so that k/k
Pl =—4l/1, it follows that(6.1) becomes
| ; ,  k
1 | 1 | > ot ot ot
1 Fpg KL 1+T Qot 1+T dk L 1+T
Pe Pe
[Q,+80 /ﬂjaf
=Fpq(kL,Qqt)d(KL). 6.3

FIG. 2. The time evolution of the scalar power spectrum
Fpq(KL,t) in a log-log plot. The solution of this equation is

The structure functions,(r) are not time dependent and 0
may be interpreted as characterizing a scalar field in a statis- Fpa(KL,Qot) = L(kL)lqu(W>, (6.9
tically steady state achieved with an external large-scale
source of scalafscalar forcing. This scalar forcing may
consist of regularly placing in the flow scalar blobs with

large-scale smooth interfacial structure. In the spirit Ofthe limit Pee and in the wave number rang@qt<kL

Birkhoff's Ergodic theorem [23] we should expect — . A
Lundgren’s time average assumption to be relevant for the® Pellgt and time range £Q,t<Pe” Note that 1

B Do)t 12 ;
calculation of structure functions when the scalar field is sta-<00t<|:’e1L < Ee/()ot<Pe1 . The inverse OfQ(_’t repre-
tistically stationary. sents the decaying outer length scale of the spiral range and

the inverse ofyPel)yt represents the growing microscale of
diffusive attrition. A wave number in the range<kL
<Pé€"® during the time-period &Qt<P€"® does not have

In this section we extract the phenomenology underlyinghe time to be affected by diffusive attrition and only re-
the calculations and results of the previous sections and shogeives scalar variance activity from lower wave numbers un-
that the essential ingredient of this phenomenology are thtl Qqt=KkL. We, therefore, refer to €kL<Pé&"® as the ad-
locality of scalar interscale transfé8.1) and the Lundgren vective wave number range. The time averaged generalized
time-averaging operation. Indeed, as we show in this sectiorgower spectra in this range are given by
Egs. (5.1) and(5.2) can be retrieved by a simple phenom-

where F,, are arbitrary dimensionless functions. As indi-
cated in Fig. 2 this form of the generalized spectra is valid in

VI. PHENOMENOLOGY

enological argument based on these two ingredients. 1 kL _ Qot
Let us return to the time-dependent wind-up of scalar spi- Fpo(kL) = kL—1), d(Qot)L(KL) " Fpq KL )
rals. As time proceeds, i.e., d3,t—Qq(t+ 6t), then kL (6.5

—kL+Ld&k because of the differential rotatigwhich

amounts to local shepin every steady vortex and the entire andF,, must be increasing functions 6f,t/kL because the
scalar spectrum is shifted towards higher wave numbers witQjfferential rotation’s shearing process causes the power
time (see Fig. 2 That is to say that the shearing advection togpectra to shift from small to large wave numbésee Fig.
which the scalar patches are subjected in every steady vorteX Hence we retrieve Eq5.1), i.e.,
is such that the generalized power spectra obey
— -1

Fpg(KL+ KL, Qot+Qoot)d(kL+ SkL) Fpg(kL)~ (kL)

= Fpq(KL,Qgt)d(kL). (6.1) inthe advective range<tkL<Pe"3 which is well defined in

the limit Pe— .

The amount of scalar variance in the wave number band In the advective-diffusive range Pé<kL<Pé€"? a wave
d(kL) around wave numbekL is simply transported to numberkL experiences the advection process frOgt =1
wave number band(kL+ 6kL) around wave numbekL until kL= yPel),t when molecular diffusion sets in. Hence
+ 6kL after an incremental time duratiddyét (see Fig. 2 the time averaged generalized power spectra are given by
As shown in Ref[20], the distancd between consecutive

coils of the scalar spiral in every vortex at a distandeom 1 Pekl2 . Qot
the center scales as Foq(kL)= ?L d(Qot)L(KL) "1 Fy, W)
L [r\ltls — 1
b~ 6.2 kL
Qot | L (6.6
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in the advective diffusive range and usiri,q(2ot/KL) bers in numerical simulations of scalar fields in 2D and 3D
~(Qt/kL)?~D) [see Eq(4.4)] we retrieve Eq(5.2), i.e.,  chaotic flows[29—-31 and in 2D velocity fields obeying the
stochastically forced Euler equation restricted to a narrow
Fpg(KL) ~ PP (kL) ~7+6P band of small(integral scalgwave number$24]. More re-
cently, k! scalar power spectra have been observed at Pe
. . - e =10" in 2D or quasi 2D statistically stationary turbulent
well defined in the I|[nl|}2 Pe;ce. Note that the diffusive 5,5 in the same range where the velocity field's energy
micro-length-scald. Pe ™ is the Taylor microscale of the  gpectrym i3 by Jullienet al.[9] who have also observed
scalar field(first introduced by Corrsin in 1931Note also  |o4arithmic scalings in that range for all order structure func-

that 7-6D ]34 and that the experimental results [ qng[similarly to Eq.(7.2), but without the ability to estab-
seem to show a steeper power-law wave number spectruiiyp, the | pe 3 scaling factor and rangeThe theory of
at wave numbers larger than where tke' spectrum is  chertkov et al. [25] does not apply to this experiment be-
observed. cause homogeneous and isotropic random velocity fields that
are everywhere continuous and differentiable have energy
VIl. CONCLUSIONS AND DISCUSSION spectra steeper thaki * (see the Appendjx The present

In a two-dimensional isotropic and homogeneous collec}:)""per’S theory, however, applies when the energy spectrum
scales ask™® with 1<a<3 but is limited to time-

tion of noninteracting compact and time-independent singus o
lar vortices with a large wave number energy spectru ndependent velocity fields. Nevertheless, the phenomenol-

E(k)~k~® with 1< =3, the structure functions of an ad- ogy developed in Sec. VI also holds for time-dependent ve-

vected and freely decaying scalar field have the foIIowingIOCity fields and we now apply and generalize it to spatially
scaling behavior in the limit where Peo: smooth chaotic flowsand also, by the way, to frozen strain-

ing velocity field structures
)2(1—D) The starting point of our phenomenology is the locality of

in the advective-diffusive range Bé<kL<Pé&’?, which is

, (7.)  transfer(6.1). Pedrizzetti and Vassilicd21] have shown that
interscale transfer in 2D compact vortices is indeed local at a

where Qg t/Pe<r/L<1/Q0t and 1<Qt<Pe”® and the giver} scale when velocity gradient; QO not vary .much in
9 0 0 tphysu:al space over that scale. This is the case in the 2D

fractal codimensiorD of the scalar interfaces is such that I _ . ) : . :
1/2<D<2/3. axisymmetric vort|ces_coq3|dered in thl_s paper but also in
By applying the Lundgren time-average assumption We'spat|ally sr_nooth velocity fields. In a s_patlally smooth chaotic
obtain predictions for the structure functions of a stati:sticallyfIOW the distancd between successive fqlds of the scalar
stationary scalar field in the same 2D velocity field and themterface decays exponentially as determined by the largest
same limit Pes oo positive Lyapunov exponert, i.e., I(t)~e ', which im-
plies 81/1=—\ 6t. Applying the locality of transfer property

r
Sp(r,t)~(EQot

r we get
Sp(r)~consttIn —_1/3) (7.2
L Pe
Foal K(1+ X 6t),t+ at]dk(1+ A 8t) = Fpq(k,t)dk,
in the rangel. Pe Y*<r<L and (7.4
r 6(1-D) the solution of which is
Sy(r)~| —— , (7.3
W Cpetm e
Fog(k,) =k 17, (—) 7.
in the rangel. Pe Y2<r<L Pe 3 The logarithmic term in pal k1) Pal k (7.9

Eq. (7.2) corresponds tk ™! generalized power spectra. It
may be worth mentioning that the 2D velocity fields of This form of the generalized spectra is valid for-Pe and
Holzer and Siggig24] where they observe a well-defined as long as ¥e'<k, so that applying Lundgren’s time-

k=1 scalar power spectrum are replete with spiral scalaaverage operation from=0 tot=\"*Ink gives
structures.

Predictions ofk ! scalar power spectra in the limit Pe N [Inkin Y
—oo have been made for scalar fields in smo@#., at least qu(k):k—l_f qu(—>dt~[k Ink] ™1,
everywhere continuous and differentiabl®mogeneous and InkJo k
isotropic random velocity field with arbitrary dimensionality (7.6

and time dependence by Chertketal. [25] who general-

ized and unified the results of Batche[@6] and Kraichnan becauseF, is an increasing function a™'/k. Power spectra
[27]. Experimental investigations of the highdket number  of scalar fields in spatially smooth chaotic flows are believed
k=1 scalar power spectrum have been inconclusive in 300 scale ak ™! in the limit Pe—o [29—31 but our theory
turbulent flows even though Prasad and Sreenivasan hayeedicts kInk) 1. This is a small correction to the spectrum
claimed such a spectrum in a 3D wal@8]. However,k ! but an exponentially large correction to the scalar variance in
scalar power spectra have been observed at higlePaum-  the limit Pe— oo,
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from the Royal Society. The pivotal assumption in Ref25] is that the velocity
field u;(x) is Taylor-expandable up to at least first derivative
APPENDIX terms everywhere in physical space. In particular, this means

thatu,(x4,0) is differentiable with respect to, everywhere
on thex; axis. If the first derivative ofi;(x;,0) with respect
to x, is also continuous everywhere along tkeaxis then
T the Fourier transfornu,(k;) of u;(x;,0) must decay faster
Rij (N ={uiC)u;(x+r)), thank; ? [32]. If, however, the first derivative af;(x,,0) is
and its Fourier transform not everywhere continuous, then it is discontinuous either on
a set of well-separated points or on a more pathological set
of points which accumulatéand are, therefore, not well
f drRij(r)e—ik'f_ separateyin a fractal-like or in a spiral-like mann¢22,32.
In the case where discontinuities in the derivative field of
u;(x,,0) are well separatedy;(k;) decays ak; * because
the Fourier transform of well separated discontinuities be-
tween which the field is continuous decayskgs and the
Fourier transform of the derivative af;(x;,0) is equal to

ikqU;(k;). In the other case where discontinuities are not

well separated and accumulate, the decayk,;) can be
_1 _2 . .
where the average kinetic energy per unit mass of the velo@nywhere betweetk, = and k; © [32,33, but in this case
ity field is E=[5dk E(k), k=|k|; E(K) is the energy spec- u;(x41,0) cannot be considered to be differentiable at those
trum of the velocity field. points where discontinuities of its derivative accumulate.
One dimensional energy spectra are defined as follows: In conclusion, the differentiability of the velocity field
everywhere in physical space implies thigtk,) must decay
1 (= . at least ak; 2 and, thereforegy;(k;) ~|U; (k1) |2~O(k; %)
- N —ikqr 1 ’ 11\R1 1\"1 1 /)
dij(ky) = Zﬂf_lel(rl,O)e atdry, which in turn impliesE(k) ~O(k™%).
The conditionE (k) ~O(k3) stated in the conclusion of
which, because of isotropy, are completely characterized by Ref.[25] guarantees that the strain field is large scale but not

For a statistically homogeneous velocity field with veloc-
ity componentay;(x) we can define a correlation function

‘I’ij(k)ZW

Incompressibility ¥ - u=0) and statistical isotropy of a two-
component or 2D velocity field;(x), i=1,2, imply

E(K)

kik;
w2 mk’

k2

(I)ij(k)=(5ij_

single component, sag;1(k,). that the velocity field is differentiable. The spectral condition
From the above and a few standard manipulations one carequired to use the pivotal assumption of differentiability in
get Ref. [25] should in fact beE(k)~O(k™4).
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