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A model of turbulence based on a summation of Fourier modes with an imposed turbulent energy
spectrum,Eskd,k−p, is used to investigate the characteristics of one-particle diffusion in turbulent
flow. The model is described and the general Eulerian field is investigated. Using a number of
Lagrangian statistical measures the results from the model are compared with laboratory
experimentsfN. Mordant, P. Metz, O. Michel, and J.-F. Pinton, “Measurement of Lagrangian
velocity in fully developed turbulence,” Phys. Rev. Lett.87, 214501 s2001dg. The correlation
structure and spectral properties of the real and modeled fields agree well under certain time
dependency conditions. The correlation signature of Lagrangian accelerations is shown to reflect the
persistence of the underlying streamline structure. Intermittency may influence these correlations
but is not their primary cause. ©2005 American Institute of Physics. fDOI: 10.1063/1.1852578g

I. INTRODUCTION

A. Simulation of turbulent diffusion
in intermittent flows

Fully developed turbulent flows consist of motions of
fluid that occupy a wide range of scales. The classical picture
of such a flow is the energy cascade,1,2 in which energy is
injected into the flow by the largest scales of fluid motion
whose size are of the order of the flow geometry and passed
down to smaller, but equally space-filling, motions via vortex
stretching and breakdown. This process is continued until the
motions are small enough that viscosity becomes the leading
order force and the energy is dissipated. Quantitative predic-
tions based on this process3 assume that the dissipative scales
of the turbulence can be fully described by the kinematic
viscosity of the fluid,n, and the spatial average of the rate of
energy dissipationkel. He also assumed that as long as the
turbulent flow’s Reynolds number is high enough the inertial
range motionssi.e., the motions where energy is neither in-
jected nor dissipatedd depend only onkel. From these as-
sumptions it can be said that for a velocity componentsi.e.,
i =1,2,3d difference,uisx+r d−uisxd, wherer is in the inertial
range, the following relationship holds:

kfuisx + r d − uisxdgql , srkeldzq, s1d

where

zq =
q

3
s2d

for any componenti in isotropic turbulence.
However, in recent years, experimental evidence4,5

clearly shows thatzq does not scale linearly withq, suggest-
ing that intermittencysi.e., significant spatial and temporal
regions of quiescence followed by regions of highly intense
activityd exists. Even in direct numerical simulations6 sDNSd
the Eulerian energy spectrum exponentp fsee Eq.s13dg, de-
viates from Kolmogorov’s value ofp=5/3, indicating inter-
mittency.

Intermittency is not only found in the velocity structure
functions, however. In studying the advection of a passive
scalar,

]

]t
u + u · = u = k¹2u + fsx,td, s3d

both laboratory experiments7 and numerical simulations8 of
turbulence exhibit anomalous scaling for the structure func-
tion exponentszq in

kfusx + r d − usxdgql , rzq. s4d

In fact, eventual saturation of these exponents asq increases
is observed.9

A naïve view of these two phenomena may expect the
nonlinear scaling in Eq.s4d to follow trivially from the non-
linear scaling in Eq.s1d. However, this is not so; during the
1990s, much work was presented based on the so-called
Kraichnan model where velocities are modeled by
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kuisx,tdujsx8,t8dl = 2dst − t8dDijsx − x8d

= 2dstdrhFsh + d − 1ddi j − h
rir j

r2 G , s5d

where r i =xi −xi8 , r = ux−x8u , d is the Euclidean dimension,
andh is an exponent such that 0,h,2 sh= 1

3 in the case of
Kolmogorov turbulenced. Reference 10 and subsequent
studies11,12 investigated the relation betweenq-particle statis-
tics andq-order structure functions and found that, despite
the velocity field being both Gaussian andd-correlated in
time, the scalar’s structure function exponentszq, neverthe-
less, do hold the signature of intermittency.

In related work, both numerical and laboratory studies
find strongly non-Gaussian behavior in the probability den-
sity functionssPDFd separation velocities.13,14 Comprehen-
sive reviews of all the work on structure function intermit-
tency sbe it velocity or scalar, Eulerian or Lagrangiand are
available.9

Despite all the studies on particle-pair and multiple-
particle evolution intermittency, little work has addressed the
specific case of one-particle trajectories. However, recent
experiments15,16 claim to show strong evidence for one-
particle Lagrangian intermittency in a von Kármán flowssee
Sec. III for a descriptiond. They find this evidence in two
measures: the nonlinear scaling ofjq in the Lagrangian struc-
ture functions and the long-time correlations of the strengths
of Lagrangian accelerations, which they argue to be a key
feature of the underlying intermittency.

We investigate whether a Gaussian velocity field gener-
ates one-particle Lagrangian intermittency the way it gener-
ates two-particle, and indeed, multiparticle intermittency.17

For the velocity field we use a form of kinematic simulation
and show that signatures of intermittency do not exist in the
Lagrangian structure function’s scaling exponentjq, which
shows a resolutely linear dependence onq. However, we do
observe long-time correlations in the acceleration strengths.
Persistence of the streamline structure in the flow would
seem to be the key variable in the production of this signa-
ture rather than intermittency as defined by the nonlinear
scaling ofjq.

In addition, a recent experiment15 has obtained a number
of Lagrangian statistical measures which provide an excel-
lent opportunity to undertake a comparison of kinematic
simulation against laboratory experiment. This comparison is
presented here first, before the investigation of the intermit-
tency.

B. Kinematic simulation

Kinematic simulationsKSd is a method for simulating
Lagrangian statistics and turbulent diffusion properties that is
based on a kinematically obtained Eulerian velocity field that
is incompressible and consistent with Eulerian statistics up to
the second order, such as the the energy spectrumEskd in
wavenumber space. There is no assumption of Markovianity
at any level. Instead, a persistence parameterl controls the
degree of unsteadiness of the turbulence. It is worth mention-
ing that when the prescribed energy spectrum has the form
Eskd,k−5/3 the model is in good agreement with laboratory

experiments for two-particle statistics,18 three-particle
statistics,17 and concentration variances19 sthe term “particle”
that is used here is interchangeable with “fluid element”d. KS
is also in good agreement with DNS for two-particle
statistics.14

The velocity of a particle at a pointx and a timet, is
constructed, in the case of homogeneous turbulence, by the
summation of independent, randomly orientated, Fourier
modes. These modes represent the contribution of a finite
number of turbulent modes in the inertial range of the Eule-
rian energy spectrum. Hence kinematic simulation only mod-
els the flow field in a qualitative and highly reduced sense.
What is not modeled in kinematic simulation are the phase
correlations between Fourier modes, their interactions, and
their dynamics. Lagrangian statistics are achieved by synthe-
sizing physical space only along particle trajectories.

The formulation of the velocity field used in this study
follows from more recent kinematic simulation studies.19,20

The KS velocity field is kinematically prescribed to be

usx,td = o
n=0

Nk

an cossknx + vntd + bn sinsknx + vntd, s6d

where Nk is the total number of representative Fourier
modes,an and bn are the decomposition coefficients corre-
sponding to the wavevectorkn and vn is the unsteadiness
frequency.

The wavevector

kn = knk̂n s7d

is randomly orientated by a random choice ofk̂n. The wave-
number are distributed via

kn = k1SkNk

k1
Dsn−1d/sNk−1d

, s8d

with n being an integer such that 1ønøNk. Reference 19
found that this formulation resulted in the quickest conver-
gence of the Lagrangian statistics.

To ensure the Fourier modes’ orientations are random
and the velocity field still satisfies incompressibility, the ori-
entations ofan and bn are chosen independently and ran-
domly in a plane normal tokn, i.e.,

an ·kn = bn ·kn = 0. s9d

Furthermore, magnitudes ofan andbn are chosen to conform
with the prescribed energy spectrumEskd, i.e.,

uanu2 = ubnu2 = 2EskndDkn, s10d

where

Dkn =5
k2 − k1

2
, n = 1

kn+1 − kn−1

2
, n P f2,Nk − 1g

kNk
− kNk

− 1

2
, n = Nk.

6 s11d
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The Eulerian energy spectrumEskd is the main input in
kinematic simulation of homogeneous isotropic turbulence
salong with a coefficient of the unsteadiness frequency as we
see later on in this sectiond. The inertial range form of the
energy spectrum3 is

Eskd = CKe2/3k−5/3, s12d

wheree is the rate of dissipation of kinetic energy per unit
mass andCK is the Kolmogorov universal constant. In this
study, KS only models the inertial range of the spectrum
unless explicitly stated; hencek is within the surrogate iner-
tial range,k1,k,kh, wherekh;kNk

. We use the term “sur-
rogate” to indicate that, in KS, the rangek1,k,kh is not
dynamically inertial but simply the range over which the
K41 spectrum3 is prescribed to hold.

It is also the purpose of this study to consider departures
from Kolmogorov’s −5/3 law, either as a reflection of inter-
mittency or for the purpose of experimenting with the depen-
dence of various Lagrangian statistics20–22 on the scaling of
Eskd. We therefore write the general form of the energy spec-
trum

Eskd = CTurms
2 LskLd−p, s13d

whereL=2p /k1 andp.1 to ensure that there is no infinite
energy at the small scales whenkh is taken to infinity. The
dimensionless constantCT=CTsp,k1,khd is such that

3urms
2

2
=E

2p/L

2p/h

Eskddk, s14d

where h=2p /kh. The form fEq. s13dg of the spectrum is
unambiguous in KS where turbulence dynamics are absent
and thereforee is not directly defined. However, by using the
cornerstone turbulence relation2

e = Ce

urms
3

L
, s15d

whereCe is a dimensionless constant, Eq.s13d reduces to Eq.
s12d for p=−5/3 whenCKCe

2/3=CT.
Unless otherwise stated, the value ofp is set to 5/3 in

this study. The value ofCe does not need to be set as an input
in our simulation and it should not be expected to be equal to
corresponding values published in the literature asL is not
the integral lengthscale.

Time dependence is introduced via the “unsteadiness fre-
quency” vn, which we take to be proportional to the eddy
turnover frequency of the moden,

vn = lÎkn
3Esknd, s16d

where l is the unsteadiness or “persistence” parameter
which, as will be seen in later sections, can have a significant
effect on one-particle two-time Lagrangian statistics.20–22

Values ofl equal to, or very close to, zero generates a ve-
locity field that is frozen or approximately frozen in time,
i.e., a velocity field with infinite, or near-infinite, persistence
in time. The other extreme of very large values ofl gener-
ates extremely unsteady velocity fields with very fast time
variations and very little persistence of flow structure.

In Sec. II we investigate the properties of the Eulerian
field simulated by kinematic simulation and show that the
statistics produced are consistent with established theory. In
Sec. III we use kinematic simulation to reproduce Lagrang-
ian statistics measured in a laboratory experiment. Section
IV deals with the phenomena of Lagrangian intermittency. In
Sec. V we summarize the results and draw conclusions.

II. EULERIAN FIELD PROPERTIES

Although much of this study is dedicated to Lagrangian
statistics it is desirable to first look at the characteristics of
the model in the Eulerian frame. Tests to verify the isotropy,
homogeneity, and stationarity of the turbulent flow were
completed and the flow was found to satisfy

kusxdl = 0, s17d

where the brackets denote an average over time so that Eq.
s17d is actually found to hold at many different pointsx in
the flow; it was also found that

kustdl = 0, s18d

where the brackets denote an average over space so that Eq.
s18d is found to hold at many different timest. Furthermore,
it was checked that

ku1sx,td2l = ku2sx,td2l = ku3sx,td2l, s19d

whereu=su1,u2,u3d and the averages are taken over space
or over time.

The second-order one-point two-time Eulerian structure
function is defined as

FIG. 1. Eulerian time second-order structure function,D2
Estd=kfu1st+t ;xd

−u1st ;xdg2l, for different formulations of time dependency,sad vn

=0.5Îkn
3Esknd and sbd vn=0.5urmskn. Ballistic and the expected inertial-

range scalings are observed. Due to isotropy ensures the curves turn out to
be plotted on top of each other.
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D2
Estd = kfuisx;t + td − uisx;tdg2l, s20d

where the brackets denote an average over time. This quan-
tity is particularly important as it is prescribed in many sto-
chastic models whereas it is obtained here directly from the
simulation; results fori =1 are presented in Fig. 1sstatistical
homogeneity and isotropy of the field precludes the need to
show results fori =2 andi =3d. It was also verified thatD2

Estd
is independent ofx. The flow parameters are all shown in
Table I.

It is obvious that the moment should scale asD2
Estd

,t2 in the ballistic regime, i.e., for times on the order of the
Kolmogorov timescale,th=2p /kNk

, or smaller. However, its
scaling in the inertial range is not so obvious. Tennekes23

proposed that the Eulerian frequency spectrumF11
E svd

should scale asv,−5
3 in the inertial range,th! t!TE

swhereTE is the Eulerian integral timescaled, by adopting a
generalization of the concept of advective spectral broaden-
ing si.e., resulting from advection of the vorticity field by the
velocity fieldd. This is different from the Kolmogorov scaling
form ev−2. In other words

F11
E svd , v−m s21d

for large enoughv, wherem=5/3 asopposed tom=2. Since
the velocity structure function can be related to the Eulerian
frequency spectrum by

D2
Estd = 2E

0

`

s1 − cosvtdF11
E svddv s22d

we recover the relation

D2
Estd , tm−1 s23d

for small enought. Hence D2
Estd,t2/3 if m=−5/3 and

D2
Estd,t if m=2. Figure 1sad suggests thatD2

Estd,t in the
inertial range when the kinematic simulation’s time depen-
dence is controlled by Eq.s16d for both large and small
values ofl. However, a different form of the time depen-
dence, which we introduce in Sec. III C, based on an ap-
proximation of small-scale sweeping leads toD2

Estd,t2/3

fsee Fig. 1sbdg.
The structure function settles to a constant value for long

enough timessnot obvious on the log-log plotd which is con-
sistent with the constant term 2ku2l in

D2
Estd = 2ku2l − 2kust + tdustdl s24d

becoming dominant fort@TE wherekust+tdustdl<0.
Now that the Eulerian field time dependence has been

verified it is, perhaps, natural to look at the field’s spatial
structure. Figure 2 shows the two-point Eulerian velocity au-
tocorrelation coefficients determined by

Rii
Esr d =

kuisx + r ;tduisx;tdl
kuisx;td2l

, s25d

where there is no summation implied over the indices. The
autocorrelations are taken by choosingr along thex axis and
iterating in the Eulerian frame, obtainingR11

E srd by correlat-
ing lagged values ofu1, R22

E srd by correlating lagged values
of u2, andR33

E srd by correlating lagged values ofu3. Averages
are taken overx andNR flow realizationsssee Table Id. The
form of this result shows good agreement with theory,24 pre-
dicting a slower decorrelation ofR11

E sxd with both theR22
E sxd

andR33
E sxd showing significant negative loops.

In summary we can say that a kinematically simulated
Eulerian velocity field has been simulated for which it is
shown that the expected scaling in the inertial range is
achieved forD2

Estd, and that the spatial velocity correlations
show good agreement with classical theory.

III. ONE-PARTICLE TWO-TIME LAGRANGIAN
STATISTICS

One-particle Lagrangian statistics have been somewhat
neglected when considering kinematic simulations, largely
due to their satisfactory reproduction of two-particle
results.14 The exceptions20,25 produced limited one-particle
results for initial model comparison. However, recent labo-
ratory experiments15 have succeeded in obtaining one-
particle two-time Lagrangian statistics in a fully developed
turbulent flow. This gives new impetus to numerical models
producing one-particle statistics, and provides an excellent
opportunity for a first ever comparison of KS one-particle
two-time predictions using experimental data.

A. The laboratory flow

The turbulent flow of the experiment15 is created be-
tween two counterrotating disks forming a so-called swirling

TABLE I. Run specification for the Eulerian field test.Nt is the number of time stepsDt or iterationsr in each
sample set.NR is the number of KS flow field realizations andNp is the number of sample sets per realization.

k1s2pm−1d khs2pm−1d Nk urms sm s−1d l Nt Dt ssd NR Np

1.0 1000.0 100 1.0 0.5 100 000 0.000 201 9 100 100

FIG. 2. Eulerian two-point velocity correlations,Rii
Esr d=kuisx

+r ; tduisx ; tdl / kuisx ; td2l. The longitudinal curve shows a slower decorrela-
tion than the transverse curves, the latter exhibiting negative loops. Averages
are taken over flow realizations.
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von Kármán flow.26 In this way, it is claimed, large experi-
mental Reynolds numbers can be obtainedsRel=740 in the
case used hered. Neutrally buoyant polystyrene spherical par-
ticles seed the sonified fluid and ultrasonic acoustical
techniques27 are used to track their trajectory.

The experiment15 claims to reproduce a good approxi-
mation of isotropic and homogeneous turbulence in a section
in the middle of a cylinder that constrains the flow between
the counterrotating disks. This section has a 10 cm extent in
the axial direction and extends almost the whole diameter of
the cylinder which is itself 9.5 cm wide. Therefore, it was
decided thatk1 should be representative of these large scale
motionsssee Table IId.

Although, experimentally, this type of swirling flow
achieves between one and a half and two wavenumber de-
cades of −5/3 scaling in the inertial subrange,26,28the experi-
ment claims to achieve a high Reynolds number compared to
other laboratory turbulent flows, high enough for the results
to be close to their high-Reynolds-number asymptotic ana-
logs. This is why we have spanned approximately three de-
cades of wavenumbers in the kinematic simulation. This
range is consistent with us choosing bothL<10 cm andh
=88 mm, a tenth of the experiment’s15 Taylor microscale.
Although a Kolmogorov lengthscale of 60µm can be deter-
mined using the microscale relationships,h=sn3/ed1/4, due
to the temporally unstable nature of the power being inputted
by the rotating disks29 it was decided not to baseh on the
stated dissipation ratese=25 W/kgd. A summary of all the
KS parameters is presented in Table II.

B. Lagrangian velocity correlations

The experimental study15 calculates the Lagrangian ve-
locity component autocorrelations,

Rii
Lstd =

kyist + tdyistdl
kyistd2l

, s26d

whereyistd=uifxstd ,tg, no summation is implied over indices
and the averages are taken over timet andNR flow realiza-
tions; there areNp trajectories per realizationssee Table IId.
R11

L std is the only component measured, presumably due to
limitations of the experimental setup.

Their experiment is run for<0.1 s sor five Lagrangian
integral timescalesd and it is observed from our correspond-
ing calculation, Fig. 3, that kinematic simulation, usingl
=0.1, is in excellent quantitative agreement withswe also
presenti =2,3 to further enhance the idea of an isotropic
modeld, with the velocity completely decorrelating within
<0.08 s. The value ofl was chosen to obtain the best quan-
titative agreement, however, it is important to point out that
the qualitative nature of the Lagrangian statistics presented
in this sectionsi.e., the exponential decay of the Lagrangian
autocorrelations and the scaling of the Lagrangian structure
functions and spectrad are invariant forl,1.0.22 Of course
the Eulerian field is insensitive to any change in the time
dependency of the simulation.

A more useful value that can be extracted from this re-
sult is the integral, or characteristic, timescale of the flow,
which is usually determined by

TLi
=E

0

`

Rii
Lstddt, s27d

whereTL1
=TL2

=TL3
=TL for isotropic turbulence. Mordantet

al.15 choose to fit an exponential decay curve of the form
R11

L std,e−t/TL to the data. We employ the same methodsFig.
4d. Mordantet al.15 obtain the exponential function

TABLE II. Run specification for the kinematic simulation flow attempting to reproduce the experiments of
Refs. 15 and 16. HereNt is the number of time steps per Lagrangian fluid element trajectory.NR is the number
of KS flow realizations andNp is the number of fluid element trajectories per realization.

k1s2pm−1d khs2pm−1d Nk urms sm s−1d Nt Dt ssd NR Np

62.83 71 400.0 100 0.98 33 200 3.0126E−6 100 100

FIG. 3. Lagrangian velocity correlations,Rii
Lstd=kyist+tdyistdl / kyistd2l. Av-

erages are taken over Lagrangian fluid element trajectories. All curves show
excellent agreement with experimentfsee Fig. 1sad of the work by Mordant
et al.g.

FIG. 4. Exponential function fit,R11
L std,e−t/TL, of the Lagrangian velocity

correlation,Rii
Lstd=kyist+tdyistdl / kyistd2l. Data after<0.07 s are discarded

so that noisy data do not bias the fitting. The integral timescale was calcu-
lated asTL=20.7 ms.
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R11
L std = 1.03e−45.7t, s28d

which yields an integral timescale of 21 ms. The kinematic
simulation data produces the exponential function

R11
L std = 0.84e−48.3t. s29d

The value ofR11
L std shows some variation from both the

exponential form and the experimental data at small times,
however, note that the KS result yieldsTL=20.7 ms, which is
in good agreement with the experiment.TL can also be esti-
mated from Corrsin’s relationTL,L /urms, whereL is the
integral lengthscale, which, in the case of isotropic homoge-
neous turbulence can be calculated using the formula24

L =
3p

4

E
0

`

k−1Eskddk

E
0

`

Eskddk

. s30d

This procedure yields a value ofTL=15.1 ms which is con-
sistent withTL=21 ms considering that the scaling constant
in TL,L /urms is close to 1.

C. The Lagrangian and Eulerian velocity power
spectra

The next analysis that Mordantet al.15 undertake is to
construct the Lagrangian velocity power spectrum using the
real part of the Fourier transform,

F11
L svd = urms

2 E
0

`

R11
L stde−ivtdt. s31d

They claim that a scaling ofF11
L svd,v−2 is achieved, as

predicted by theory.30,23 In fact, Mordantet al.15 compare
their measured spectrum to the Lorentzian function,

FL
Fitsvd =

urms
2 TL

1 + sTLvd2 . s32d

Presumably this is to try and incorporate at least some of the
effect that the large-scale energy-containing motions have on
the spectral shape. Using a simple sliding 10 Hz nonoverlap-
ping averaging window, the spectrum produced by the KS
model for l=0.1 is depicted in Fig. 5. It is clear that the
agreement withFLsvd,v−2 is not good. In fact the La-
grangian power spectrum produced by the kinematic simula-
tion scales like theEulerian spectrum.23 According to Ref.
22, this is attributable to the low persistence parameterl
used in this run. A kinematic simulation such as the one used
here does not incorporate sweeping of the small-scale eddies
by the large ones, and it should, perhaps, not be expected, in
general, that KS should reproduce eitherFLsvd,v−2 or
FEsvd,v−5/3 sthe advective spectral broadening of Ref. 23
referred to in Sec. IId. However, we do observeFEsvd
,v−5/3 for both large and small values of lambdassee Fig.
6d and in the case of largel, e.g.,l=5 as in Fig. 7,FLsvd
,v−2 is also observed as previously reported.22

However, returning to the Lagrangian velocity autocor-
relation using this high value ofl we find that all quantita-
tive, and, indeed qualitative, agreement with the laboratory

FIG. 5. Lagrangian velocity power spectrumF11
L svd averaged with a simple

10 Hz sliding window. The persistence parameterl=0.1. Despite being
calculated in a Lagrangian frame, the spectrum exhibits Eulerian scaling
sv−5/3d rather than Kolmogorov scalingsv−2d.

FIG. 6. Eulerian velocity power spectrumF11
E svd averaged with a simple 10

Hz sliding window. The spectrum is insensitive to the time dependency of
the kinematic simulation velocity field. Correct scaling as predicted by Ref.
23 is observedsv−5/3d.

FIG. 7. Lagrangian velocity power spectrumF11
L svd averaged with a simple

10 Hz sliding window. The persistence parameterl=5.0. Some evidence on
Kolmogorov scaling is observedsv−2d.

FIG. 8. Lagrangian velocity correlations,R11
L std=ky1st+tdy1stdl / ky1std2l.

Averages are taken over Lagrangian fluid element trajectories. The persis-
tence parameterl=5.0. All quantitative and qualitative agreement seen in
Fig. 3 is lost.
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results obtained withl=0.1 is lostssee Fig. 8d. And here is
the crux of the problem of the persistence parameter effect.
The role of the unsteadiness frequency is not limited to re-
producing the sweeping effect on the frequency spectra with-
out actual sweeping; it also, of course, largely determines the
integral timescales of the flow and it is found thatTL de-
creases asl increases.

A possible solution to the problem is to replace ourvn

model by an alternate formulation of the unsteadiness fre-
quency,

vn = lurmskn. s33d

Here, we simplify the sweeping mechanism by sweeping all
scales with one average velocityurms. Clearly the assumption
of an average neglects both the time dependency of the large-
scale sweeping velocities and their direction. However, on
average, this formulation, although incomplete and inaccu-
rate, may go some way in representing the sweeping of the
small-scales eddies by the large energy-containing ones.

Using this formulation we calculate again the Lagrang-
ian velocity power spectrumfEq. s31dg and the Lagrangian
velocity autocorrelationfEq. s26dg using a low persistence
parametersl=0.1d. From Fig. 9 we can see the sweeping on
FLsvd and it can be argued that the scaling,FLsvd,v−2, is,
in fact, even better than in Fig. 7. The autocorrelation curve
sFig. 10d still exhibits a significant negative loop, compro-
mising the accurate determination of the Lagrangian integral
timescaleTL. However, it certainly is an improvement over
the rapidly oscillating curve in Fig. 8 and if this model was
to be used in conjunction with a convective range model that

explicitly simulates the large scalessfor example, large-eddy
simulation sLESd-KS hybrid approach19d, then it is entirely
conceivable that the single negative loop would be eradi-
cated.

To summarize, we have used the experimental results of
Mordantet al.15 to compare the Lagrangian statistics that can
be extracted from a time-varying, kinematically simulated,
Eulerian velocity field. We find excellent quantitative agree-
ment when comparing the Lagrangian velocity autocorrela-
tions for a weakly time-dependent KS field. This weak time
dependency leads to anomalous, that is Eulerian, scaling in
the Lagrangian velocity power spectrum. This was rectified
with a strongly time-dependent velocity field but at the ex-
pense of any agreement in the correlation structure of the
flow. A compromise was made with a different formulation
of the time-dependent terms in the velocity field which gave
excellent agreement with experimental measurement of the
Lagrangian velocity power spectrum and an acceptable form
of the autocorrelogram.

IV. LAGRANGIAN INTERMITTENCY

A. Lagrangian structure functions

We first look at the second-order Lagrangian structure
function hit should be noted that for the remainder of the
paper we revert to the original formulation of the unsteadi-
ness frequencyfEq. s16dgj, which, in view of isotropy, can be
defined as

D2
Lstd = kfy1st + td − y1stdg2l, s34d

where the average is taken over timet and NR trajectories.
We plot it in a compensated waysas do Mordantet al.15d in
Fig. 11 that will expose any inertial range scaling, i.e.,

D2
Lstd = kfy1st + td − y1stdg2l , et, s35d

which, for a valid range of frequenciesv, corresponds to
F11

L svd,ev−2 via the relation

D2
Lstd = 2E

0

`

s1 − cosvtdF11
L svddv. s36d

As should be expected from the absence ofF11
L svd

,v−2 scaling for smalll with vn=lÎkn
3Esknd, the scaling

FIG. 9. Lagrangian velocity power spectrumF11
L svd averaged with a simple

10 Hz sliding window. Here,vn=lurmskn. Kolmogorov scalingsv−2d is
recovered.

FIG. 10. Lagrangian velocity correlations,R1
Lstd=ku1st+tdu1stdl / ku1std2l.

Averages are taken over fluid element trajectories. The persistence param-
eterl=0.1. A negative loop is still observed although not as dominant as the
loops in Fig. 8.

FIG. 11. The Lagrangian second-order structure function,D2
Lstd=kfy1st

+td−y1stdg2l, compensated with time,D2
Lstd /et. The persistence parameter

l=0.1. Averages are taken over fluid element trajectories. No scaling
D2

Lstd,t is observed; we have checked that this structure function instead
scales asD2

Lstd,t2/3.

035104-7 One-particle two-time diffusion Phys. Fluids 17, 035104 ~2005!

Downloaded 16 Oct 2009 to 155.198.157.156. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



plateau is not observed forl=0.1. Initially this may be seen
as a good thing since none is observed in the experiment
either salthough the authors claim to achieve such a scaling
regime, the range is too small to unambiguously distinguish
a plateau from a peakd. However, whereas in the latter study
the problem comes primarily from the relatively low Rey-
nolds number, in the kinematic simulation this is not the
problem sinceL /h,103. So although the agreement is good
it is probably coincidental and we are seeing a Lagrangian
structure function that is, in fact, scaling ast2/3, correspond-
ing to thev−5/3 of the Eulerian spectrum and of the Lagrang-
ian spectrum forvn=lÎkn

3Esknd with low values ofl ssee
Sec. III Cd. If, however, the unsteadiness parameter is again
increased tol=5.0 then the expected plateau is observed
sFig. 12d. What is also encouraging is that the value forC0 in
D2

Lstd=C0et is consistent with both the experimentally de-
rived value31 sC0=4±2d and the values used in stochastic
models for turbulent dispersion32 sC0=5±2d. We have re-
verted to using Eq.s16d to determine the unsteadiness of the
flow but we find a comparable value forC0 when using Eq.
s33d, as might be expected from the similar data ranges seen
in Figs. 7 and 9.

Intermittency is often studied by examining the behavior
of the q-order structure function

Dq
Lstd = kfyist + td − yistdgql, s37d

where averages are taken in the same way as Eq.s34d. In
order to compensate for their lack of a well-defined inertial
subrange, Mordantet al.15 extrapolate the extended self-
similarity approach33 for two-particle Lagrangian statistics to
one-particle Lagrangian statistics. In this approach, structure
functionsDq

Lstd are plotted as a function of a reference mo-
ment, sayD2

Lstd, and power law scalings are sought, i.e.,

Dq
Lstd , D2

Lstdjq/j2, s38d

wherejq is the time scaling exponent of the structure func-
tion of orderq. In the kinematic simulation results shown in
Fig. 13, it is clear that such scalings do exist over a very
wide range, extending over at least four decades. These scal-
ings and their ranges appear to be independent ofl.

In the absence of inertial range intermittency in one-
particle two-time Lagrangian homogeneous, isotropic turbu-
lence, we should expectjq/j2=q/2. However, the findings

of the experiment are at variance with this prediction, which
suggests that their flow is intermittent. The deviation is most
pronounced for the higher order statistics where the rare,
strong events become detectable. In Fig. 14 we compare the
values ofjq/j2 for both the high and low persistence param-
eter simulations and the experiment. The deviation from non-
intermittent values is clear in the experiment, whereas the
values for the kinematic simulations are closely in agreement
with the prediction jq=sq/2dj2, valid in the absence of
inertial-range intermittency.

As noted in previous studies,22 kinematic simulations
lead toj2=p−1 for l,1 andj2=2sp−1d / s3−pd for l@1,
wherep is the scaling exponent of the energy spectrumfsee
Eq. s13dg. It follows, usingjq=sq/2dj2, that we should have

FIG. 12. The Lagrangian second-order structure function,D2
Lstd=kfy1st

+td−y1stdg2l, compensated with time,D2
Lstd /et. The persistence parameter

l=5.0. Averages are taken overNp Lagrangian fluid element trajectories for
NR flow realizations. A significant range of the scalingD2

Lstd,t is observed.

FIG. 13. Extended self-similarity ansatz,Dq
Lstd,D2

Lstdjq/j2, for several or-
ders of the structure functions,Dq

Lstd=kfyist+td−yistdgql. Each figure repre-
sents a simulation run with a different value of persistence parametersad
l=0.1 andsbd l=5.0. The same scaling is observed over the same wide
range for both high and low values of the persistence parameter.

FIG. 14. Relative scaling exponentsjq/j2 obtained by the extended self-
similarity approach. In the absence of intermittency in the homogeneous
isotropic velocity field the kinematic simulations scale linearly according to
jq/j2=q/2 regardless of the value ofl. The exponents determined from the
experiment of Ref. 15 clearly show nonlinear scaling, suggesting their flow
is intermittent.
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jq =5
q

2
sp − 1d for l , 1.0

qsp − 1d
3 − p

for l @ 1.0,6 s39d

and this is indeed what we observe in Fig. 15. Eulerian in-
termittency of turbulent flows might well lead to a deviation
of p away from the value53, but changes in the value ofp in
a turbulent-like flow without Eulerian intermittency, such as
KS, do not lead to Lagrangian inertial range intermittency:jq

remaining proportional toq, only the constant of proportion-
ality changes.

The absence of inertial range intermittency in one-
particle Lagrangian velocity statistics obtained by KS is fur-
ther revealed if we examine the PDFs of the velocity incre-
ment

Dty1 = y1st + td − y1std. s40d

Plotting their flatness factors,Kstd=ksDty1d4l / ksDty1d2l2−3
in Fig. 16 for high and low time dependency, we find that
they remain resolutely Gaussian for all times, unlike the
laboratory results which exhibit highly non-Gaussian statis-
tics.

B. One-particle acceleration correlations in
kinematically simulated, Gaussian velocity fields

A second experiment using almost identical flow
parameters16 and experimental setup investigates one-
particle acceleration correlations. They define a velocity in-
crement over a time lagt as the total contribution of a num-
ber of velocity increments over a smaller time intervalt1

Dty1std = yist + td − yistd = o
n=1

t/t1

Dt1
yist + nt1d. s41d

This definition allows them to study the dependence of
the elementary stepst1 on each other. To do this they define
several correlation relationships that have the following gen-
eral form:

xsf,gdsDtd =
kffst + Dtd − kflgfgstd − kglgl

s fsg
, s42d

wheres f andsg are the rms values off andg, respectively,
and all averages are calculated over timet and many particle
trajectories. Many different forms off andg were tried, for
example,

xsf,gd =5
xsDty2,Dty2d
xsuDty2u,uDty2ud
xsDty1,Dty1d
xsuDty1u,uDty1ud
xsDty1,Dty2d
xsuDty1u,uDty2ud.

6 s43d

Using these functions, the autocorrelations of both the
signed and absolute values ofi =1, 2 velocity increments can
be determined, as well as the corresponding cross-
correlations. The results produced by kinematic simulation
with a persistence parameter ofl=0.1 are shown in Fig. 17.
Comparing with the curves of the experiment,16 we find ex-
cellent qualitative agreement. The signed values of the incre-
ment autocorrelations decorrelate extremely quickly, within
about one Kolmogorov timescalesin Fig. 17 th<0.01TLd,
with the cross-correlations confirming that the two signed
velocity components are independent. This is consistent with
the reasoning behind treating one-particle Lagrangian turbu-
lence as a Markovian process where the accelerations are
independent saccelerations and velocity increments are
equivalent in the limitt1→0d. This is the premise of sto-
chastic models that use Langevin-type equations as their
base.34,35 However, when Mordantet al.16 look at the un-
signed, or absolute, values of both the autocorrelations and
cross-correlations, they find significant correlations for all
three measures persisting for very long times up to the inte-
gral timescale determined in Sec. III B. Mordantet al.16 take
this to be an indication of the intermittency of their flow.

FIG. 15. Extended self-similarity scaling exponentsjq for p=1.4, −5/3,
and 1.8. The persistence parameter isl=5.0 for all simulations except when
p=−5/3, in which case we use both high and low values ofl. It is clear that
jq can be readily changed by adopting different values of bothl andp.

FIG. 16. Flatness factors for the PDFs ofDty1 wheret=0.15, 0.3, 0.6, 1.2,
2.5, 5.0, 10.0, 20.0, and 40.0 ms. The KS-obtained PDFs fail to show any
significant flatness values at any times, regardless of the value ofl.

FIG. 17. Correlation coefficients, xsf ,gdsDtd=skffst+Dtd−kflgfgktl
−kglgld /s fsg, for various velocity incrementsfidentities can be found in Eq.
s43dg. Persistence parameterl=0.1. It is evident that the acceleration com-
ponents remain correlated over long times.
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Looking at Fig. 17 it is clear that in KS we also find very
long-time correlations for these velocity increments, al-
though the strength of the correlations are significantly lower
than those of Mordantet al.16 saround half the laboratory
experiment’s strength, in factd. In Sec. IV A we present con-
vincing results that show that kinematic simulation does not
exhibit one-particle Lagrangian intermittency, and that KS
has no Eulerian intermittency on account of its Gaussianity,
this discovery may be, at first, surprising. Hence, the key
feature underpinning the long-time correlations in Fig. 17 is
not the inertial-range intermittency. One way to understand
the correlations is in terms of persistent vortices. The accel-
eration vectors of fluid elements circling around vortices can
be expected to decorrelate within a vortex turnover time, but
if these vortices are persistentsin the sense of being coherent
and long livedd then the acceleration strengths of the fluid
element can be expected to be correlated for much longersas
observed in Fig. 17d. With the great majority of the vortices
being of size of the order of the Kolmogorov microscale,21 it
is expected that the Kolmogorov timescaleth will be the
dominant decorrelation time for the acceleration vectors and
this is indeed observed in Fig. 17. Such regions of high vor-
ticity, as well as other high strain and streaming regions, are
known to exist in KS.25,20 These high vorticity regions may
not have the same shape or spatial distribution as coherent
vortices in real turbulence but their presence may be enough
to provide the vortical regions responsible for the accelera-
tion correlations, even though the flow is statistically Gauss-
ian with no intermittency. The inertial-range intermittency
may act to accentuate these correlations but does not seem to
be the cause of their underlying signature.

To check our view that it is the persistence of the vortical
streamlines that is key in producing these long-time accel-
eration correlations we have increased the persistence param-
eter tol=5.0 ssee Fig. 18d. The result is that the intensity of
the long-time correlation in Fig. 17 is diminished when the
turbulence is made less persistent in timesi.e., increasingld.
Following the example of Mordantet al.15 we take the cor-
relation in time of the incrementsxslnuDty1u , lnuDty1ud and
find the slope of the scaling region, the value of which they
call the intermittency parameterlI

2 slI
2 should not be con-

fused with, or thought to be related to, the persistence pa-
rameterld. Looking at Fig. 19 it is clear thatlI

2 is well
defined and decreases with increasing values of persistence

parameterl. For l=0.1 the value is approximately one-third
of the value predicted in the experiment,15 lI

2

=0.0115±0.01. This result supports the view that it is flow
persistence and not intermittency that is primarily respon-
sible for the long-time acceleration correlations and for the
scaling ofx, lnst /TLd.

V. SUMMARY AND CONCLUSIONS

A KS model of Lagrangian dispersion has been de-
scribed and Lagrangian data from laboratory experiments15

have been used to compare with Lagrangian statistics ex-
tracted from the model. The Eulerian field that the model is
based on has also been compared with classical theory; the
Eulerian structure function,D2

Estd=kfuist+t ;xd−uist ;xdg2l,
shows consistent inertial-range scaling in accordance with
the formulation of unsteadiness frequency used and the Eu-
lerian velocity autocorrelogram, Rii

Esrd=kuisx
+r ; tduisx ; tdl / kuisx ; td2l, exhibits properties expected from
Ref. 24.

Using flow parameters determined from the laboratory
experiment, the Lagrangian velocity autocorrelogram,
R11

L std=ky1st+tdy1stdl / ku1std2l shows remarkable agreement
with experiment when using a small value of the persistence
parametersl=0.1d. This agreement results in the simulated
and measured values of the Lagrangian integral timescale
being within 2%. However, when the Lagrangian velocity
power spectrumF11

L svd is plotted it is observed that
F11

L svd,v−5/3 instead of the expected Kolmogorov scaling
v−2. We attribute this effect to the lack of sweeping of
smaller scales by larger ones. This effect disappears when the
persistence parameter is increased to a value much greater
than 1sl=5.0d, in which caseF11

L svd,v−2. However, large
values ofl spoil the agreement seen in the Lagrangian ve-
locity correlations. A partial compromise is reached by refor-

FIG. 18. Correlation coefficients, xsf ,gdsDtd=skffst+Dtd−kflgfgstd
−kglgld /s fsg, for various velocity incrementsfidentities can be found in Eq.
s43dg. Persistence parameterl=5.0. It is clear that the increased time depen-
dency further lowers the strength of the correlations and significantly short-
ens the period over which the increments are correlated.

FIG. 19. Correlation coefficients, xsf ,gdsDtd=skffst+Dtd−kflgfgstd
−kglgld /s fsg for the velocity incrementxslnuDty1u , lnuDty1ud. Persistence pa-
rametersad l=0.1 andsbd l=5.0. A scaling region is well defined and the
“intermittency parameter”lI

2 decreases with increasing persistence param-
eterl.
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mulating the time dependency of the field in a way that par-
tially takes into account large scale sweeping. From this
reformulation, excellent agreement withv−2 results for the
velocity power spectrum and the autocorrelation curve, while
not fully conforming to the expectedRLstd,e−t form, is
nevertheless a considerable improvement on the previous re-
sults obtained for large values ofl. The universal Lagrang-
ian constantC0, defined byD2

Lstd=C0et in the inertial range,
is an output of the model and the value obtained is consistent
with experimentally derived values. Further improvement
might be achieved by a direct calculation of the large scales
in a LES-KS approach.19

Structure functions of orderq, Dq
Lstd, plotted against

D2
Lstd reveal a wide range of scaling for all values ofq,

regardless of the level of time dependency given to the flow.
To evaluate the level of intermittency, their scaling expo-
nentsjq have been plotted for both the simulated and the
laboratory flows. The exponents derived from KS give the
Kolmogorov relation for homogeneous isotropic turbulence,
jq=sq/2dj2, whereas the values measured from the experi-
ment show considerable deviation, indicating intermittency.
The lack of one-particle, Eulerian intermittency in KS is con-
firmed by the fact that all PDFS of the velocity increment,
Dty1=y1st+td−y1std, are strongly Gaussian for all timest.
The scaling exponentsjq are functions of both the persis-
tence parameterl and of the Eulerian input spectrum expo-
nentp.

While signed values of the components of the accelera-
tion vector decorrelate over times of orderth in KS, absolute
values remain correlated for times of orderTL. It is also
found that the intermittency parameterlI

2, introduced by
Mordant et al.16 remains finite for all values of persistence
parameterl. These findings were also observed in the labo-
ratory flow albeit with higher correlation values, and was
attributed to the intermittency of active turbulent regions.16

Our results suggest that the cause of these acceleration cor-
relation signatures is the persistence of vortical regions in the
turbulence rather than intermittency. Intermittency may,
however, have the effect of accentuating these signatures.
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