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Scalings of scalar structure functions in a velocity field with coherent vortical structures
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In planar turbulence modeled as an isotropic and homogeneous collection of two-dimensional noninteracting
compact vortices, the structure functionsSp(r ) of a statistically stationary passive scalar field have the fol-
lowing scaling behavior in the limit where the Pe´clet number Pe→`: Sp(r );const1 ln(r/L Pe21/3) for
L Pe21/3!r !L, Sp(r );(r /L Pe21/3)6(12D) for L Pe21/2!r !L Pe21/3, whereL is a large scale andD is the
fractal codimension of the spiral scalar structures generated by the vortices (1/2<D,2/3). Note thatL Pe21/2

is the scalar Taylor microscale that stems naturally from our analytical treatment of the advection-diffusion
equation. The essential ingredients of our theory are the locality of interscale transfer and Lundgren’s time
average assumption. A phenomenological theory explicitly based only on these two ingredients reproduces our
results and a generalization of this phenomenology to spatially smooth chaotic flows yields (k ln k)21 gener-
alized power spectra for the advected scalar fields.

DOI: 10.1103/PhysRevE.65.016304 PACS number~s!: 47.27.Gs, 47.10.1g, 47.27.Qb
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I. INTRODUCTION

The theory of turbulent passive scalars has received m
attention recently@1–3#. The mixing of a scalar fieldu in a
velocity fieldv is governed by the advection-diffusion equ
tion

] tu~x,t !1v~x,t !•“u~x,t !5k¹2u~x,t !1 f ~x,t !, ~1.1!

wherek denotes the molecular diffusivity of the scalaru and
f (x,t) is an external source~ forcing! driving the scalar. The
mixing of a scalar fieldu is characterized by its structur
functions Sp[^@u(x1r )2u(x)#p&5^@du(r )#p& for any
numberp. If we want to findSp then we need models of th
velocity field v.

The model that has attracted much attention recentl
the Kraichnan model@1# where the velocity fieldv is consid-
ered to be incompressible, statistically isotropic, white no
in time (d correlated! and Gaussian. Furthermore, it has h
mogeneous increments with power law spatial correlatio

^@v i~r ,t !2v i~0,0!#@v j~r ,t !2v j~0,0!#&

52d~ t !r hF ~h1d21!d i j 2h
r i r j

r 2 G , ~1.2!

where the scaling exponenthP]0,2@ andd is the dimension
of space so thati , j 51,2, . . . ,d. The above tensorial struc
ture of the velocity field is in conformity with incompress
ibility. The Kraichnan model also assumes a forcingf (x,t) in
Eq. ~1.1! that is an independent Gaussian random field w
zero mean. The forcing is white in time and its covariance
assumed to be a real, smooth, positive-definite function w
rapid decay in space so that the forcing is homogene
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isotropic and takes place on the integral scaleL. The generic
scaling behavior of the structure functionSp;r zp, r !L, of
passive scalars in the Kraichnan model was establishe
Refs.@1–4#. The scaling exponents of this formalism are
the formzp5zp(d,h,p) wherehP@0,2# is the Hölder expo-
nent in Eq.~1.2!. In the context of this model Balkovsky an
Lebedev@5# and Chertkov@6# used the instantonic formalism
in a d-dimensional space to find the scaling exponents
largep. It was also shown in the instantonic formalism th
limp→` zp.d(22h)2/8h @5# which is independent ofp. The
scaling exponents were also calculated using other te
niques in the limitsh→0 @2,7#, d→` @8,3#, andp→` @5#,
and a 22h expansion ofzp was proposed in Ref.@4#. It was
found thatzp does depend onp for small values ofp in the
Kraichnan model.

Our work lies in the opposite extreme of the Kraichn
model. We work in the regime where we have a persist
vortical velocity field frozen in time in two dimensions. Th
important differences between this model and the Kraich
model are in the structure of the velocity field infinitely co
related in time in this model but delta correlated in time
the Kraichnan model; and vortical in space in this model,
Gaussian in the Kraichnan model. In this model, the veloc
field is that of spatially distributed noninteracting two dime
sional~2D! vortices with compact structure. We consider t
spatial distribution of vortices to be dilute in that they are
from each other and, therefore, maintain their structure
spatial position for an indefinite period. We also consider t
distribution to be homogeneous and isotropic and the ve
ity field to be incompressible, that is¹•v50. The model of
the velocity field considered here is an artificial model
planar homogeneous turbulence where the emphasis is o
coherent vortex aspect of the flow. In order of presentati
the first aim of this model is to demonstrate that in the c
of the unforced scalar@ f 50 in Eq.~1.1!# we can quantify the
statistics of the turbulent scalar field in terms of the scala
spiral geometry generated by the coherent vortical structu
in the flow~Sec. III and Sec. IV!. The second aim is to derive
the Batchelork21 power spectrum and all the correspondi

of
th
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M. A. I. KHAN AND J. C. VASSILICOS PHYSICAL REVIEW E65 016304
structure functions for the scalar field in the case where
scalar is forced and in a statistically steady state~Sec. V!.
Such a spectrum has been recently observed by Jullienet al.,
@9# in a 2D turbulent flow with well defined, albeit sho
lived, coherent vortical structures.

In the next section we discuss the scenario of a deca
scalar field in an isolated vortex. In Sec. III, we define stru
ture functions and calculate the spectrum of higher or
correlation functions for a single spiral created by a sin
vortex and decaying by the action of molecular diffusion.
Sec. IV we generalize our analysis to many noninteract
vortices and calculate the scalings of the structure functi
of the decaying scalar field. In Sec. V we calculate the g
eralized power spectra and the corresponding structure f
tions of statistically stationary scalar spirals by applying
time-average operation approach of Lundgren@10#. In Sec.
VI we discuss the phenomenology behind thek21 scalings of
the generalized power spectra. Section VII contains con
sions, discussion and the obtainment of the (k ln k)21 scal-
ings of the generalized power spectra in smooth cha
flows.

II. PASSIVE SCALAR IN A PLANAR VORTEX

The advection of a decaying passive scalar field b
single planar vortex has been studied by Flohr and Vassil
@11#. We use the formulation used in Ref.@11#, namely,

] tu1V~r !]fu5k¹2u, ~2.1!

where] t5]/]t and]f5]/]f andV(r )5V0(r /L)2s andL
is the maximum distance of the scalar interface from
center of the vortex. This equation describes the advec
and diffusion of a scalar fieldu in the azimuthal planer
5(r ,f) by a steady vortex with azimuthal velocity comp
nentuf(r )5rV(r )5LV0(r /L)12s and vanishing radial and
axial velocity components. Direct numerical simulations a
experiments in the laboratory have demonstrated the e
tence and importance of coherent vortices in tw
dimensional turbulence and in two-component turbulence
stably-stratified flow with and without rotation of the refe
ence frame@12–15#. Note that axial velocity fields of the
form uf(r )5LV0(r /L)12s have been used in Refs
@10,11,16–21# and that their large wave number energy sp
trum has the formE(k);k2512s for 1/2,s,2 with the ap-
propriate large scale bound. We chooses>1 to ensure that
uf(r ) does not increase with increasingr ands,2 to ensure
that the energy spectrum is steeper thank21. The initial sca-
lar field u05u (x,t50) is characterized by a regular inte
face betweenu05” 0 andu050 with minimal distancer 0 and
maximal L from the rotation axis. By regular structure w
mean that the interface has no irregularities on scales sm
than L. Nothing else needs to be specified about the ini
scalar fieldu0(x). Such a patchy initial condition where a
the nonzero scalar is confined within a regular interfa
mimics well initial conditions in certain laboratory exper
ments where scalar is injected in the flow in the form
blobs ~e.g., Ref.@9#!.
01630
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As time proceeds, the patch winds around the vortex
builds up a spiral structure and decays due to diffusion. T
characteristic timeV0

21 is the inverse angular velocity of th
vortex atL. This defines a Pe´clet number Pe5V0L2k21. We
nondimensionalize Eq.~2.1! by using the following transfor-
mations:

L21r→r , V0t→t, V0
21V~r !→V~r !, L2¹2→¹2,

and Eq.~2.1! takes the form

] tu1V~r !]fu5
1

Pe
¹2u. ~2.2!

In the nondimensionalized variables we haveV(r )5r 2s,
andr 0 representsr 0 /L sinceL51. Considering finite diffu-
sivity k, the form of the general solution of the evolutio
equation~2.2! for any initial field u0 in the limit of large t,
i.e., t@1, is the following@11#:

u~r ,t !5(
n

f n~r ,t !ein[f2V(r )t] ,

f n~r ,t !5 f n~r ,0!expF2
1

3
n2V82 Pe21t3G , ~2.3!

wherer 5ur u andf is the azimuthal angle andn is an integer.
V8 is the derivative ofV with respect tor. The angular
Fourier coefficientsf n(r ,t) are time dependent and the initia
condition is fully specified byf n(r ,0). We do not go in to the
details of the solution of Eq.~2.1! which can be found in Ref.
@11#.

III. STRUCTURE FUNCTIONS OF PASSIVE DECAYING
SCALAR IN ONE VORTEX

In this work we concentrate in finding the scaling prope
ties of the structure functions of the scalar field in a plan
turbulence consisting of coherent vortices. The two po
equal timepth order structure function is defined as follow

Sp~r ,t !5^@u~x1r ,t !2u~x,t !#p&5^@du~r ,t !#p&.
~3.1!

Sp depends only on the magnitude of the distance betw
two points, when the ensemble average is taken over an
tropic and homogeneous distribution of the scalar field. T
overbar denotes ensemble averaging and the brackets i
space averaging (^ . . . &}*d2x).

Let us first calculatê@du(r ,t)#p& for one 2D vortex. We
use the binomial expansion as follows:

^@u~x1r ,t !2u~x,t !#p&

5^up~x1r ,t !&1~21!p^up~x,t !&

1 (
q51

p21

Cqp~21!q^up2q~x1r ,t !uq~x,t !&, ~3.2!
4-2
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whereCqp is the binomial coefficient of the expansion.
order to calculatê@du(r ,t)#p& we first determine

^uq~x,t !up2q~x1r ,t !&5Bpq~r ,t !, ~3.3!

which is the qth term in the binomial expansion o
^@du(r )#p& as shown in Eq.~3.2!. Now we write the above
as

1

LA
2E d2x uq~x,t !up2q~x1r ,t !5Bpq~r ,t !, ~3.4!

whereLA is a large scale over which the spatial average m
be calculated. The Fourier transform of Eq.~3.4! is given by

F̂pq~k,t !5
1

2pE e2 ik•rBpq~r ,t !d2r . ~3.5!

Substituting Eq.~3.4! in Eq. ~3.5! and after some standar
manipulations we get

F̂pq~k,t !5
1

2pLA
2E uq~x,t !eik•x d2x

3E up2q~x8,t !e2 ik•x8d2x8. ~3.6!

Now if we integrate Eq.~3.6! over a circular shell ink space
we get

Fpq~k,t !5E
0

2p

dA~k!F̂pq~k,t !, ~3.7!

where dA(k)[kdfk , k5uku, and fk is the angle ofk.
Fpq(k,t) could be called the generalized power spectrum
the scalar field in Fourier space. Substituting Eq.~2.3! and
Eq. ~3.6! in Eq. ~3.7! we get the following

Fpq~k,t !5
1

~2pLA
2 !
E dA~k!E d2x eik•x

3H(
n

f n~x,t !e[ in„f2V(x)t…] J qE d2x8e2 ik•x8

3H(
m

f m~x8,t !e[ im„f82V(x8)t…] J p2q

, ~3.8!

where x5uxu and x85ux8u. After some standard manipula
tions Eq.~3.8! leads to

Fpq~k,t !

5
1

~2pLA
2 !
E kdfkE dx xJn~kx!2p~ i !neinfk

3 (
n,n1 ,n2 . . . nq21

f n1
f n2

. . . f n2n1 . . . 2nq21
e2 inV(x)t
01630
y

f

3E dx8x8eimfkJm* ~kx8!2p~2 i !m

3 (
m,m1 ,m2 . . . mp2q21

f m1
f m2

. . . f m2m1 . . . 2mp2q21

3e2 imV(x8)t, ~3.9!

where we have changed summation variables in accorda
with the following conditions:

n5n11n21n3 . . . nq

and

m5m11m21m31 . . . mp2q . ~3.10!

All the f n’s and f m’s are functions of timet and ofx andx8,
respectively.Jn(kx) is the Bessel function that has been su
stituted in place of the integral representation

E
0

2p

einf exp@2 ikx cos~f2fk!#df52p~ i !neinfkJn~kx!.

~3.11!

After integrating Eq.~3.9! with respect tofk and summing
over m we get the following relation:

Fpq~k,t !

5
1

~2pLA
2 !
E dx kxJn~kx!2p~ i !n

3 (
n,n1 ,n2 . . . nq21

f n1
f n2

. . . f n2n1 . . . 2nq21
e2 inV(x)t

3E dx8x8J2n* ~kx8!2p~2 i !2n

3 (
m1 ,m2 . . . mp2q21

f m1
f m2

. . . f 2n2m1 . . . 2mp2q21

3einV(x8)t. ~3.12!

We now have two cases to study~see Fig. 1!. In case I the
vortex center is outside the scalar patch and its nearest
tance to the scalar interface isr 0. In Case II the center of the

FIG. 1. The two cases~I and II! when the center of the vortex is
respectively, outside a scalar patch and inside it.
4-3
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vortex is inside the scalar patch and its nearest distance to
scalar interface isr 0. In view of the above we can write Eq
~3.12! as

Fpq~k,t !5
1

~2pLA
2 !

F E
0

r 0
1E

r 0

` Gdx kxJn~kx!2p~ i !n

3 (
n,n1 ,n2 . . . nq21

f n1
f n2

. . . f n2n1 . . . 2nq21

3e2 inV(x)t

3F E
0

r 0
1E

r 0

` Gdx8x8J2n* ~kx8!2p~2 i !2n

3 (
m1 ,m2 . . . mp2q21

f m1
f m2

. . . f 2n2m1 . . . 2mp2q21

3einV(x8)t. ~3.13!

In Eq. ~3.13! we have four terms of the form as shown belo

E
0

r 0
dxE

0

r 0
dx8~ . . . !1E

0

r 0
dxE

r 0

`

dx8~ . . . !

1E
r 0

`

dxE
0

r 0
dx8~ . . . !1E

r 0

`

dxE
r 0

`

dx8~ . . . !,

~3.14!

with the integrands denoted by (. . . ) being the same as Eq
~3.13! for all the terms of the above. For case I, terms co
taining *0

r 0( . . . ) arezero sincef n50 in the regime 0,x
,r 0 for all n, even forn50, since there is no scalar patch
the region 0,x,r 0. Therefore, contributions only com
from the term

E
r 0

`

dx xE
r 0

`

dx8x8~ . . . !.

For case II we can legitimately replaceu by u2 f 0 and get
the same result as in case I. Hence the only contributing t
is the following:

Fpq~k,t !

5
1

~2pLA
2 !
E

r 0

`

dx kxJn~kx!2p~ i !n

3 (
n,n1 ,n2 . . . nq21

f n1
f n2

. . . f n2n1 . . . 2nq21
e2 inV(x)t

3E
r 0

`

dx8x8J2n* ~kx8!2p~2 i !2n

3 (
m1 ,m2 . . . mp2q21

f m1
f m2

. . . f 2n2m1 . . . 2mp2q21

3einV(x8)t. ~3.15!
01630
he
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It is becausef 0 decays with a time scale that is much larg
than the decay time of the nonzero harmonics@16# that f 0 is
considered to be a constant and, therfore, subtracted a
from theu in case II. The same reasoning can be applied
case I. Hence all theni ’s andmi ’s are nonzero in the abov
equation and in the rest of the paper.

To take into account the fact that diffusion gradua
wipes out the spiral structure of the scalar field near
vortex center~a fact not taken in to account in Ref.@16#
where the spiral structure is assumed to exist wholly int
until finally destroyed by viscosity!, we follow Flohr and
Vassilicos@11# and define a critical radiusr, which gives a
measure of this diffused region. This critical radius is defin
in the limit Pe→` for times t!Pe1/3, which are such that

f n~r ,t !5 f n~r ,0! for r !r,

but

u f n~r ,t !u!u f n~r ,0!u for r @r,

see Eq.~2.3!. Hence, we set13 n2V82(r)Pe21 t351, which
implies

r~ t !5F1

3
n2s2 Pe21 t3G1/[2(s11)]

.

This critical radius is time dependent and grows with time
can be thought of as a diffusive length scale over which
harmonics inn have diffused and the spiral structure h
been smeared out.

In view of the above, the integrals in Eq.~3.15! can be
further divided as

E
r 0

`

dx5E
r 0

r

dx1E
r

`

dx.

The only significantly nonzero contribution comes from t
ranger,x,1 in the integrals and similarly forx8. Hence
we get the following:

Fpq~k,t !

5
1

~2pLA
2 !
E

r

`

dx kxJn~kx!2p~ i !n

3 (
n,n1 ,n2 . . . nq21

f n1
f n2

. . . f n2n1 . . . 2nq21
e2 inV(x)t

3E
r

`

dx8x8J2n* ~kx8!2p~2 i !2n

3 (
m1 ,m2 . . . mp2q21

f m1
f m2

. . . f 2n2m1 . . . 2mp2q21

3einV(x8)t. ~3.16!

Now for large kx, i.e., kx@1, we can use the asymptoti
expansion for the Bessel function
4-4
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Jn~kx!;S 1

2pkxD
1/2

@~2 i !n1(1/2)eikx1~ i !n1(1/2)e2 ikx#.

~3.17!

This is appropriate for our analysis if the Fourier modes
to resolve at the very least the distancer 0 from the center of
the vortex to the scalar patch interface, i.e., 1,kr0. After
substituting Eq.~3.17! in Eq. ~3.16! we use the method o
stationary phase to evaluate the integrals where the pha
given by

F5kx2nV~x!t. ~3.18!

The approximation for a general integral of this type
known to be

I ~x!5E
a

b

f ~ t !exp@ ixC~ t !#dt

;A p

2xuC9~ t* !u
f ~ t* !exp@ ixC~ t* !6p/4#,

~3.19!

where t* is the t where the derivative of the phase is zer
The condition of stationary phase gives

05F852k2nV8~xn!t, ~3.20!

which picks out pointsxn where the contribution to the inte
gral is maximum. Finally what we get is

Fpq~k,t !

; (
n,n1 . . . nq21

2pk

nuV9~xn!ut

3S xn

2pkD f n1
f n2

. . . f n2n12n22 . . . 2nq21

3 (
m1 ,m2 . . . mp2q21

f m1
f m2

. . .

3 f 2n2m12m22 . . . 2mp2q21
, ~3.21!

wheref n5 f n(xn,0) and similarly forf m . Now from the con-
dition of stationary phase~3.20! we can find

xn5S snt

k D 1/(s11)

, ~3.22!

where we have usedV(r )5r 2s. The stationary phase con
tributes only whenr,xn,1 because the spiral structu
only exists in that range of distances from the center of
vortex. The relation between the fractal codimension~Kol-
mogorov capacity! D of the scalar spiral and the power la
of the decay of the azimuthal velocity of the vortex is@11,22#

D5
s

s11
. ~3.23!
01630
e

is

.

e

This D is such that 1/2,D,2/3 because 1,s,2 and gives
a measure of the space-filling property of the spiral. Hen
after doing the summations in Eq.~3.21! we can show that
the power spectrumFpq(k,t) scales like

Fpq~k,t !;k2(322D)t2(12D)@const1 higher order terms#,
~3.24!

in the limit Pe→` and in the ranget,k,APe/t for times
1!t!Pe1/3, which is the range of times for which the scal
patch has a well-defined spiral structure in the range of w
numberst,k,APe/t ~obtained fromr,xn,1). The higher
order terms are functions ofk/t, and decay faster than
(k/t)21 in the ranget,k,APe/t, and can, therefore, be ne
glected.

We notice that as time runs forward the spiral ranget
,k,APe/t) shifts to higher values ofk that is solely due to
the vortex continuously wrapping the scalar field in to fin
and finer spirals thus generating scales that have higher w
numbers. This range also shrinks as it shifts to higher val
of k because of the action of diffusion. In the next section
generalize our results to the case of multiple spirals gen
ated by a dilute collection of noninteracting vortices that m
be representative of a turbulent velocity field with cohere
vortical structure, perhaps obtained in the experiments of
lien et al. @9#.

IV. STRUCTURE FUNCTIONS OF PASSIVE DECAYING
SCALAR IN A FLOW CONSISTING OF MANY
IDENTICAL NONINTERACTING VORTICES

All the analysis in this section is carried out in dimensio
alized variables so we invert the transformations of Sec.
Let us consider many non interacting vortices randomly d
tributed over 2D space and sufficiently far apart so that
can safely describe the velocity field in terms of comp
vortical structures characterized by

V~x!5V0S x

L D 2s

if
x

L
<1,

V~x!50 if
x

L
.1,

where thex’s are measured from the center of each vortex
xm for all m and

minuxm2xnu@L for all m andn. ~4.1!

For the calculation of the generalized power spectrum
structure functions we need only to consider the sca
patches within a distanceL of each vortex because thes
scalar patches acquire a spiral structure and thereby dom
the scaling of the structure functions. The scalar field at d
tances larger thanL from all vortices contributes anO(r /L)
term to the structure function forr !L because the interfacia
structure of the scalar field far from the vortices remain re
lar. As we show in this section, this term is negligible in t
r /L!1 limit compared to ther dependence of the structur
functions caused by the scalar spiral structures around
4-5
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vortices. It is, therefore, sufficient to consider thatu(x,t)
consists only of the local scalar fieldsum(x2xm ,t) in the
vicinity of vortices labeledm and write

u~x,t !5(
m

um~x2xm ,t !. ~4.2!

Every scalar spiral in the right-hand side of Eq.~4.2! is lo-
calized within a distanceL of xm and the condition~4.1!
ensures that they do not overlap each other.

Now we can generalize Eq.~3.6! to include the effect of
many noninteracting vortices with nonoverlapping scalar s
rals as shown below

F̂pq~k,t !5
1

2pLA
2 (

m
E um

q ~x,t !eik•xd2x

3E um
p2q~x8,t !e2 ik•x8d2x8. ~4.3!

Since the integrals are independent of them’s we can take
them out of the sum. Hence we get the same result as in
~3.24! multiplied by the number of vortices per unit area, th
is,

Fpq~k,t !;~kL!2(322D)~V0t !2(12D)(
m

1

2pLA
2

. ~4.4!

This asymptotic relation is valid whenV0t,kL,APe/V0t
which is found from the conditionr,xn, l in dimensional-
ized form and 1!V0t!Pe1/3 in the limit Pe→`.

Assuming the distribution of the scalar spirals over t
two dimensional space to be homogeneous and isotropic

power spectrumFpq(k,t)52pkF̂pq(k,t) where the bar im-
plies ensemble averaging over the distribution of many s
rals ~because vortices are noninteracting and spirals
therefore, statistically independent from each other, it d
make sense for the average over space already include
the definition ofF̂pq(k,t) to be taken over an idealised spa
where there is only one spiral, and for the ensemble ave
to be taken over the distribution of many spirals!. From Eq.
~3.2! we can show that for a homogenous distribution
scalar spirals the odd order structure functions vanish. O
the even order structure functions do not vanish, that is
p5even. Hence from Eq.~3.1!

Sp~r ,t !5^@u~x1r ,t !2u~x,t !#p&

5^@du~r ,t !#p&

;E S 22 (
q51

p21

Cqpe
ik•r D F̂pq~k,t !k dk df

;E ~12eik•r !Fpq~k,t !dk df

;E @12J0~kr !#Fpq~k,t !dk, ~4.5!
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whereJ0(kr) is same as Eq.~3.11! with n50. After substi-
tuting Eq.~4.4! in Eq. ~4.5! and integrating we find

Sp~r ,t !;S r

L D 2(12D)

~V0t !2(12D) in the ranges
1

V0t
.

r

L

.AV0t

Pe
and 1!V0t!Pe1/3. ~4.6!

V. STRUCTURE FUNCTIONS OF STATISTICALLY
STATIONARY PASSIVE SCALAR

To achieve a statistically stationary passive scalar field
may imagine that, as scalar patches take spiral shapes
decay, more scalar patches are introduced in to the flow
may well happen in an experimental setup in the laborato
This procedure soon leads to a situation where many sc
spirals coexist in the flow all in different stages of their ev
lution. Assuming the rate of regular injection of the sca
blobs to balance exactly the rate of scalar dissipation, we
expect to have a statistically stationary scalar field. In t
case, the averaging over many spirals in different stage
their evolution~which is involved in the calculation of the
generalized power spectra and structure functions! may be
assumed, in the spirit of Lundgren@10#, to be equivalent to
averaging over the lifetime of a single spiral. Hence, to o
tain the generalized power spectra of the statistically stat
ary scalar we average the previous section’s results over
in the range 1,V0t,Pe1/3, which represents the life time o
the spirals. The spiral structure lies in the ranger,xn,L
which implies V0t,kL,APe/V0t. This spiral range of
wave numbers together with the time range of the sp
gives the range ofV0t over which we can average for
given value ofkL. This leads to a time averagedFpq(k,t),
which takes the form

Fpq~k!;~kL!21 where 1,kL,Pe1/3, ~5.1!

Fpq~k!;~kL!2(726D) Pe2(12D) where Pe1/3,kL,Pe1/2.
~5.2!

Equations~5.1! and ~5.2! are the result of averaging~4.4!
over the time ranges 1,V0t,kL and 1,V0t,Pe/(kL)2,
respectively. These time ranges are determined by the res
tive wave number ranges in Eqs.~5.1! and~5.2!. Finally Eqs.
~5.1! and ~5.2! give the following structure functions:

Sp~r !;const1 lnS r

L Pe21/3D where L Pe21/3,r ,L,

~5.3!

Sp~r !;S r

L Pe21/3D 6(12D)

where L Pe21/2,r ,L Pe21/3.

~5.4!

In Eqs.~5.3! and~5.4! Sp(r ) is a time average ofSp(r ,t) in
Eq. ~4.6!. Note thatzp50 with a logarithmic correction in
the rangeL Pe21/3,r ,L and thatzp56(12D)P]2,3@ in
the dissipative rangeL Pe21/2,r ,L Pe21/3.
4-6
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The structure functionsSp(r ) are not time dependent an
may be interpreted as characterizing a scalar field in a st
tically steady state achieved with an external large-sc
source of scalar~scalar forcing!. This scalar forcing may
consist of regularly placing in the flow scalar blobs wi
large-scale smooth interfacial structure. In the spirit
Birkhoff’s Ergodic theorem @23# we should expect
Lundgren’s time average assumption to be relevant for
calculation of structure functions when the scalar field is s
tistically stationary.

VI. PHENOMENOLOGY

In this section we extract the phenomenology underly
the calculations and results of the previous sections and s
that the essential ingredient of this phenomenology are
locality of scalar interscale transfer~6.1! and the Lundgren
time-averaging operation. Indeed, as we show in this sect
Eqs. ~5.1! and ~5.2! can be retrieved by a simple phenom
enological argument based on these two ingredients.

Let us return to the time-dependent wind-up of scalar s
rals. As time proceeds, i.e., asV0t→V0(t1dt), then kL
→kL1Ldk because of the differential rotation~which
amounts to local shear! in every steady vortex and the enti
scalar spectrum is shifted towards higher wave numbers
time ~see Fig. 2!. That is to say that the shearing advection
which the scalar patches are subjected in every steady vo
is such that the generalized power spectra obey

Fpq~kL1dkL,V0t1V0dt !d~kL1dkL!

5Fpq~kL,V0t !d~kL!. ~6.1!

The amount of scalar variance in the wave number b
d(kL) around wave numberkL is simply transported to
wave number bandd(kL1dkL) around wave numberkL
1dkL after an incremental time durationV0dt ~see Fig. 2!.
As shown in Ref.@20#, the distancel between consecutive
coils of the scalar spiral in every vortex at a distancer from
the center scales as

ł;
L

V0t S r

L D 111/s

. ~6.2!

FIG. 2. The time evolution of the scalar power spectru
Fpq(kL,t) in a log-log plot.
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Letting time vary by a small amountdt, the distance between
two coils changes by

d l

l
.2

dt

t
,

the minus sign indicating thatl is decreasing. Identifyingk
with 2p/ l for the purpose of Eq.~6.1! so that dk/k
52d l / l , it follows that ~6.1! becomes

FpqFkLS 11
dt

t D ,V0tS 11
dt

t D Gdk LS 11
dt

t D
5Fpq~kL,V0t !d~kL!. ~6.3!

The solution of this equation is

Fpq~kL,V0t !5L~kL!21FpqS V0t

kL D , ~6.4!

where Fpq are arbitrary dimensionless functions. As ind
cated in Fig. 2 this form of the generalized spectra is valid
the limit Pe→` and in the wave number rangeV0t!kL
!APe/V0t and time range 1!V0t!Pe1/3. Note that 1
!V0t!Pe1/3!APe/V0t!Pe1/2. The inverse ofV0t repre-
sents the decaying outer length scale of the spiral range
the inverse ofAPe/V0t represents the growing microscale
diffusive attrition. A wave number in the range 1!kL
!Pe1/3 during the time-period 1!V0t!Pe1/3 does not have
the time to be affected by diffusive attrition and only r
ceives scalar variance activity from lower wave numbers
til V0t5kL. We, therefore, refer to 1!kL!Pe1/3 as the ad-
vective wave number range. The time averaged general
power spectra in this range are given by

Fpq~kL!5
1

kL21E1

kL

d~V0t !L~kL!21FpqS V0t

kL D ,

~6.5!

andFpq must be increasing functions ofV0t/kL because the
differential rotation’s shearing process causes the po
spectra to shift from small to large wave numbers~see Fig.
2!. Hence we retrieve Eq.~5.1!, i.e.,

Fpq~kL!;~kL!21

in the advective range 1!kL!Pe1/3, which is well defined in
the limit Pe→`.

In the advective-diffusive range Pe1/3!kL!Pe1/2 a wave
numberkL experiences the advection process fromV0t51
until kL5APe/V0t when molecular diffusion sets in. Henc
the time averaged generalized power spectra are given b

Fpq~kL!5
1

Pe

kL2
21

E
1

Pe/kL2

d~V0t !L~kL!21FpqS V0t

kL D
~6.6!
4-7
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in the advective diffusive range and usingFpq(V0t/kL)
;(V0t/kL)2(12D) @see Eq.~4.4!# we retrieve Eq.~5.2!, i.e.,

Fpq~kL!;Pe2(12D)~kL!2716D

in the advective-diffusive range Pe1/3!kL!Pe1/2, which is
well defined in the limit Pe→`. Note that the diffusive
micro-length-scaleL Pe21/2 is the Taylor microscale of the
scalar field~first introduced by Corrsin in 1951!. Note also
that 726DP]3,4@ and that the experimental results of@9#
seem to show a steeper power-law wave number spec
at wave numbers larger than where thek21 spectrum is
observed.

VII. CONCLUSIONS AND DISCUSSION

In a two-dimensional isotropic and homogeneous coll
tion of noninteracting compact and time-independent sin
lar vortices with a large wave number energy spectr
E(k);k2a with 1,a<3, the structure functions of an ad
vected and freely decaying scalar field have the follow
scaling behavior in the limit where Pe→`:

Sp~r ,t !;S r

L
V0t D 2(12D)

, ~7.1!

where AV0t/Pe!r /L!1/V0t and 1!V0t!Pe1/3, and the
fractal codimensionD of the scalar interfaces is such th
1/2<D,2/3.

By applying the Lundgren time-average assumption
obtain predictions for the structure functions of a statistica
stationary scalar field in the same 2D velocity field and
same limit Pe→`

Sp~r !;const1 lnS r

L Pe21/3D , ~7.2!

in the rangeL Pe21/3!r !L and

Sp~r !;S r

L Pe21/3D 6(12D)

, ~7.3!

in the rangeL Pe21/2!r !L Pe21/3. The logarithmic term in
Eq. ~7.2! corresponds tok21 generalized power spectra.
may be worth mentioning that the 2D velocity fields
Holzer and Siggia@24# where they observe a well-define
k21 scalar power spectrum are replete with spiral sca
structures.

Predictions ofk21 scalar power spectra in the limit P
→` have been made for scalar fields in smooth~i.e., at least
everywhere continuous and differentiable! homogeneous and
isotropic random velocity field with arbitrary dimensionali
and time dependence by Chertkovet al. @25# who general-
ized and unified the results of Batchelor@26# and Kraichnan
@27#. Experimental investigations of the high Pe´clet number
k21 scalar power spectrum have been inconclusive in
turbulent flows even though Prasad and Sreenivasan
claimed such a spectrum in a 3D wake@28#. However,k21

scalar power spectra have been observed at high Pe´clet num-
01630
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bers in numerical simulations of scalar fields in 2D and
chaotic flows@29–31# and in 2D velocity fields obeying the
stochastically forced Euler equation restricted to a narr
band of small~integral scale! wave numbers@24#. More re-
cently, k21 scalar power spectra have been observed a
5107 in 2D or quasi 2D statistically stationary turbule
flows in the same range where the velocity field’s ene
spectrum isk23 by Jullienet al. @9# who have also observe
logarithmic scalings in that range for all order structure fun
tions @similarly to Eq.~7.2!, but without the ability to estab-
lish the L Pe21/3 scaling factor and range#. The theory of
Chertkov et al. @25# does not apply to this experiment be
cause homogeneous and isotropic random velocity fields
are everywhere continuous and differentiable have ene
spectra steeper thank24 ~see the Appendix!. The present
paper’s theory, however, applies when the energy spect
scales ask2a with 1,a<3 but is limited to time-
independent velocity fields. Nevertheless, the phenome
ogy developed in Sec. VI also holds for time-dependent
locity fields and we now apply and generalize it to spatia
smooth chaotic flows~and also, by the way, to frozen strain
ing velocity field structures!.

The starting point of our phenomenology is the locality
transfer~6.1!. Pedrizzetti and Vassilicos@21# have shown that
interscale transfer in 2D compact vortices is indeed local
given scale when velocity gradients do not vary much
physical space over that scale. This is the case in the
axisymmetric vortices considered in this paper but also
spatially smooth velocity fields. In a spatially smooth chao
flow the distancel between successive folds of the sca
interface decays exponentially as determined by the lar
positive Lyapunov exponentl, i.e., l (t);e2lt, which im-
plies d l / l .2ldt. Applying the locality of transfer property
we get

Fpq@k~11ldt !,t1dt#dk~11ldt !5Fpq~k,t !dk,
~7.4!

the solution of which is

Fpq~k,t !5k21FpqS elt

k D . ~7.5!

This form of the generalized spectra is valid for Pe→` and
as long as 1,elt,k, so that applying Lundgren’s time
average operation fromt50 to t5l21 ln k gives

Fpq~k!5k21
l

ln kE0

ln k/l

FpqS elt

k Ddt;@k ln k#21,

~7.6!

becauseFpq is an increasing function ofelt/k. Power spectra
of scalar fields in spatially smooth chaotic flows are believ
to scale ask21 in the limit Pe→` @29–31# but our theory
predicts (k ln k)21. This is a small correction to the spectru
but an exponentially large correction to the scalar varianc
the limit Pe→`.
4-8
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APPENDIX

For a statistically homogeneous velocity field with velo
ity componentsui(x) we can define a correlation function

Ri j ~r !5^ui~x!uj~x1r !&,

and its Fourier transform

F i j ~k!5
1

~2p!2E drRi j ~r !e2 ik•r.

Incompressibility (¹•u50) and statistical isotropy of a two
component or 2D velocity fieldui(x), i 51,2, imply

F i j ~k!5S d i j 2
kikj

k2 D E~k!

pk
,

where the average kinetic energy per unit mass of the ve
ity field is E5*0

`dk E(k), k[uku; E(k) is the energy spec
trum of the velocity field.

One dimensional energy spectra are defined as follow

f i j ~k1!5
1

2pE2`

`

Ri j ~r 1,0!e2 ik1r 1dr1 ,

which, because of isotropy, are completely characterized
single component, sayf11(k1).

From the above and a few standard manipulations one
get
Ib

v,

et

01630
k
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a

an

E
1

`

dx
Ax221

px2

E~xk1!

f11~k1!
5

1

2
,

and in a range of wave numbers where bothE(k) and
f11(k1) are monotonically decreasing functions ofk andk1,
respectively, it follows thatE(k);k2p if and only if
f11(k1);k1

2p .
The pivotal assumption in Ref.@25# is that the velocity

field ui(x) is Taylor-expandable up to at least first derivati
terms everywhere in physical space. In particular, this me
that u1(x1,0) is differentiable with respect tox1 everywhere
on thex1 axis. If the first derivative ofu1(x1,0) with respect
to x1 is also continuous everywhere along thex1 axis then
the Fourier transformû1(k1) of u1(x1,0) must decay faste
thank1

22 @32#. If, however, the first derivative ofu1(x1,0) is
not everywhere continuous, then it is discontinuous either
a set of well-separated points or on a more pathological
of points which accumulate~and are, therefore, not we
separated! in a fractal-like or in a spiral-like manner@22,32#.
In the case where discontinuities in the derivative field
u1(x1,0) are well separated,û1(k1) decays ask1

22 because
the Fourier transform of well separated discontinuities
tween which the field is continuous decays ask1

21 and the
Fourier transform of the derivative ofu1(x1,0) is equal to
ik1û1(k1). In the other case where discontinuities are n
well separated and accumulate, the decay ofû1(k1) can be
anywhere betweenk1

21 and k1
22 @32,33#, but in this case

u1(x1,0) cannot be considered to be differentiable at tho
points where discontinuities of its derivative accumulate.

In conclusion, the differentiability of the velocity field
everywhere in physical space implies thatû1(k1) must decay
at least ask1

22 and, therefore,f11(k1);uû1(k1)u2;O(k1
24),

which in turn impliesE(k);O(k24).
The conditionE(k);O(k23) stated in the conclusion o

Ref. @25# guarantees that the strain field is large scale but
that the velocity field is differentiable. The spectral conditi
required to use the pivotal assumption of differentiability
Ref. @25# should in fact beE(k);O(k24).
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