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A model of turbulence based on a summation of Fourier modes with an imposed turbulent energy
spectrumE(k) ~ kP, is used to investigate the characteristics of one-particle diffusion in turbulent
flow. The model is described and the general Eulerian field is investigated. Using a number of
Lagrangian statistical measures the results from the model are compared with laboratory
experiments[N. Mordant, P. Metz, O. Michel, and J.-F. Pinton, “Measurement of Lagrangian
velocity in fully developed turbulence,” Phys. Rev. LeR®7, 214501 (2001)]. The correlation
structure and spectral properties of the real and modeled fields agree well under certain time
dependency conditions. The correlation signature of Lagrangian accelerations is shown to reflect the
persistence of the underlying streamline structure. Intermittency may influence these correlations
but is not their primary cause. @005 American Institute of PhysidDOI: 10.1063/1.1852578
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A. Simulation of turbulent diffusion

in intermittent flows o )
for any component in isotropic turbulence.

Fully developed turbulent flows consist of motions of However, in recent years, experimental evidénice
fluid that occupy a wide range of scale_s. Th(aT classical p_ictur@ea”y shows that, does not scale linearly wit, suggest-
of such a flow is the energy cascadein which energy IS ing that intermittency(i.e., significant spatial and temporal
injected into the flow by the largest scales of fluid motion regions of quiescence followed by regions of highly intense
whose size are of the order of the flow geometry and passegl:tvity) exists. Even in direct numerical simulatiS®NS)
down to smaller, but equally space-filling, motions via vortexihe Eylerian energy spectrum exponerisee Eq(13)], de-
stretching and breakdown. This process is continued until thgjates from Kolmogorov’s value gb=5/3, indicating inter-
motions are small enough that viscosity becomes the leadingittency.
order force and the energy is dissipated. Quantitative predic- Intermittency is not only found in the velocity structure

tions based on this procés:ssume that the dissipative scalesfnctions, however. In studying the advection of a passive
of the turbulence can be fully described by the kinematicgcg)ar,

viscosity of the fluid,v, and the spatial average of the rate of
energy dissipatiode). He also assumed that as long as the d I

N N —0+u- = +
turbulent flow’s Reynolds number is high enough the inertial at0 U- V0= kVEO+1(x0), ©
range motiongi.e., the motions where energy is neither in- ) ) . )
jected nor dissipateddepend only on(e). From these as- bPoth laboratory experimerftand numerical simulatiofiof
sumptions it can be said that for a velocity componiéet turbulence exhibit anomalous scaling for the structure func-

i=1,2,3 difference,u,(x+r)—u;(x), wherer is in the inertial ~ ion exponents in

range, the following relationship holds: [O0x+r) = 6)]% ~ réa. (4)
ui(x +1) = 4(x)]% ~ (r{e))%a, (1) In fact, eventual saturation of these exponentg axreases
is observed.

A naive view of these two phenomena may expect the
nonlinear scaling in Eq4) to follow trivially from the non-
linear scaling in Eq(1). However, this is not so; during the

where
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(u(x,Huj(x’,t")) = 28(t = t") Dy (x = x") experiments for two-particle statistit¥, three-particle
statistics.’ and concentration variancésthe term “particle”
=250r"| (h+d-1)g; - h%i , (5 thatis used here is interchangeable with “fluid elemeriS
r is also in good agreement with DNS for two-particle
_ _ _ _ statistics™*
where ri=x-x/, r=|x-x'[, d is the Euclidean dimension, The velocity of a particle at a point and a timet, is
andh is an exponent such thatOh<2 (h=3 in the case of  constructed, in the case of homogeneous turbulence, by the
K0|m09101r29V turbulence Reference 10 and subsequentsymmation of independent, randomly orientated, Fourier
studies™*?investigated the relation betweerparticle statis- modes. These modes represent the contribution of a finite
tics andg-order structure functions and found that, despitenymper of turbulent modes in the inertial range of the Eule-
the velocity field being both Gaussian a@torrelated in  rjan energy spectrum. Hence kinematic simulation only mod-
time, the scalar’s structure function exponefysneverthe- g the flow field in a qualitative and highly reduced sense.
less, do hold the signature of intermittency. _ What is not modeled in kinematic simulation are the phase
~ Inrelated work, both numerical and laboratory studiescorrelations between Fourier modes, their interactions, and
find strongly non-Gaussian behavior in the probability den+nejr dynamics. Lagrangian statistics are achieved by synthe-
sity functions(PDF) separation velocitie§'* Comprehen- sizing physical space only along particle trajectories.
sive reviews of all the work on structure function intermit- The formulation of the velocity field used in this study
tency (be it velocity or scalar, Eulerian or Lagrangiaare  fo|lows from more recent kinematic simulation studfé€’

N
available _ _ _ ~ The KS velocity field is kinematically prescribed to be
Despite all the studies on particle-pair and multiple-

particle evolution intermittency, little work has addressed the
specific case of one-particle trajectories. However, recent U(X.t)= 2 a, CogKpX + wnt) + by sin(kpx + wnt),  (6)
experiment%r"16 claim to show strong evidence for one- n=0

particle Lagrangian intermittency in a von Karman flgsee  \here N, is the total number of representative Fourier
Sec. Il for a description They find this evidence in two modes,a, andb, are the decomposition coefficients corre-

measures. the nonlinear Sca|ing§'gﬁn the Lagrangian struc- Sponding to the Wavevectd(n and Wy, is the unsteadiness
ture functions and the long-time correlations of the strengthgrequency.

of Lagrangian accelerations, which they argue to be a key The wavevector
feature of the underlying intermittency.
We investigate whether a Gaussian velocity field gener- k= |<n|2n (7)
ates one-particle Lagrangian intermittency the way it gener- R
ates two-particle, and indeed, multiparticle intermitteticy. is randomly orientated by a random choicekgf The wave-
For the velocity field we use a form of kinematic simulation number are distributed via
and show that signatures of intermittency do not exist in the K\ (-DIN-)
Lagrangian structure function’s scaling exponégt which k =k (ﬂ)
shows a resolutely linear dependenceqotiowever, we do n—H Ky
observe long-time correlations in the acceleration strengths. ) )
Persistence of the streamline structure in the flow wouldVith n being an integer such that<In<N,. Reference 19
seem to be the key variable in the production of this signafound that this formul_atlon re_su_lted in the quickest conver-
ture rather than intermittency as defined by the nonlineaP€nce of the Lagrangian statistics. _
scaling of &, To ensure thfa Fou_rler r_no.des.’ orlentatlon_g are randqm
In addition, a recent experiméfihas obtained a number and the velocity field still satisfies |ncompre33|bll|ty, the ori-
of Lagrangian statistical measures which provide an excel€ntations ofa, and b, are chosen independently and ran-
lent opportunity to undertake a comparison of kinematicdomly in a plane normal t&,,, i.e.,

N

, (8)

simulation against laboratory experiment. This comparisonis 5 | —p .k =0 (9)

presented here first, before the investigation of the intermit- " " "

tency. Furthermore, magnitudes gf, andb,, are chosen to conform
with the prescribed energy spectrik), i.e.,

B. Kinematic simulation
. L . . . . |an|* = [by|* = 2E(ky) Ak, (10
Kinematic simulation(KS) is a method for simulating

Lagrangian statistics and turbulent diffusion properties that isvhere

based on a kinematically obtained Eulerian velocity field that (

is incompressible and consistent with Eulerian statistics up to ko~ kg n=1

the second order, such as the the energy specElin 2

wavenumber space. There is no assumption of Markovianity Knsr — Kneg

at any level. Instead, a persistence parameteontrols the Ak, =1 T, n e [2,N¢—1] (11)
degree of unsteadiness of the turbulence. It is worth mention-

ing that when the prescribed energy spectrum has the form ka_ ka_ 1 n=N

E(k) ~ k>3 the model is in good agreement with laboratory \ 2 ’ «
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The Eulerian energy spectrug(k) is the main input in 10* a)
kinematic simulation of homogeneous isotropic turbulence 102} ]
(along with a coefficient of the unsteadiness frequency as we 0%
see later on in this sectipnThe inertial range form of the s 10721
energy spectrurhis | ]

E(K) = Ce? %3, (12) ol ]
wheree is the rate of dissipation of kinetic energy per unit 107 107 107" 10" 10°
mass andCy is the Kolmogorov universal constant. In this ()
study, KS only models the inertial range of the spectrum 10* . . .
unless explicitly stated; hendeis within the surrogate iner- 102t T B;g:; b) ]
tial range k; <k<k,, wherek, = ka. We use the term “sur- e S Dy” _

rogate” to indicate that, in KS, the ranglg<k<k, is not

(7)

=21 2 4
dynamically inertial but simply the range over which the =} 10_4 /
K41 spectrumis prescribed to hold. 10_5 ! ]
It is also the purpose of this study to consider departures 18_8 I ]
from Kolmogorov's -5/3 law, either as a reflection of inter- 105 0= 100 10" 10°

mittency or for the purpose of experimenting with the depen- 7(s)
dence of various Lagrangian statisfft4” on the scaling of

E(k). We therefore write the general form of the energy Spec_FIG. 1. Eulerian time second-order structure functibﬁ(r)z([ul(ﬁ 7X)
trum —-uy(t;x)1%, for different formulations of time dependencyad) w,
=0.5\fk3nE(kn) and (b) w,=0.5u,,K, Ballistic and the expected inertial-
E(K) = CTUrzmsL(kL)_pa (13) range scalings are observed. Due to isotropy ensures the curves turn out to

be plotted on top of each other.
whereL=27/k; andp>1 to ensure that there is no infinite

energy at the small scales whep is taken to infinity. The

dimensionless consta@=Cr(p, ki k,) is such that In Sec. Il we investigate the properties of the Eulerian

3U2 27l field simulated by kinematic simulation and show that the
Trms:f E(k)dk, (14)  statistics produced are consistent with established theory. In
2L Sec. Il we use kinematic simulation to reproduce Lagrang-

where »=2m/k,. The form [Eq. (13)] of the spectrum is ian statistips measured in a laboratory _exp.erimer)t. Section
unambiguous in KS where turbulence dynamics are abseflY deals with the phenomena of Lagrangian intermittency. In
and therefores is not directly defined. However, by using the S€C- V We summarize the results and draw conclusions.
cornerstone turbulence relatfon

3
rms (15) Il. EULERIAN FIELD PROPERTIES

Although much of this study is dedicated to Lagrangian
statistics it is desirable to first look at the characteristics of
the model in the Eulerian frame. Tests to verify the isotropy,

_ Unless otherwise stated, the valuepfs set to 5/3 in  pomageneity, and stationarity of the turbulent flow were
this study. The value df, does not need to be set as an 'nDUtcompIeted and the flow was found to satisfy

in our simulation and it should not be expected to be equal to
corresponding values published in the literatureLas not (u(x)y=0, (17)

the integral lengthscale. _
Time dependence is introduced via the “unsteadiness fré¥nere the brackets denote an average over time so that Eq.
quency” w,, which we take to be proportional to the eddy (17) is actually found to hold at many different pointsin

whereC, is a dimensionless constant, Ef3) reduces to Eq.
(12) for p=-5/3 whenCyC?3=C;.

turnover frequency of the modg the flow; it was also found that
o= MKE(Ky), (16) (u®) =0, (19)

” parameteY"here the brackets denote an average over space so that Eq.
A8 is found to hold at many different timesFurthermore,
it was checked that

where \ is the unsteadiness or “persistence
which, as will be seen in later sections, can have a significa
effect on one-particle two-time Lagrangian statisfitg?
Val_ues_of)\ eque_ll to, or very close t_o, zero generaf[es AVe- (. (x,)2) = (Un(X, 1)) = (Us(x,1)2), (19)
locity field that is frozen or approximately frozen in time,

i.e., a velocity field with infinite, or near-infinite, persistence whereu=(u,,u,,u;) and the averages are taken over space
in time. The other extreme of very large valueshofiener-  or over time.

ates extremely unsteady velocity fields with very fast time  The second-order one-point two-time Eulerian structure
variations and very little persistence of flow structure. function is defined as
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TABLE I. Run specification for the Eulerian field ted\, is the number of time stepst or iterationsr in each
sample setNg is the number of KS flow field realizations ahy is the number of sample sets per realization.

k(mm ) k(2w Ne  Ums(ms? A N, At (9) Ngr N,
1.0 1000.0 100 1.0 0.5 100000  0.0002019 100 100
D5(7) = ([ui(x;t+ 7 — ui(x; )%, (20) RE() = (Ui(x +1;Du(x;1) 25
i - .42 !
where the brackets denote an average over time. This quan- ux;t)%

tity is particularly important as it is prescribed in many sto-where there is no summation implied over the indices. The
chastic models whereas it is obtained here directly from thewitocorrelations are taken by choosmalong thex axis and
simulation; results for=1 are presented in Fig. (btatistical  jterating in the Eulerian frame, obtaini|f§1(r) by correlat-
homogeneity and isotropy of the field precludes the need tng lagged values ofi,, R5,(r) by correlating lagged values
show results for=2 andi=3). It was also verified thaD5(7)  of u,, andRE4(r) by correlating lagged values af. Averages
is independent ok. The flow parameters are all shown in are taken ovek and N flow realizations(see Table)l The
Table 1. form of this result shows good agreement with thedryre-

It is obvious that the moment should scale BS(7)  dicting a slower decorrelation &&,(x) with both theRE,(x)
~ 72 in the ballistic regime, i.e., for times on the order of the gnd Rgs(x) showing significant negative loops.
Kolmogorov timescalet, =2m/ky,, or smaller. However, its In summary we can say that a kinematically simulated
scaling in the inertial range is not so obvious. Tennékes Eulerian velocity field has been simulated for which it is
proposed that the Eulerian frequency spectrdmf(w)  shown that the expected scaling in the inertial range is
should scale a5w~—§ in the inertial range,t,<t<Tg  achieved forD5(7), and that the spatial velocity correlations
(whereTg is the Eulerian integral timescaleby adopting a  show good agreement with classical theory.
generalization of the concept of advective spectral broaden-
ing (i.e., resulting from advection of the vorticity field by the Ill. ONE-PARTICLE TWO-TIME LAGRANGIAN
velocity field). This is different from the Kolmogorov scaling gtatisTICS

form ew™2 In other words
£ “m One-particle Lagrangian statistics have been somewhat
Ppyw) ~ o (21) neglected when considering kinematic simulations, largely

for large enoughw, wherem=5/3 asopposed tan=2. Since due to their satisfactory reproduction of two-particle
' : 14 iorf@:2 ., ;
the velocity structure function can be related to the Euleriad€Sults.” The exceptio produced limited one-particle

frequency spectrum by results for initial model comparison. However, recent labo-
. ratory experimenfs have succeeded in obtaining one-
DE(T) _ Zf 1- comr)(l)i(w)dw 22) particle two-time _Lag_ranglan S.tatIStICS ina fuIIy.developed
0 turbulent flow. This gives new impetus to numerical models
) producing one-particle statistics, and provides an excellent
we recover the relation opportunity for a first ever comparison of KS one-particle
DE(T) ~ gl (23) two-time predictions using experimental data.

for small enoughr. Hence D5(7)~ 7 if m=-5/3 and A. The laboratory flow
.DZ(T.) 7 if m=2. Figure l_a) SquESt.S tth?(T,) 7in the The turbulent flow of the experiméﬁtis created be-

inertial range when the kinematic simulation’s time deloen'tween two counterrotating disks forming a so-called swirlin
dence is controlled by Eq6) for both large and small g g 9

values of\. However, a different form of the time depen-

dence, which we introduce in Sec. Ill C, based on an ap- 19
proximation of small-scale sweeping leads B§(7) ~ /3 1.0
[see Fig. 1b)]. 0.8

The structure function settles to a constant value for long = 06
enough timegnot obvious on the log-log plbtvhich is con- x 04
sistent with the constant terr{i&) in 0.2

0.0
D5(7) = 2(u?) - 2(u(t + Du(t)) (24) -0.2 R
0 2 4 6

becoming dominant for> Tz where{u(t+ 7)u(t)) =0. r(m)

Now that the Eulerian field time dependence has been

e o - ) i|FIG. 2. Eulerian two-point velocity correlations,RE(r):(ui(x
verified it is, perhaps, natural to look at the field's Spamalﬂ;t)ui(x;t)>/(ui(x;t)2>. The longitudinal curve shows a S|0V\;el' decorrela-

StrUCture-_Figure 2. S.hOWS the twg—point Eulerian velocity aU+ion than the transverse curves, the latter exhibiting negative loops. Averages
tocorrelation coefficients determined by are taken over flow realizations.
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TABLE Il. Run specification for the kinematic simulation flow attempting to reproduce the experiments of
Refs. 15 and 16. Herl, is the number of time steps per Lagrangian fluid element trajeditris the number
of KS flow realizations andN,, is the number of fluid element trajectories per realization.

ky(2rm) k,(2mm™?) Ny Ums (M 7Y N, At (s) Ng Ny
62.83 71 400.0 100 0.98 33200 3.0E265 100 100
von Kéarman flow’® In this way, it is claimed, large experi- . (y(t+ Du(t))
mental Reynolds numbers can be obtaiiied, =740 in the i(7) = w®? (26)
|

case used hereNeutrally buoyant polystyrene spherical par-
ticles seed the sonified fluid and ultrasonic acoustic

a{/\/here t)=u;[x(t),t], no summation is implied over indices
technique$’ are used to track their trajectory. u(O=ulx(t),1] P

Th i nert? clai d q . and the averages are taken over titrend Ny flow realiza-
e experimenit claims to reproduce a good approxi- tions; there areN, trajectories per realizatiofsee Table ).

ma:’::on ql;ljlotrofplc arll_d gorr:gg;eneout"s tyrbLtJLen;:Ie m; feCt'oﬂ'Il(r) is the only component measured, presumably due to
N the middie ot a cylinder that constrains the Now bEIWEeeTy; piiations of the experimental setup.

the counterrotating disks. This section has a 10 cm extent in Their experiment is run for0.1 s (or five Lagrangian

:Ee aX||<_':1I ddlrectgqnha_nd_textﬁgdg almos_tdtheTvr\:hoI? d|arr_1teter 0|fntegral timescalgsand it is observed from our correspond-
€ cylinder which 1S 1ISell 9.5 cm wide. Therefore, it was ing calculation, Fig. 3, that kinematic simulation, usikg

decided thak; should be representative of these large scale:0 1, is in excellent quantitative agreement withe also

motions(see Table . presenti=2,3 to further enhance the idea of an isotropic

Although, experimentally, this type of swirling flow mode), with the velocity completely decorrelating within
achieves between one and a half and two wavenumber de-q ng'< The value of was chosen to obtain the best quan-

B o . . S 5 Y . .
cades of ~5/3 scaling in the inertial subrarté’the experi titative agreement, however, it is important to point out that

ment claims to achieve a high Rey_nolds number compared Bhe qualitative nature of the Lagrangian statistics presented
other laboratory tu'rbu'lent flows, high enough for the resultsm this section(i.e., the exponential decay of the Lagrangian
to be CIQS? to their hlgh-ReynoIds-number'asymptouc anas ytocorrelations and the scaling of the Lagrangian structure
logs. This is why we have spanned approximately three de‘T’unctions and spectfare invariant forx <1.02% Of course

cades .Of Wa\{enumbs_:rs in the kl_nemat|c simulation. Th'sthe Eulerian field is insensitive to any change in the time
range is consistent with us choosing batk 10 cm andy dependency of the simulation

=88,um, a tenth of the experlmenltréTaonr microscale. A more useful value that can be extracted from this re-

AI_tho(lngh a Korllmogprov IeTgthslca}Ie o;_@mn c?/n bli d((jater- sult is the integral, or characteristic, timescale of the flow,
mined using the microscale relationshipgs (v°/ €)%, due gvhich is usually determined by

to the temporally unstable nature of the power being inputte
by the rotating disks it was decided not to basg on the -
stated dissipation rate=25 W/kg. A summary of all the T :f RE(ndr, (27)
KS parameters is presented in Table II. " Jo

B. Lagrangian velocity correlations whereT, =T =T =T for isotropic turbulence. Mordaret
15 . .
The experimental study calculates the Lagrangian ve- al.” choose to fit an exponential decay curve of the form
i i R: (1) ~e L to the data. We employ the same metttBidy
locity component autocorrelations, 1\ 7 . ploy .

4). Mordantet al® obtain the exponential function

1.0 1.00 5 T
Ry (T
o8B RN N e Rl‘.z(_r ))~ o=+
06 -
= 04f = 0.10F 1
4 % !
0.2F
0.0
-0.2 . . . . 0.01 . . A
0.00 0.02 0.04 0.06 0.08 0.10 0.00 002 004 006 008
™(s) 7(s)
FIG. 3. Lagrangian velocity correlation(7)=(u(t+n)u(t))/(u(t)?). Av- FIG. 4. Exponential function fitR},(7) ~ e ™., of the Lagrangian velocity

erages are taken over Lagrangian fluid element trajectories. All curves showorrelation,R;(7) =(u(t+ 7)u(1))/(u(t)?). Data after~0.07 s are discarded
excellent agreement with experimdsee Fig. 1a) of the work by Mordant  so that noisy data do not bias the fitting. The integral timescale was calcu-
et al.]. lated asT; =20.7 ms.
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100 100 T .
BN ®y(w)
10-1f 10-1f No——- @t
10—2¢ 102k
103k 10-3¢
104k 10-4F
1073 : - 10-5 . .
1 10 100 1000 1 10 100 1000
w(Hz) w(Hz)

FIG. 5. Lagrangian velocity power spectnﬁz’h(w) averaged with a simple  FIG. 7. Lagrangian velocity power spectnﬂ:’h(w) averaged with a simple
10 Hz sliding window. The persistence paramexer0.1. Despite being 10 Hz sliding window. The persistence paramete5.0. Some evidence on
calculated in a Lagrangian frame, the spectrum exhibits Eulerian scalindgtolmogorov scaling is observed ™).

(0757 rather than Kolmogorov scalingo?).

PLy(w) = Uins f Ri(ne“dr. (31)
Ri; (1) =1.0%7457, (29) o
which yields an integral timescale of 21 ms. The kinematicThey claim that a 502531"”9 ol (w) ~ w2 is al%hieved, as
simulation data produces the exponential function predicted by theor§??® In fact, Mordantet al'® compare
L 183 their measured spectrum to the Lorentzian function,
R:,(7) = 0.84748%, (29) )
: Ural
The value ofR:,(7) shows some variation from both the ¢E't(w)=$sz))2. (32
L

exponential form and the experimental data at small times,
however, note that the KS result yielfis=20.7 ms, whichis  Presumably this is to try and incorporate at least some of the
in good agreement with the experimemt. can also be esti- effect that the large-scale energy-containing motions have on
mated from Corrsin’s relatioff, ~L/ums Where L is the  the spectral shape. Using a simple sliding 10 Hz nonoverlap-
integral lengthscale, which, in the case of isotropic homogeping averaging window, the spectrum produced by the KS

neous turbulence can be calculated using the forffiula model forA=0.1 is depicted in Fig. 5. It is clear that the
- agreement with® (w)~ w2 is not good. In fact the La-
J k™ E(k)dk grangian power spectrum produced by the kinematic simula-
_3mJo (30 tion scales like theEulerian spectrunt® According to Ref.
* ' 22, this is attributable to the low persistence paraméter
fo E(k)dk used in this run. A kinematic simulation such as the one used

here does not incorporate sweeping of the small-scale eddies
This procedure yields a value @ =15.1 ms which is con- by the large ones, and it should, perhaps, not be expected, in
sistent withT, =21 ms considering that the scaling constantgeneral, that KS should reproduce eithe[(w)~ »™2 or

in T_~ L/U;msis close to 1. ®e(w) ~ 0™ (the advective spectral broadening of Ref. 23
referred to in Sec. )| However, we do observeég(w)

C. The Lagrangian and Eulerian velocity power ~ w3 for both large and small values of lamb@see Fig.

spectra 6) and in the case of largg, e.g.,A=5 as in Fig. 7.® (w)

ey :
The next analysis that Mordaet al® undertake is to "~ @ IS also observed as previously reporféd.

construct the Lagrangian velocity power spectrum using the = {OWeVer, retuming to the Lagrangian velocity autocor-
real part of the Fourier transform relation using this high value of we find that all quantita-

tive, and, indeed qualitative, agreement with the laboratory

100 ' ' ' 1.0

1071F -
__ 107} 05 ]
...\:'3:' 10-3F :"-E

104k 00 b

10—5 r

10-6 . " " -0.5 . R . .

1 10 100 1000 10000 0.00 0.02 0.04 0.06 0.08 0.10
w(Hz) 7(s)

FIG. 6. Eulerian velocity power spectru@ﬁ(a}) averaged with a simple 10 FIG. 8. Lagrangian velocity correlationﬂh(r):@l(ﬁ D)) (1)?).

Hz sliding window. The spectrum is insensitive to the time dependency ofAverages are taken over Lagrangian fluid element trajectories. The persis-
the kinematic simulation velocity field. Correct scaling as predicted by Ref.tence parametex=>5.0. All quantitative and qualitative agreement seen in
23 is observedw™73). Fig. 3 is lost.
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100 3
10-1f at :
[N
1072 v 3t 3
10-3} % 2F ]
10-4F 1} :
10-5 . . 0 . . . . "
1 10 100 1000 10-€10-510-410-310-210-" 109
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FIG. 9. Lagrangian velocity power spectruh‘h(w) averaged with a simple  FIG. 11. The Lagrangian second-order structure functlblz-l(,r)=<[vl(t

10 Hz sliding window. Herew,=\umK,. Kolmogorov scaling(w™?) is +7)-u(t)]?), compensated with timeéDs(7)/ 7. The persistence parameter

recovered. N=0.1. Averages are taken over fluid element trajectories. No scaling
D5(7) ~ 7 is observed; we have checked that this structure function instead
scales aDs(7) ~ 2.

results obtained withh=0.1 is lost(see Fig. 8 And here is

the crux of the problem of the persistence parameter effect. . . .
P P P explicitly simulates the large scaléf®r example, large-eddy

The role of the unsteadiness frequency is not limited to re-" It 9)-KS hvbrid ). then it i irel
producing the sweeping effect on the frequency spectra withS'mu qﬂon(LE )-K ybrid approactt), then it is entirely .
onceivable that the single negative loop would be eradi-

out actual sweeping; it also, of course, largely determines thé

integral timescales of the flow and it is found thHRt de- cate_lc_i. . h dth . | Its of
Creases aa increases. 0 summarize, we have used the experimental results o

A possible solution to the problem is to replace @y Mordantet al® to compare the !_agra_ngian s_tatistic; that can
model by an alternate formulation of the unsteadiness frebe egtracted f_r om a tlme-v_arymg, kmematlcal_ly _S|mu|ated,
quency, Eulerian velocity f|el_d. We find exce!lent quar_mtatwe agree-
ment when comparing the Lagrangian velocity autocorrela-
@n = NUrmdKy. (33)  tions for a weakly time-dependent KS field. This weak time
pependency leads to anomalous, that is Eulerian, scaling in

the Lagrangian velocity power spectrum. This was rectified

of an average neglects both the time dependency of the larg/ith @ strongly time-dependent velocity field but at the ex-
scale sweeping velocities and their direction. However, orPeNse of any ag_reement in the (_:orrela_tlon structure OT the
average, this formulation, although incomplete and inaccullW- A compromise was made with a different formulation
rate, may go some way in representing the sweeping of th8f the time-dependent t_erms in the velocity field which gave
small-scales eddies by the large energy-containing ones. excellenf[ agreem_ent with experimental measurement of the
Using this formulation we calculate again the Lagrang-Lagrang'a” velocity power spectrum and an acceptable form

ian velocity power spectrurfEq. (31)] and the Lagrangian ©f the autocorrelogram.

velocity autocorrelatiofEq. (26)] using a low persistence

parametef\=0.1). From Fig. 9 we can see the sweeping on|V. LAGRANGIAN INTERMITTENCY
® (w) and it can be argued that the scalidy,(w) ~ ™, is, . .

in fact, even better than in Fig. 7. The autocorrelation curveA' Lagrangian structure functions
(Fig. 10 still exhibits a significant negative loop, compro- We first look at the second-order Lagrangian structure
mising the accurate determination of the Lagrangian integrafunction {it should be noted that for the remainder of the
timescaleT,. However, it certainly is an improvement over paper we revert to the original formulation of the unsteadi-
the rapidly oscillating curve in Fig. 8 and if this model was ness frequenclEq. (16)]}, which, in view of isotropy, can be
to be used in conjunction with a convective range model thatlefined as

Da(9) = ([u(t+ D) - (0], (34

where the average is taken over timand Ny trajectories.
We plot it in a compensated wags do Mordanet al’) in
Fig. 11 that will expose any inertial range scaling, i.e.,

D5(7) = [wy(t+ 1) - vy ()2 ~ e, (35)

which, for a valid range of frequencias, corresponds to
L (0) ~ ew™2 via the relation

Here, we simplify the sweeping mechanism by sweeping al
scales with one average velocity,,. Clearly the assumption

R{(1)

0.0

-0.5 -
0.00 0.02 0.04 0.06 0.08 0.10
7(s)

D5(1) =2 f (1 - coswn) P}, (w)dw. (36)
FIG. 10. Lagrangian velocity correlationR&(r):(ul(H Duy (D)) /Uy (t)?). 0

Averages are taken over fluid element trajectories. The persistence param-
etern=0.1. A negative loop is still observed although not as dominant as the As should be expected from the absence Qdifl(w)

loops in Fig. 8. ~ w2 scaling for smallx with w,=\\kE(k,), the scaling
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+7) - (1)]?), compensated with timé)s(7)/ e7. The persistence parameter 7
\=5.0. Averages are taken ovidy Lagrangian fluid element trajectories for 1072 .»‘}',2'/ 1
Ng flow realizations. A significant range of the scalidy(7) ~ 7 is observed. i~ L /.-;’;/ 1
}01 10 ) ',.'/ .
10—6 L p 7 // _ i
v q=1
. y . T A - v S
plateau is not observed far=0.1. Initially this may be seen o e S q=5
; ; ; ; ; 10~ i it i i
as a good thing since none is observec_j in the expenm_ent 105 104 103 102 101 10° 10"
either (although the authors claim to achieve such a scaling DY()

regime, the range is too small to unambiguously distinguish
; FIG. 13. Extended self-similarity ansa@%(7) ~ D5(n)é/%2, for several or-

a plateau from a peakHowever, whereas in the latter study Yy 4 2 '
th bl . iiv f th lativelv | R ders of the structure function@'d(r)z([v,(ﬁ 7)—u(t)]%. Each figure repre-

€ problem Comes p”ma” y .rom. e I‘? a IVQ Yy .OW ey- sents a simulation run with a different value of persistence parant@ter
nolds number, in the kinematic simulation this is not thex=0.1 and(b) x=5.0. The same scaling is observed over the same wide
problem since./ 7~ 10%. So although the agreement is good range for both high and low values of the persistence parameter.
it is probably coincidental and we are seeing a Lagrangian
structure function that is, in fact, scaling &, correspond-
ing to thew™>® of the Eulerian spectrum and of the Lagrang-
ian spectrum forw,=\k3E(k,) with low values of\ (see . . . . - .

P “n nE(kn) . (. .of the experiment are at variance with this prediction, which

Sec. Il Q. If, however, the unsteadiness parameter is again

increased ton=5.0 then the expected plateau is observeqsuggeStS that their flow is intermittent. The deviation is most
(Fig. 12. What is.also encouragiﬁg is thaﬂthe value @rin pronounced for the higher order statistics where the rare,

D'2‘(7)=C067 is consistent with both the experimentally de- strong events become dete(_:table. In Fig. 14_ we compare the
rived valué: (Co=4%2) and the values used in stochastic values of§,/ &, for both the high and low persistence param-
models for turbulent dispersidh(C,=5+2). We have re- eter simulations and the experiment. The deviation from non-
verted to using Eq(16) to determine the unsteadiness of theintermittent values is clear in the experiment, whereas the
flow but we find a comparable value f@ when using Eq. values for the kinematic simulations are closely in agreement
(33), as might be expected from the similar data ranges seeffith the prediction £,=(a/2),, valid in the absence of

in Figs. 7 and 9. inertial-range intermittency.
Intermittency is often studied by examining the behavior ~ AS noted in previous studi€$, kinematic simulations
of the g-order structure function lead to&;=p-1 for A <1 and&;=2(p-1)/(3-p) for A>1,
L . wherep is the scaling exponent of the energy spectfigee
Dq(7) =([u(t+ 7) - u(0)]Y, (37 Eq.(13)]. It follows, usingé,=(q/2)&,, that we should have

where averages are taken in the same way as(®. In
order to compensate for their lack of a well-defined inertial

subrange, Mordanget al®® extrapolate the extended self-
similarity approacﬁ3 for two-particle Lagrangian statistics to 3
one-particle Lagrangian statistics. In this approach, structure Zﬁ;gié S
functionsD;L 7) are plotted as a function of a reference mo- ppiMordant etal o
ment, sayD5(7), and power law scalings are sought, i.e., < 4 B

D4(r) ~ Dy(9%, (39 o :
where{, is the time scaling exponent of the structure func- ok
tion of orderg. In the kinematic simulation results shown in 0 2 4 6

Fig. 13, it is clear that such scalings do exist over a very

wide range, extending over at least four decades. These sca&G. 14. Relative scaling exponentg/ ¢, obtained by the extended self-
ings and their ranges appear to be independent of similarity approach. In the absence of intermittency in the homogeneous
In the absence of inertial range intermittency in C.ne_isotropic velocity field the kinematic simulations scale linearly according to

. . . . . &4/ §,=0/2 regardless of the value af The exponents determined from the
particle two-time Lagrangian homogeneous, isotropic turbUzyperiment of Ref. 15 clearly show nonlinear scaling, suggesting their flow

lence, we should exped},/&,=q/2. However, the findings s intermittent.

Downloaded 16 Oct 2009 to 155.198.157.156. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



035104-9 One-particle two-time diffusion Phys. Fluids 17, 035104 (2005)

PR © p=5/3, A=0.1 1.2 );(A.v,. Av,)

€
A — — A p=5/3, A=50 x 2 10 1
3f3-——a §=1.4. A=s0 ] 2 0.8 \ _ i((k":”lﬁv)’l)
KT RRRIBATSOXT A7 2 oe \ —-—-m- x(da Bty
- TN . O 6F —-— x(Aw, Av)
w2 /,_X A o < o4l — — - x(lawl.1a2) ]
;K//K 0 -~ = :
1 - 5 o02f T
&g [
0 - 5 0.0 —
0 2 4 6 © -02 y '
10-5 10-3 10-1 10!

t/T

FIG. 15. Extended self-similarity scaling exponegtsfor p=1.4, -5/3,
and 1.8. The persistence parametex 5.0 for all simulations except when
p=-5/3, in which case we use both high and low values.df is clear that
&, can be readily changed by adopting different values of hognd p.

FIG. 17. Correlation coefficients, x(f,g)(At)=(([f(t+At)=(f)][g(t)
—(9)]))! ooy, for various velocity incremenfsdentities can be found in Eq.
(43)]. Persistence parameter0.1. It is evident that the acceleration com-
ponents remain correlated over long times.

q 71y
—(p-1) fora<1.0
. - p(P= 1) for 9 A= u(t+ D) -u®) =3 A, ult+nm). (41)
B (-l R -
3-p or e This definition allows them to study the dependence of

the elementary stepsg on each other. To do this they define

and this is indeed what we observe in Fig. 15. Eulerian inseyera correlation relationships that have the following gen-
termittency of turbulent flows might well lead to a deviation grg] form:

of p away from the valué, but changes in the value ofin
a turbulent-like flow without Eulerian intermittency, such as ¥(f,g)(At) = ([t +AD - (HIlg(t) - (g)])’ (42)
KS, do not lead to Lagrangian inertial range intermitterigy: 00y
remaining proportional tg, only the constant of proportion-
ality changes.

The absence of inertial range intermittency in one-
particle Lagrangian velocity statistics obtained by KS is fur-

whereo; and oy are the rms values df andg, respectively,
and all averages are calculated over tinaad many particle
trajectories. Many different forms df andg were tried, for

. . o example,

ther revealed if we examine the PDFs of the velocity incre- P r
ment X(A vy, A v)

A =uy(t+ 1) - (). (40) x(1A ], A ,))

. . Av, A
Plotting their flatness factors(7) =((A,v)*/{(A,14)??-3 x(f,9) =9 X(Av,8:0) (43)
in Fig. 16 for high and low time dependency, we find that XA 1], [A 7))
they remain resolutely Gaussian for all times, unlike the X(Av,A0)
Itgboratory results which exhibit highly non-Gaussian statis- \X(|Arv1|,|ATvz|)-
ics.

Using these functions, the autocorrelations of both the

B. One_partide acceleration correlations in Signed and absolute VaerSinl, 2 Velocity increments can
kinematically simulated, Gaussian velocity fields be determined, as well as the corresponding cross-

. . . . correlations. The results produced by kinematic simulation
A second experiment using almo_st |d¢nt|cal flow with a persistence parameterf0.1 are shown in Fig. 17.

para}meter’ﬁ and. expenmeptal setup myestlgates ,on.e'Comparing with the curves of the experimé?ﬁt/,ve find ex-
particle accelera.tlon correlations. They d.efln.e a velocity ino e qualitative agreement. The signed values of the incre-
crement over a time lag as the total contrlb_utlon of a num- ment autocorrelations decorrelate extremely quickly, within
ber of velocity increments over a smaller time interval about one Kolmogorov timescalén Fig. 17 7,~0.01T,),
with the cross-correlations confirming that the two signed
velocity components are independent. This is consistent with

03

02 \\\//\jig;g the reasoning behind treating one-particle Lagrangian turbu-
0.1 lence as a Markovian process where the accelerations are
< 00 * e independent (accelerations and velocity increments are
o - % equivalent in the limitr; —0). This is the premise of sto-
¥ chastic models that use Langevin-type equations as their
et base**® However, when Mordanet all® look at the un-
-0.3 . . : ' .
0.0001 00010 0.0100 0.1000 signed, or absolute, values of both the autocorrelations and
7(s) cross-correlations, they find significant correlations for all
three measures persisting for very long times up to the inte-

FIG. 16. Flatness factors for the PDFsM®dfv; wherer=0.15, 0.3, 0.6, 1.2, . . .
2.5, 5.0, 10.0, 20.0, and 40.0 ms. The KS-obtained PDFs fail to show an@l@l timescale determined in Sec. Ill B. Mordattal.™ take

significant flatness values at any times, regardless of the valne of this to be an indication of the intermittency of their flow.

16
I
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FIG. 18. Correlation coefficients, x(f,g)(At)=(([f(t+At)—(f)][g(t) S 0.2 b)
—(@)]))! o1, for various velocity incremenfsdentities can be found in Eqg. 2
(43)]. Persistence parameter5.0. It is clear that the increased time depen- “g 0.1F
dency further lowers the strength of the correlations and significantly short- (&) 3
ens the period over which the increments are correlated. s
£ 00F
¢
. . . . . S
Looking at Fig. 17 it is clear that in KS we also find very © -0.1

long-time correlations for these velocity increments, al- 001 010 T 1.00 - 10.00

though the strength of the correlations are significantly lower '

than those of Mordanet al® (around half the laboratory FiG. 19. Correlation coefficients, x(f,g)(At) =([f(t+At —(F[g(t)

experiment’s strength, in factin Sec. IV A we present con- —(@)])/ aa, for the velocity incremeng(In|A v, InfA v|). Persistence pa-

vincing results that show that kinematic simulation does nof2Mmeter@ A=0.1 and(b) X =5.0. A scaling region is well defined and the
L . . . . intermittency parameterA; decreases with increasing persistence param-

exhibit one-particle Lagrangian intermittency, and that KSgg)

has no Eulerian intermittency on account of its Gaussianity,

this discovery may be, at first, surprising. Hence, the key

feature underpinning the long-time correlations in Fig. 17 isparametei. ForA=0.1 the value is approximately one-third

not the inertial-range intermittency. One way to understandf the value predicted in the experimént, A\

the correlations is in terms of persistent vortices. The accel=0.0115+0.01. This result supports the view that it is flow

eration vectors of fluid elements circling around vortices campersistence and not intermittency that is primarily respon-

be expected to decorrelate within a vortex turnover time, busible for the long-time acceleration correlations and for the

if these vortices are persiste(in the sense of being coherent scaling of y ~ In(t/T,).

and long lived then the acceleration strengths of the fluid

element can be expected to be correlated for much lo@ger \; syUMMARY AND CONCLUSIONS

observed in Fig. 17 With the great majority of the vortices

being of size of the order of the Kolmogorov microscaié, A KS model of Lagrangian dispersion has been de-

is expected that the Kolmogorov timescatg will be the scribed and Lagrangian data from laboratory experint@nts

dominant decorrelation time for the acceleration vectors anlave been used to compare with Lagrangian statistics ex-

this is indeed observed in Fig. 17. Such regions of high vortracted from the model. The Eulerian field that the model is

ticity, as well as other high strain and streaming regions, ar®ased on has also been compared with classical theory; the
known to exist in K% These high vorticity regions may Eulerian structure functionD5(7)=([u;(t+7:x) - ui(t;x)]3),
not have the same shape or spatial distribution as coherefflows consistent inertial-range scaling in accordance with
vortices in real turbulence but their presence may be enougthe formulation of unsteadiness frequency used and the Eu-
to provide the vortical regions responsible for the acceleralerian velocity autocorrelogram,  Rf(r)=(u(x
tion correlations, even though the flow is statistically Gauss=+T ;H)ui(x;t))/{ui(x;t)?), exhibits properties expected from
ian with no intermittency. The inertial-range intermittency Ref. 24.
may act to accentuate these correlations but does not seem to Using flow parameters determined from the laboratory
be the cause of their underlying signature. experiment, the Lagrangian velocity autocorrelogram,
To check our view that it is the persistence of the vorticalR};(7) =(wy(t+ D vy(1))/{uy(t)?) shows remarkable agreement
streamlines that is key in producing these long-time accelwith experiment when using a small value of the persistence
eration correlations we have increased the persistence paraparametef(A=0.1). This agreement results in the simulated
eter ton=5.0(see Fig. 18 The result is that the intensity of and measured values of the Lagrangian integral timescale
the long-time correlation in Fig. 17 is diminished when thebeing within 2%. However, when the Lagrangian velocity
turbulence is made less persistent in ti(he., increasing\). power spectrumCI)h(w) is plotted it is observed that
Following the example of Mordaret al®® we take the cor- CD'il(w)~w_5/3 instead of the expected Kolmogorov scaling
relation in time of the incrementg(In|A,vy|,In|A1]) and @™ We attribute this effect to the lack of sweeping of
find the slope of the scaling region, the value of which theysmaller scales by larger ones. This effect disappears when the
call the intermittency parametal,2 (A,Z should not be con- persistence parameter is increased to a value much greater
fused with, or thought to be related to, the persistence pahan 1(A=5.0), in which caseb},(w) ~ »™2 However, large
rameter\). Looking at Fig. 19 it is clear thalx,2 is well  values of\ spoil the agreement seen in the Lagrangian ve-
defined and decreases with increasing values of persistentity correlations. A partial compromise is reached by refor-
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