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We investigate the Eulerian and Lagrangian spectral scaling properties of vortex tubes, 
and the consistency of these properties with Tennekes’ (1975) statistical advection 
analysis and universal equilibrium arguments. We consider three different vortex tubes 
with power-law wavenumber spectra: a Burgers vortex tube, an inviscid Lundgren 
single spiral vortex sheet, and a vortex tube solution of the Euler equation. While 
the Burgers vortex is a steady solution of the Navier-Stokes equation, the other two 
are unsteady solutions of, respectively, the Navier-Stokes and the Euler equations. 
In our numerical experiments we study the vortex tubes by subjecting each of them 
to external ‘large-scale’ sinusoidal advection of characteristic frequency f and length 
scale p. 

Not only do we find that the Eulerian frequency spectrum QE(o) can be derived 
from the wavenumber spectrum E ( k )  using the simple Tennekes advection relation 
o - k for all finite advection frequencies f when the vortex is steady, but also when 
the vortex is unsteady, and in the Lundgren case even when f = 0 owing to the 
self-advection of the Lundgren vortex by its own differential rotation. 

An analytical calculation using the method of stationary phases for f = 0 shows 
that for large enough Reynolds numbers the combination of strain with differential 
rotation implies that QL(w)  - w-*+Const for large values of o. We verify numerically 
that QL(w)  does not change when f # 0. With the Burgers vortex tube we are in 
a position to investigate the spectral broadening of the Eulerian frequency spectrum 
with respect to the Lagrangian frequency spectrum. A spectral broadening does exist 
but is different from the spectral broadening predicted by Tennekes (1975). 

1. Introduction 
Twenty years ago, Tennekes wrote a paper with the title ‘Eulerian and Lagrangian 

time microscales in isotropic turbulence’. Motivated by a discrepancy between experi- 
mentally measured Eulerian time microscales and the value predicted by Kolmogorov 
scaling, Tennekes ( 1975) advanced an advection hypothesis according to which the 
shape of the Eulerian high-frequency power spectrum QE(o) is determined by large- 
scale advection of inertial-scale eddies. Specifically, it is assumed that random ad- 
vection of inertial-scale eddies by large-scale motions is so fast that the inertial-scale 
eddy structure of the turbulence remains effectively ‘frozen’ during its passage past a 
fixed observation point?. Tennekes’ advection hypothesis is an adaptation of Taylor’s 

t There are recent dynamical arguments for the validity of this assumption that are made by 
comparing long-range large-small-scale dynamics with local small-scale triadic dynamics through 
the spectral Navier-Stokes equation (see Yeung et al. 1995). 
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‘frozen-turbulence’ hypothesis to the advection of small inertial eddies by large-scale 
eddies in the turbulence. 

Quantitatively, Tennekes’ assumption implies a direct dependence of the Eulerian 
frequency spectrum @,(a) on the wavenumber energy spectrum E(k) of the turbu- 
lence. The energy cPE(co)dw in the fluctuations in time seen by a fixed observer 
is directly proportional to the energy E(k)dk of turbulent eddies of wavenumber 
between k and k + dk provided w K u’k and dcL) K u‘dk, where u’ is the r.m.s. velocity 
of the turbulent fluctuations. Hence, setting 

Bw = u‘k ( la) 

where B is a constant, 

@,(w) K u’-lE (%) . 
If the wavenumber spectrum E(k) of the turbulence obeys Kolmogorov scaling, in 
which case 

where E is the average rate of energy dissipation per unit mass, it then follows that 
E(k) hr c2/3k-5/3 (2) 

(3) 
@ , ( O ) K E  2f3 u 12/3w-5f3 

Unlike the Eulerian frequency spectrum, the Lagrangian frequency spectrum GL(w) is 
assumed to obey Kolmogorov scaling in the limit of high Reynolds numbers (Inoue 
1951), so that, on dimensional grounds, 

@L(w) K Ew-2. (4) 
Kolmogorov scaling also implies that (4) is valid over the inertial range of frequencies, 
that is for frequencies w 4 wkux where 

miax - (E/V)”2 ( 5 )  

where v is the kinematic viscosity of the fluid. Tennekes’ advection hypothesis, 
however, implies that (3) is valid in the inertial-advective range of frequencies, that is 
for frequencies w 4 where 

and 7 is the Kolmogorov viscous microscale, i.e. q - (v3/e)’I4. Defining Re,, = u’q/v, 
w i a x  - u ’ / ~  (6) 

Alternatively, assuming E 

Reynolds number ReL = u’L/v, 
uf3/L, where L is an integral length scale, and defining a 

& - R e ,  114 . 
L 

Wmux 

Thus, the advection hypothesis implies a broadening of the Eulerian frequency spec- 
trum with respect to its Lagrangian counterpart. The Eulerian frequency spectrum 
extends to frequencies that are higher by a factor proportional to Re,, or ReLf4 
(figure 1). 

Over the past fifteen years, direct numerical simulations (DNS) of both decaying 
and forced isotropic turbulence with a variety of small to moderate Reynolds numbers 
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FIGURE I. Schematic log-log plot of high-Reynolds-number Eulerian and Lagrangian turbulent 
frequency spectra according to Inoue (1951) and Tennekes (1975); (<& - Re,wfi;,, - Re, 114 cornax). L 

Re have revealed regions of intense vorticity that are coherently organized in the form 
of long and slender vortex tubes (see Jiminez et al. 1993 and references therein). More 
recently, the experimental technique of migrating bubbles has been used to visualize 
such intense vortical filaments in shear-driven turbulence, and in homogeneous, 
isotropic, stationary turbulence, (see Villermaux, Sixou & Gagne 1995 and references 
therein). A picture, however incomplete, of the organisation of the small scales of the 
turbulence is emerging. At the present stage, it is not known whether this picture of 
small-scale turbulence where vortex tubes dominate the smallest scales survives in the 
limit Re + co. Nevertheless, the purpose of this paper is to study idealized problems 
where the small-scale structure of the turbulence is modelled with vortex tubes that 
are randomly advected by a large-scale motion. 

In the last decade, some progress has also been made in the understanding of the 
consequences of self-similar power spectra. Power spectra such as E ( k )  - kP2p where 
p is not an integer imply the existence of singularities that are more severe than mere 
discontinuities in the flow? (Hunt & Vassilicos 1991). For example, Kolmogorov’s 
E ( k )  - k--5/3 ( p  = 5 / 6 )  implies that high Reynolds number small-scale turbulence con- 
tains near-singularities (approximate singularities valid down to local viscous length 
scales where the flow is regular) that are either simple (figure 2a), complex isolated 
(figure 2b) or non-isolated (figure 2c). It has been suggested that some of the vortex 
tubes in the small-scale turbulence may carry some of the turbulence near-singularities 
(Moffatt 1984, 1993; Hunt & Vassilicos 1991) and Pullin & Saffman (1993) developed 
a model of the turbulence fine-scale structure based on the assumption that these 
vortex tubes are Lundgren vortices, which are strained rolled-up spiral vortex sheets 
and are an example of a flow with a complex isolated near-singularity. Lundgren 
vortices are asymptotic incompressible solutions of the Navier-Stokes equation in the 
limit where time r + co. An example of an incompressible vortex tube solution of 

t The converse is not necessarily true. A k-*p spectrum where p is an integer can be the result 
of either a discontinuity in a ( p  - I )  derivative of the field or of singularities such as in figure 2. 
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FIGURE 2. In one dimension, the following functions all have the same energy spectrum 
E ( k )  - k-5/3:  (a) u(x) = xP1l6; ( b )  u(x) = sinx-'''; (c )  the Weierstrass function for D = 7/6; 
u(x) = x:=o k;-* sin(k,,x) where k,  = y" with y > 1 and 1 < D < 2. 
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the Navier-Stokes equation with a simple near-singularity is the Burgers vortex where 
the azimuthal velocity u4 - r-' outside the viscous core, i.e. for distances r from the 
central axis larger than the radius of the viscous core (Batchelor 1967, pp. 271-273). 
Models of small-scale turbulence based on Burgers vortex tubes and vortex sheets have 
been discussed by Townsend (1951), and Jimenez et al. (1993) have assumed a Gaus- 
sian vorticity fall-off along the transversal of the vortex tube, as in the Burgers vortex. 
Moffatt, Kida & Okhitani (1994) explain some observed properties of DNS small- 
scale turbulent vortex tubes in terms of non-axisymmetric Burgers-like vortex tubes 
that are high-Reynolds-number asymptotic solutions of the Navier-Stokes equation. 

In the range of wavenumbers where the effects of viscosity are negligible, the 
energy spectra of the Burgers vortex and of the Lundgren single spiral sheet vortex 
respectively take the forms E ( k )  - k-' and E ( k ,  t)  - k-2 (see the Appendix). The k-' 
spectrum of the Burgers vortex reflects the simple r-l singularity of the velocity field 
whereas the k-' spectrum of the Lundgren spiral vortex reflects the combination of a 
simple singularity in the differential rotation that continuously winds the vortex sheet 
into a spiral and of the isolated complex singularity of the spiral vorticity field. (It 
is by interpreting the spatial average over many spiral vortex tubes as an integration 
over the history of a single such vortex tube and by carrying out this integration over 
time that Lundgren (1982) obtains E ( k )  - k t 5 l 3  from E ( k ,  t )  - k-2 . )  

In this paper, we subject each of three different vortex tubes to a sinusoidally 
unsteady advection, and calculate Eulerian and Lagrangian frequency spectra. The 
object of our investigation is to study whether and under what conditions such 
simple vortex models of small-scale turbulent flow structure can account for the 
Tennekes advection hypothesis, the spectral broadening that ensues from it, and the 
CI-' Lagrangian spectrum that follows, in the context of the classical turbulence 
equilibrium theory from dimensional similarity arguments. How do the singularities 
of the Eulerian turbulence field affect the Eulerian and Lagrangian frequency spectra? 

In the following section 2, we describe the three vortex tubes in some detail, we 
calculate their Eulerian frequency spectra using the Tennekes advection hypothesis 
and we compare these with the numerically calculated spectra. In $3 we investigate 
the Lagrangian frequency spectra of the three vortex tubes, and in $4 we make a few 
observations about the geometry of fluid element trajectories around vortex tubes. 
We conclude in 55. 

2. Randomly advected vortices and the Tennekes advection hypothesis 

Both the Burgers and the Lundgren vortices are strained vortex tubes with vorticity 
vectors all pointing in the same (the z )  direction. The z-axis is the axis of the 
vortex tube, and in cylindrical coordinates ( r ,  4 ,  z) the externally imposed irrotational 
straining velocity field has axial and radial components 

2.1. The three vortex tubes, and their wavenumber spectra 

u, = az 

and 

u, = -?a r 

where a is a constant strain rate. Superimposed on this irrotational straining velocity 
field is, in the case of the Burgers vortex, an azimuthal velocity 

(8b)  1 



422 N. A.  Malik and J .  C. Vassilicos 

where y is the constant circulation and v the kinematic viscosity, and in the case 
of the inviscid Lundgren single spiral vortex sheet, a velocity field with radial and 
azimuthal components 

and 

where 

the function int(x) is the integer part of x, S ( t )  = eat, < = [S(t ) ] ' /2r ,  T ( t )  = J,"S(z)dz, 
and 

d r f ( r )  = -(r2Q(r))  
dr 

(see Lundgren 1982, 1993 and the Appendix). The Burgers vortex is a steady 
incompressible solution of the Navier-Stokes equation with a vorticity that has a 
Gaussian dependence on r ,  

(104 

where R is the size of the vortex core which remains constant in time as a result 
of a balance between strain and viscosity and R = ( 2 ~ / a ) ' / ~ .  The Lundgren vortex 
is an unsteady incompressible asymptotic solution of the Navier-Stokes equation for 
t -+ co. The vorticity of an inviscid Lundgren single spiral vortex sheet is concentrated 
on a spiral sheet that is continuously being rolled up by a differential rotation: 

4, t )  = S(t)f(<P[4 - Q ( < ) T ( t ) l  (12)  
where 6 is the Dirac delta function, 4 = Q(<)T(t)  is the equation of the spiral, and 
Q ( r )  is the angular velocity of the differential rotation. 

An exact unsteady and incompressible vortex tube solution of the Euler equation 
is obtained by superimposing on the straining velocity field ( 8 )  an azimuthal velocity 

ub = 2 n ~ ( t ) r ~ ( [ ~ ( t ) ] ' / ~ r )  (13)  
where Q ( r )  is the angular velocity of the differential rotation. This latter velocity 
field is obtained by applying the Lundgren transformation (Lundgren 1982, 1993) 
to the velocity field u, = uz = 0, ub = 2nrQ(r)  which is an exact incompressible 
steady solution of the Euler equation. The Lundgren transformation replaces r by 
< = [ S ( ~ ) l ' / ~ r  in ub and adds the straining velocity field (8) onto the azimuthal flow 
thus generating the velocity field (8) and (13)  which is also an exact incompressible 
solution of the Euler equation but is unsteady. Note that the azimuthally averaged 
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vorticity (1/27c) J;'" oJ(r, 4, t )  d+ is the same both in this exact unsteady solution of the 
Euler equation and in the Lundgren spiral vortex sheet (8) and (10) and is equal to 
S ( t ) f (  [S(t)] '12r) where f ( r )  = r-'(d/dr)(r2Q(r)). Note also that the Lundgren inviscid 
spiral vortex sheet becomes the Euler solution (8) and (13) if the terms containing 
T ( t )  and X ( 5 , t )  in (lOa), ( lob)  and (1Oc) are removed. 

The energy spectrum? of the Burgers vortex is 

E(k) = ; (14) 

E ( k )  - k-' for k 4 R-' is a direct consequence of u4 o y/271r where r 9 R. When 
Q ( r )  = Qo(r/&)-" where Qo and & are specified constants with dimensions of, 
respectively, a frequency and a length and CI is strictly positive, the energy spectrum 
of the inviscid Lundgren single spiral vortex sheet takes the form 

E ( k ,  t )  - k-2 (15) 

for any LY < 3. This k-2 form of the spectrum is a combined effect of the simple 
singularity in the azimuthally averaged vorticity (1/27c) JF w(r, 4, t )  d 4  = f ( r )  and of 
the isolated complex singularity in the detailed spiral distribution of vorticity (see the 
Appendix). The azimuthally averaged vorticity f ( r )  is related to the angular velocity 
Q ( r )  by (IOd), and therefore f ( r )  = (2 - a)QO(r/&)-". The energy spectrum of the 
exact Euler solution (8) and (13 )  with Q ( r )  = Qo(r/&)-" is defined if < a < 2, in 
which case it takes the form 

E ( k ,  t )  - k-5+2a. (16) 
Note that the energy spectra (15) and (16) are time-dependent, but that their power- 
law dependence on k is not time-dependent. 

2.2. Sinusoidal advection of vortex tubes and their Eulerian frequency spectra 
We simulate large-scale random advection of small-scale turbulence by assuming that 
the vortex tubes and their straining field (8) are advected together by an external 
one-dimentional sinusoidal flow along the 4 = 0 axis. Because of this flow, the 
displacement of the centre of the vortex from the origin of the fixed coordinate 
system oscillates as r c ( t )  = (ps in ( f t ) ,O)  in Cartesian coordinates where p and f are, 
respectively, the spatial amplitude and the frequency of the sinusoidal jitter. The 
r.1n.s. velocity of the sinusoidal advection is 

u' K pf. (17) 

Applying Tennekes' advection hypothesis ( 1 )  to calculate the Eulerian frequency 
spectra of sinusoidally advected vortices, we obtain, in the case of the Burgers 
vortex, 

@E(w)dw = AEyak-'e-(Rk)Zdk (18a) 
where 

BEO = Pfk ( 1  8b) 

@E(O)dO - kK2dk (19) 

and AE and BE are constants; in the case of the inviscid Lundgren vortex, 

f In principle, E ( k )  dk should be the kinetic energy per unit mass averaged over the azimuthal 
plane; we define E ( k )  such that s E ( k )  dk = 1/(4n(y/a)) s d2x id where y / a  is the only quantity 
with dimensions of an area that can be constructed independently of the viscosity v .  
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where 

and in the case of the vortex solution (8) and (13) of the Euler equation, 
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w Iv pfk; (20) 

@E(o)dm - k-5+2"dk (21) 

where the relation between k and o is given by (20). From (18) it follows that the 
Eulerian frequency spectrum of the sinusoidally advected Burgers vortex is 

d j E ( ~ )  = AEyam-le-(W/WiLx)z (22a) 

mfax = B,'Pf /R ,  (22b) 

where 

and from (19) and (20) it follows that the Eulerian frequency spectrum of the 
sinusoidally advected Lundgren single vortex sheet takes the form 

@ E ( W )  - (23) 

whilst from (21) and (20) it follows that for the sinusoidally advected vortex tube 
Euler solution (8) and (1 3) ,  

@ E ( O )  - m-5+2a. (24) 
Without Tennekes' advection hypothesis, the frequency spectra of sinusoidally 

advected vortex tubes would have been very hard to calculate analytically. It is 
therefore important to verify numerically whether the Tennekes advection hypothesis 
leads to the right form and the right properties of the Eulerian frequency spectra 
of sinusoidally advected vortices. The intuitive rationale behind Tennekes' advection 
hypothesis is that the sinusoidal advection of vortex tubes is so fast that the vortex 
tubes remain effectively 'frozen' during their passage past a fixed observation point. 
The Burgers vortex is steady, and therefore remains by definition 'frozen' as it travels 
past an observer, which suggests that formulae (18) may be expected to apply for 
all values o f f .  However, the Lundgren vortex and the Euler solution (8) and (13) 
are not steady and Tennekes' argument would imply that (19) and (20) are not valid 
unless f is significantly larger than a and Qo, the two characteristic frequencies of the 
inherent unsteadiness of these two vortices. A related point is that the wavenumber 
spectrum E ( k ,  t )  of these two vortices is time-dependent, and it is therefore highly 
non-trivial that the Eulerian frequency spectrum can be obtained from E ( k , t )  by a 
mere application of Tennekes' advection hypothesis. On the other hand the power-law 
dependence of E ( k , t )  on the wavenumber k is stationary in time. 

The results of our numerical calculations show, for the sinusoidally advected 
Burgers and Lundgren vortices, that the Tennekes advection hypothesis gives the 
correct Eulerian frequency spectra djE(w) for all finite values of f ,  and in the case of 
the Lundgren vortex, even when f = 0. Some results obtained for the sinusoidally 
advected Burgers vortex are plotted in figure 3.  The characteristic frequencies of this 
oscillating vortex are the strain rate a and y /p2  (p2/y  is the turnover time of the 
vortex over a length scale p). We calculate QtE(w) numerically for various values of the 
dimensionless frequencies f / a  and f p2/y in ranges where both or either are smaller 
or larger than 1, and find in all these ranges that formulae (22) are in good agreement 
with the numerical results (see figure 3 ) .  The constants AE and BE in (22) are universal 
in the limit where the vortex Reynolds number Re, = y / v  .+ 00 or the Reynolds 
number Re, = p2f/v -+ co, in the sense that these constants converge to values (AE = 
0.1 and BE = 2.0) that are independent of v and the other parameters of the flow. 
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FIGURE 4. Log-log plots of the Eulerian frequency spectra against the frequency for sinusoidally 
advected Lundgren single spiral sheet vortex with c( = 1.7, and advection amplitude p and frequency 
f .  Two graphs are shown on each plot: one shows GE(w)  and the other shows w2GE(w)  to 
demonstrate the - w-2 behaviour. (a)  f / a  = 0.2, f /s20 = 0.2; ( b )  f /a = 10, f /ao = 10. 
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The numerically calculated Eulerian frequency spectra QE(m) of the sinusoidally 
advected Lundgren single spiral vortex sheet are in good agreement with (23 )  for all 
values of the dimensionless frequencies f / a  and f/O, analysed in all the ranges where 
these dimensionless parameters are either larger and/or smaller than 1 (figure 4). It 
is perhaps particularly surprising that (23 )  is correct even when f = 0 (figure 5). 
This result suggests that the Tennekes advection hypothesis can be valid even when 
the advection is a self-advection and therefore an effect of the unsteadiness of the 
vortex tube which does not remain frozen. In the case of the Lundgren vortex the 
self-advection is caused by a differential rotation whereby the spiral rotates and wraps 
continuously around itself into ever tighter coils. 
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FIGURE 5. Log-log plot of the Eulerian frequency spectrum against the frequency for the Lundgren 
single spiral sheet vortex with E = 1.7, with no external advection f = 0. Graphs for (PE(w)  and for 
w2(PE(w) are shown. 

wla 
FIGURE 6. Log-log plot of the Eulerian frequency spectrum QE(w)  against the frequency for the 
sinusoidally advected Euler solutions (8) and (13) with f l u  = 5, f / Q O  = 1 and three different values 
of 01. (PE(w) - w-3 for E = 1, QE(w) - for E = 1.5 and (PE(w) - for CI = 1.9. 

The Eulerian frequency spectrum of the sinusoidally advected Euler solution (8) 
and (13) (with CI < 2) is not defined when f = 0 and when f / a  a 1. However, for 
f / a  = O(1) and f / a  2 1, the numerically calculated @,(a) is in good agreement 
with (24) for all values of a between 1/2 and 2 (figure 6), and therefore the Tennekes 
advection hypothesis applies to the sinusoidally advected Euler solution (8) and 
(13) when the advection frequency f is of the same order or larger than the strain 
rate a. 
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3. Lagrangian frequency spectra 
Kolmogorov scaling arguments imply that the Lagrangian frequency spectrum of 

the turbulence takes the form QL(o) - m-2 (Inoue 1951). It is not clear why 
such scaling arguments may or may not apply to the turbulence; in particular, what 
are the types of time and space flow structures for which Kolmogorov's dimensional 
arguments are valid, and under what constraints? In this section we study the form of 
@ L ( o )  that arises from a flow structure combining exponential strain and power-law 
differential rotation. 

Let us start with the case where the vortex is not sinusoidally advected and 
f = 0. Defining the Lagrangian velocity components u,(t) = ur(r ( t ) ,  +(t) ,  t ) )  and 
u4(t) = ub(r(t) ,  +(t), t )  where (r(t), +(t)) are cylindrical coordinates of a fluid element 
at time t, and defining the Fourier transformed complex Lagrangian velocity 

the Lagrangian frequency spectrum is given by 

@do) = ;aliiL(o)12, 

so that 

@L(o)do = a Y ( U , . ( ~ )  + ui(t))dt. (27) J' .I1 
The characteristic time for fluid elements to reach the vortex core is a-', and (27) is 
the total kinetic energy divided by this time. 

We approximate the integral (25) by the method of stationary phases. The oscilla- 
tion ei('J'(t)-uc) is stationary at only one time t = t.(o) because +(t) is a monotonically 
increasing function of t when f = 0. Assuming that +(t)  varies more rapidly with 
time than u,(t) + iu,(t) around t = t,, it follows that 

where 4" = d24/dt2, and therefore 

for large frequencies o. If the time t,(w) is smaller than the time t, that it takes a 
fluid element starting at ro to reach the viscous core, then t,(o) and the spectrum (29) 
may be calculated by taking into account only the velocity field outside the viscous 
core. For the Burgers vortex, the time t, is given by R = which implies 
t ,  = a-' ln(ria/2v). The inviscid Lundgren vortex and the Euler solution (8) and (13) 
have, by definition, no viscous core and t, = co. 

3.1. The Burgers vortex 

When f = 0, the coordinates ( r ( t ) , 4 ( t ) )  of fluid element trajectories in the Burgers 
vortex outside the vortex core are solutions of the strain equation 

I - dr 
- - u, = -iar 
dt 

and the point vortex equation 
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and are given by 

and 

where ( rO ,4o)  are initial coordinates and @ = y/27cr;u. It follows that ur(t) = 
- iu  roe-at/2, u,(t) fi: y/2nr0e~'/~, and that the projected trajectories on the azimuthal 
plane outside the viscous core take the spiral form 4(t) - r ( ~ ) - ~ .  This specific spiral 
form is a consequence of the combination of a point vortex with the straining field 
(8). We shall now see that the combination of strain with the differential rotation 
of a point vortex implies that the Lagrangian frequency spectrum of the vortex 
takes the form QL(w) = y/27~[(2w/u)-~ + 11 in a range of frequencies w such that 
2nu d w < (Re,/4n)u when Re, is large enough. 

If we neglect the velocity field inside the viscous core, the time t ,  when the oscillation 
ei@(t)-ut) is stationary may be calculated using (31b). We find 

r ( t )  = roe-at/2 (31a) 

(31b) 4(t) = 4 0  + @(eat - 1) 

and t ,  cannot be defined unless w > @a, which is satisfied if we take the initial 
distances ro to be large enough because @ = y/2nr$2. We can use (29) to estimate 
QL(a) if 4(t) varies more rapidly with time than ur(t)  + iub(t) around t = t,, and 
we can substitute t ,  by (32) in (29) only if t,(w) < t , .  Based on (30) and (31), the 
condition for 4(t) to vary more rapidly with time than ur(t)  + iu,(t) around t = t ,  is 
2nu B 0, in which case (29) can be used and implies 

(33) 
-1 2 

@ L ( O )  fi: 0 [u,(t*) + u;(t*)1 

which, however, is not valid in the range of large frequencies w where t,(w) > t ,  and 
where the viscosity affects the Lagrangian frequency spectrum. Inserting the forms of 
the point vortex and the straining field that make the Burgers vortex, the Lagrangian 
frequency spectrum (33) becomes 

%,(a) " y 2n [ ( %)-2 + I] , (34) 

and is valid if @a = y/27cri < w, 27cu 4 w and w < (Re,/4n)a where t,(w) < t v .  
Such a range of frequencies exists provided that Re, P 8n2 and ro is large enough (in 
particular, ro > R.) The validity of (34) is corroborated by numerical integration of 
Lagrangian fluid element trajectories around a Burgers vortex tube (figure 7). 

We stress that the Lagrangian frequency spectrum (34) is independent of the 
viscosity v because this spectrum is the signature of the combination of strain 
and differential rotation outside the viscous core of the vortex. The Kolmogorov 
scaling argument leading to QL(w) - ew-2 in small-scale turbulence is based on 
the assumption that both the form of the spectrum and e are independent of v 
in the limit of indefinitely high Reynolds numbers. The energy dissipation rate of 
the velocity field (u, = az,  u, = 

Whereas the external strain rate is a, the vortex-induced strain rate is (d/ar)u, - i w ,  
and correspondingly, the external dissipation rate is v ;a2 and the vortex-induced 
dissipation rate is v ( ( d / d r ) u ,  - in the context 
of the Burgers vortex, it follows from (9) and (11) that e(r)  = ~(Re, /47c)[e-~ '~/~* - 

*(1 r2 - e-2rZ/R2)] with €0 = yu2/16n. It is interesting to note that 27cJ:e(r)rdr is 

1 u# = u,(r)) is v(qa2 + ((d/dr)u, - ;a)*). 

Defining e(r) = v( (d /d r )u ,  - 
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FIGURE 7. Log-log plot of the normalized Lagrangian frequency spectrum ( 2 n / y ) @ ~ ( w )  against the 
normalized frequency w / a  for the Burgers vortex (f = 0). (The Lagrangian frequency spectra are 
obtained by averaging the spectra of signals observed along different fluid trajectories, each with a 
different starting position.) 

independent of v and proportional to €0, and that the Lagrangian frequency spectrum 
of the Burgers vortex is QL(o) z 2eoo-*+y/27t in the limit of high Reynolds numbers 
3 + 1 and in a range of frequencies that is bounded from above by 

Re, 
471 %ax = ~ 

a. ( 3 5 )  

3.2. The exact vortex solution of'the Euler equation 
The trajectories of fluid elements in the inviscid vortex Euler solution (8) and (13) are 
solutions of the strain equation 

dr 1 - = u, x - -ar  
dt 2 

and of the strained differential rotation equation 

It is perhaps interesting that the solutions of equations (36) take the form (31) albeit 
with Q = 2nQo/a(ro/&)-" and are therefore identical to the fluid element trajectories 
in a Burgers vortex outside the viscous core. In particular, the time-dependence 
of ul ( t )  and u$(t)  is identical to that in the Burgers vortex and the spiral form of 
the projection of these trajectories on the azimuthal plane is again 4 ( t )  - r(t)-2. 
In the previous subsection we have shown how trajectories of the form (31) around a 
Burgers vortex imply that cPL(w) is given by (34) for large Re, and ro and in a range 
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under the conditions that 27&(r0/&)-~ < o for the time t ,  defined in (32) to exist 
and 2na 4 o for the stationary phase asymptotic to be valid. There is no upper 
bound on the frequencies o over which the form (37) of the spectrum extends because 
t, = 00 in the Euler solution (8) and (13). 

It is worth stressing that, similarly to the Burgers vortex, the combination of strain 
and differential rotation implies an wF2 + Const. Lagrangian energy spectrum for 
o + 27ra and ro large enough. Numerical integrations of fluid element trajectories 
around vortex Euler solutions of the form (8) and (13) corroborate the result (37) and 
the numerically calculated Lagrangian frequency spectra are very similar to those in 
figure 7 albeit with a normalization in agreement with (37). 

3.3. The Lundgren vortex 
Our numerical results for the Lagrangian frequency spectrum of the Lundgren vortex 
are in good agreement with a constant high-frequency spectrum, but we have no 
evidence of a oP2 spectrum at lower frequencies. Thus, the high-frequency end of 
@L(o) of the Lundgren vortex has a similar constant appearance to the G L ( o )  of 
the Burgers vortex, even though the latter is dominated by the overall differential 
rotation and strain of the flow, and not by the discontinuities in the Lagrangian 
velocity, caused by the spiral vortex sheet, that appear in the Lundgren vortex flow. 
Because of these discontinuities across the vortex sheet, the stationary phase analysis 
leading to (29), (34) and (37) cannot be applied to the Lundgren vortex, and it is 
therefore quite surprising that the high-frequency Lagrangian spectrum of this vortex 
is constant. As for the lower frequencies, we have neither analytical nor numerical 
evidence pointing to a range of frequencies where the Lundgren spiral vortex sheet 
has a oW2 Lagrangian frequency spectrum. Some of the numerical evidence we report 
in 94 demonstrates that the spiral form of fluid element trajectories in the Lundgren 
single spiral vortex sheet is not 4(t) - r(t)-2, contrary to the prediction of equations 
(31) which are valid for both the Burgers vortex and the Euler solution (8) and (13) 
and which lead to the Lagrangian spectra (34) and (37). Hence, the vortex sheet 
cannot be neglected when we calculate Lagrangian trajectories and frequency spectra. 
The effect of spiral vortex sheets on Lagrangian frequency spectra lies beyond the 
scope of the present paper and is left for subsequent study. 

3.4. The case of non-vanishing advection frequencies f 
We now integrate trajectories of fluid elements in a sinusoidally advected vortex and 
compute the Lagrangian frequency spectrum sDL(o). The centre r, ( t )  of the vortex is 
given by rc(t) = (psin(ft),O,O) in Cartesian coordinates and is therefore such that 

The Lagrangian velocity u(t)  of a fluid element in the sinusoidally advected vortex is 

(39) 

where (r’(t), @(t ) , z ( t ) )  are the cylindrical coordinates of r’ = r ( t )  - r c ( t )  where r ( t )  
is the position of the fluid element at time t, e, is the unit vector on the z-axis, 

u(t) = uC(t) + u,(z(t))e, + ur(r’(t), 4’(t), t)er/ + u&’(t), 4’(t), t)ey 
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FIGURE 8. Log-log plot of the Lagrangian frequency spectrum ( 2 7 ~ / y ) @ ~ ( w )  against the normalized 
frequency cola for the sinusoidally advected Burgers vortex for f l a  = 5 and f p 2 / y  = 125. This 
result is identical to figure 7. 

erl = ( l / r ’ ( t ) ) / ,  and eN is defined such that e y q  = 0 and er, x e@ = eZ. Fluid element 
trajectories are obtained by solving 

d 
-v(t) = u(t) .  
dt 

The vortex tubes and the fluid elements are advected together by the same sinusoidal 
velocity field u,(t) which is independent of position. Thus the motion of the fluid 
elements with respect to the vortex centre is due to the vortex tube alone and is 
therefore independent of large-scale advection. We may therefore expect the Lagrangian 
frequency spectra QL(co) of sinusoidally advected vortex tubes to be identical to the 
Lagrangian frequency spectra of these vortex tubes when f = 0. This conclusion is 
valid for all frequencies f and is confirmed numerically for all three vortex tubes. In 
figure 8 we present an example of a log-log plot of QL(co)  against o / a  for the Burgers 
vortex when f l u  5> 1. Figure 8 does not differ from figure 7 where f = 0. 

3.5. Spectral broadening 
In the case of the sinusoidally advected Burgers vortex we have seen that LO:,, cc u’ /R  
with uf cc pf and cokax K Re,.a K Re,v/R2. The microscale R defined under 
equation (11) is the viscous length scale of the vortex and is analogous to the 
Kolmogorov microscale y.  Hence, in this model of a randomly advected strained 
vortex, Re,  = u‘R/v,  and 

wmax 
which is different from the spectral broadening (7a) predicted by Tennekes (1975) 
on the basis of his advection hypothesis and Inoue’s (1951) Kolmogorov scaling 
arguments. However, the dependencies of co~,,/oka, on u’ and R in (41a) are 
identical to those of Tennekes (1975). Assuming, following Kolmogorov, that the 
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average rate of energy dissipation per unit mass is set by the large-scale motions and 
therefore scales as E. - d 3 / p  cc p2f3 and equating it to the external dissipation rate 
which scales as va2 we get a relation between the strain rate a, the viscosity v and the 
parameters p and f of the random advection that implies 

where Re,, = u’p/v - p2f /v .  Identifying the length scale p with an integral length 
scale of the turbulence L, (41b) is different from Tennekes’ spectral broadening result 
(7b). Nevertheless, it is worth noting that the dependencies of w~,,/co~,, on the 
large-scale quantities u’, p and f in (41b) are identical to those predicted by Tennekes 
(1975) in his formula (7b). 

4. Kolmogorov capacity of fluid element trajectories around vortex tubes 
Because the external jitter advects the vortex and the fluid elements together 

without displacing them relative to each other, the shape of the Lagrangian frequency 
spectrum QL(o) does not depend on f and we find by solving (38), (39) and (40) 
numerically that fluid element trajectories v ( t )  are always spiral-helical in nature and 
also independent of the value o f f .  

In the terminology of Vassilicos & Hunt (1991), the spiral trajectories sample 
the field by being more or less locally space-filling - ‘locally’ meaning around only 
the central axis of the flow - and this allows their degree of ‘space-fillingness’ to 
be measured with Kolmogorov capacities. We measure numerically the Kolmogorov 
capacity Dk of fluid element trajectories generated by the sinusoidally advected vortex 
tubes. In the case of the Burgers vortex we find that D i  is well-defined and equal 
to D [ ,  the Kolmogorov capacity of streamlines. For the Burgers vortex, D[ = 4/3 
(Vassilicos & Brasseur 1996). On the other hand, in the range of parameters that 
we have investigated in this paper for the inviscid Lundgren single spiral vortex 
sheet, we find that D i  = 5/4 both for f = 0 and f # 0 and does not vary with the 
exponent CI that characterizes the differential rotation nor with f (figures 9). This result 
demonstrates that the projection of fluid element trajectories on the azimuthal plane 
does not take the spiral form +( t )  - ~ ( t ) - ~  which would have implied D i  = 4/3 (see 
Vassilicos & Hunt 1991). In particular, when f = 0, it follows that the fluid element 
trajectories of the inviscid Lundgren spiral vortex sheet are not well represented by 
the solutions of the system of equations (36). This system of equations would be 
derived for the inviscid Lundgren spiral vortex if the contribution of the spiral vortex 
sheet in (10) could be neglected. Hence, however small the amplitude of the velocity 
field induced by the spiral vortex sheet, the effects of the spiral vortex sheet on fluid 
element trajectories, and therefore also on Lagrangian frequency spectra, cannot be 
overlooked. 

5. Discussion 
Recent experimental results and direct numerical simulations of turbulence have 

shown that the fine scales of a turbulent flow contain long and slender vortex tubes. 
We confirm the validity of the Tennekes advection hypothesis for a randomly advected 
Burgers vortex which is a steady solution of the Navier-Stokes equation with a simple 
singularity that gives rise to a k-’ wavenumber spectrum. We also confirm the validity 
of the Tennekes advection hypothesis for a randomly advected unsteady vortex tube 
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FIGURE 9. Kolmogorov capacities of fluid element trajectories in a Lundgren single spiral sheet 
vortex. Log-log plots of N(6) ,  the number of boxes that cover the trajectory, against 6, the box 
size; the Kolmogorov capacity Dk is given by N ( 6 )  - if such a power law exists. ( a )  CI = 1.7, 
f / a  = 0.1, f /Oo = 2. ( b )  a = 1.9, f = 0. 

solution of the Euler equation. This Euler solution has a simple singularity that gives 
rise to a power-law wavenumber spectrum between k-' and k-4 ( E ( k )  - k-s+2a for 

< a < 2.) The Tennekes advection hypothesis also holds for the randomly advected 
Lundgren single spiral vortex sheet which is an unsteady approximate solution of the 
Navier-Stokes equation with an isolated complex singularity that gives rise to a k P 2  
wavenumber spectrum. But in this case we have discovered a new rbgime where the 
Eulerian frequency spectrum is still obtainable from Tennekes' relation w - k even 
when the advection of the Lundgren vortex is purely self-induced by the inherent 
unsteadiness of the vortex itself with no external advection. The Eulerian frequency 
spectrum reflects the self-similarity of the vortex singularity in the inertial-advective 
range of frequencies w G o,Eax. 

It is perhaps striking that the two different systems of equations (30) for the Burgers 
vortex, and (36) for the Euler solution (8) and (13), have identical solutions given 
by (31) in spite of the qualitative differences between (30) and (36). The system 
of equations (30) is a combination of strain with the steady differential rotation 
of a point vortex, whereas the system of equations (36) is a combination of strain 
with unsteady differential rotation of spatial scaling exponent a. The solutions are 
fluid element trajectories with projections on the azimuthal plane that take the same 
spiral form 4 - r-2 regardless of the value of a. The combination of strain with 
differential rotation expressed in the solution's form (3 1) implies, analytically, that 
QL - + Const. where o 9 2na provided the vortex Reynolds number Re, is 
large enough or infinite. However, the presence of the spiral vortex sheet in the 
Lundgren vortex influences the spiral form of the fluid element trajectories to the 
point that these trajectories are not such that 4 - rp2 and therefore do not obey (31). 
Nevertheless, Q L  - Const. where w 9 ;a even for the Lundgren single spiral vortex 
sheet when f = 0. 

When the vortex and the fluid elements are advected together by an external jitter, 
then for any finite advection frequency f > 0, cPL(o) is identical to the case when 
f = 0. When f = 0 and in the case of the Burgers vortex, the combined strain and 
differential rotation of the vortex imply that 
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in the limit of high Reynolds number Re,  and in a range of frequencies where 
w 4 wkax cc aRe,. €0 is a characteristic vortex-induced energy dissipation rate per 
unit mass, and the first term of the right-hand side of (42) is similar to the Lagrangian 
energy spectrum of the turbulence obtained by Inoue (1951) by universality scaling 
arguments la Kolmogorov. However, this e0cx2 term is overshadowed by the 
constant y/2n in (42). Furthermore, in this regime of low frequencies f, there is a 
spectral broadening of the Eulerian spectrum with respect to the Lagrangian spectrum 
that is different from, though in some ways comparable to the spectral broadening 
discussed by Tennekes (1975). Indeed, for the Burgers vortex where we keep the 
effects of viscosity, w&,,/wkax - Re,,/Re, to be contrasted with Tennekes’ relation 
w&x/wkax - Re,,. Assuming, following Tennekes (1975), that E - d 3 / p  cc p2f3 and 
equating E to the external dissipation rate va2, we get co~,,/w~,, - Rebf4/Re, which 
differs from Tennekes’ spectral broadening relation wiax/cokax - However, 
these two different spectral broadening relations bear the same dependencies on the 
external large-scale quantities u’, p and f .  
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Appendix. The Lundgren single spiral vortex sheet and its energy spectrum 

single spiral vortex sheet are given by 
The radial and azimuthal components of the velocity field around the Lundgren 

ar 1 d 
2 u, = -- + 5 ‘y ([S(t)l 1’2r, 4, T(t ) ) ,  (Ala) 

and 

(A2b) 
a 
dr 
-YO = -27crQ(r) 

(see Vassilicos & Brasseur 1996). Equations (lOa), (lob) and (1Oc) follow from (Al) 
and (A2). 

For an inviscid Lundgren single spiral vortex sheet where Q ( r )  = Qo(r/&)-a and 
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FIGURE 10. Log-log plot of the the wavenumber spectrum against the wavenumber for the 

Lundgren single spiral sheet vortex with ct = 1. 

f ( r )  = (2 - a)Qo(r/&)-", equation (3.21) in Gilbert (1988) gives 

ic 

E ( k )  - k-3  C ( d2oG / ~ ~ k ) ~ ' ( ' + l )  I f (  rn ) I 
n = l  

where r ,  = (naQo&t/nk)'/(a+l) and the functions fn in Gilbert (1988) are replaced 
by the single function f because we consider the case of a single spiral vortex sheet. 
Hence, 

and as explained 
so that 

for a < 3. We 
Lundgren single 

n = l  

by Gilbert (1988), the sum needs only be carried out up to n = nu K k ,  

also compute E ( k )  numerically and confirm the k P 2  form of the 
spiral vortex sheet wavenumber spectrum (figure 10). 
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