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The property of transfer between different scales of motion in evolving two-dimensional
compact vortices is studied here, and a general mathematical framework is developed
to describe the transfer between scales inside compact structures. This new approach
is applied to the case of an axisymmetric advection which represents the leading-order
(large time) approximation for Lundgren’s family of two-dimensional vortices. It is
also generalized to passive scalar advection by non-axisymmetric velocity fields. It is
shown that scale interactions generated by an axisymmetric advection are essentially
local and dominated by distant triadic interactions: in the case of an evolving spiral
vortex sheet this result is confirmed even when non-axisymmetric corrections are
included. A physical interpretation of the results is given, which can be summarized
by saying that locality of scale interactions is caused by the uniformity of shear
at a given scale and is therefore increasingly natural at small lengthscales. Local
interactions are shown to arise in axisymmetric advection but to be uncommon in
non-axisymmetric advection.

1. Introduction
Both in two-dimensional and three-dimensional turbulence as well as in geophysical

flows there is a tendency for vorticity to organize itself into coherent compact
structures. There is also evidence from direct numerical simulations of turbulence
that both vortex tubes and sheets exist in the small scales of the turbulence and
even that at least some vortex tubes may result from vortex sheet instabilities or self-
induced dynamics (Vincent & Meneguzzi 1994; Passot et al. 1995). More generally,
vortex spirals appear naturally because of vortex-sheet instabilities of self-induced
roll-up and also spirals of passive scalars and of weak vorticity are continuously
formed by filamentation or simply advection by a local differential rotation (see the
recent paper by Gibbon, Fokas & Doering 1999).

It is in the spirit of modelling and studying compact vortex structures and their
possible implications for turbulent flows and their statistics and scaling that Lundgren
(1982) derived a general two-dimensional solution of the system of equations

∂ζ

∂t
+ u · ∇ζ = 0,

ζ = ∇× u,
∇ · u = 0,
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where ζ is the vorticity normal to the plane of the two-dimensional incompressible
velocity field u(x, t). We do not consider viscous effects in this paper, but such effects
can be built into the solution and have in fact been the object of quite detailed study
by Lundgren (1982), Flohr & Vassilicos (1997) and Angilella & Vassilicos (1999) (see
also Pullin & Saffman 1998 and references therein).

In a two-dimensional polar coordinate system where the position x has radial and
azimuthal coordinates r and θ and where ur and uθ are the radial and azimuthal
components of the velocity u, the velocity field ur = 0, uθ = r Ω(r) is an exact
solution of the above system of equations for any arbitrary suitably differentiable
frequency Ω(r) of differential rotation. The vorticity of this velocity field is ζ =
(1/r)(d/dr)(r2Ω(r)). Lundgren’s (1982) family of solutions is constructed by adding a
time-dependent velocity field to this axisymmetric time-independent solution, that is

uθ = r Ω(r) + ũθ(r, θ, t),

ur = 0 + ũr(r, θ, t),

and the vorticity becomes

ζ(r, θ, t) =
1

r

d

dr
(r2Ω(r)) + ω(r, θ, t),

where

ω(r, θ, t) =
1

r

∂

∂r
(rũθ)− 1

r

∂ur

∂θ
is the correction vorticity. The incompressibility requirement implies the existence of
a streamfunction ψ(r, θ, t) such that

ũθ(r, θ, t) = −∂ψ
∂r
, (1a)

ur(r, θ, t) =
1

r

∂ψ

∂θ
(1b)

ω = −∇2ψ. (1c)

The two-dimensional vorticity equation can be recast to read

∂ω

∂t
+ Ω(r)

∂ω

∂θ
+
ũθ

r

∂ω

∂θ
+ ur

∂ω

∂r
+ ur

d

dr

[
1

r

d

dr
(r2Ω(r))

]
= 0, (2)

and because ω(r, θ − Ω(r) t) is the general solution of ∂ω/∂t + Ω(r) ∂ω/∂θ = 0,
Lundgren (1982) sought a solution of (1)–(2) of the form ω(r, θ−Ω(r) t, t). The extra
explicit time-dependence is crucial to Lundgren’s family of solutions and Lundgren
(1982) limited this family to cases where this explicit time-dependence can be expressed
as a series of non-negative powers of t−1, thereby obtaining solutions of (1)–(2) that
are valid asymptotically in the limit t → ∞. Lundgren (1982) added the requirement
that the explicit time-dependence of ω(r, θ − Ω(r) t, t) should be O(1) so that the
vorticity field ω(r, θ − Ω(r) t, t) does not blow up nor tend to 0 as t → ∞. It then
follows from (1c) that the explicit time-dependence of ψ(r, θ−Ω(r) t, t) is O(t−2), that
of ur is O(t−2), and that of uθ is O(t−1). Given the spiral wind-up form ω(r, θ−Ω(r) t, t),
∂ω/∂r is O(t) and ∂ω/∂θ is O(1). Hence, the Lundgren family of solutions is such
that the first two terms ∂ω/∂t+ Ω(r)∂ω/∂θ on the left-hand side of (2) are O(1), the
third and fourth terms are O(t−1) and the last term is O(t−2).
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Lundgren’s family of solutions has been extended to three dimensions by applying
an irrotational strain field in the direction normal to their two-dimensional plane
(Lundgren 1982). Energy wavenumber spectra and higher-order moments of single
and of particular ensembles of Lundgren vortices have been calculated and compared
to their turbulence counterparts (Lundgren 1982; Gilbert 1988; Segel 1995; Saffman
& Pullin 1996). Eulerian and Lagrangian frequency spectra of Lundgren vortices have
also been calculated numerically with the result that the Eulerian frequency spectrum
can be derived from the wavenumber spectrum using the Tennekes advection relation
for turbulent flow (Malik & Vassilicos 1996). Attempts have been made to construct
small-scale turbulence models from ensembles of specific Lundgren vortices, on the
basis of which, statistics of one-point velocity derivatives and vorticity have been
calculated and compared with numerical and laboratory experiments (see Pullin &
Saffman 1998 and references therein). However, interscale energy transfer in Lundgren
compact vortices is an issue that has not been addressed in the literature, even
though interscale energy transfer is central to two-dimensional and three-dimensional
turbulence dynamics (see for example Yeung & Brasseur 1991; Kida & Ohkitani
1992; Ohkitani & Kida 1992; Zhou 1993; Brasseur & Wei 1994) and indeed to the
dynamics of any evolving compact vortex. In general the dynamics of transfer can
be diverse and very relevant. For example the tendency of two-dimensional vortices
to organize surrounding vorticity leads to spiral wind-up and to the decrease of the
scales of vorticity gradients. The same phenomenon leads eventually to the formation
of larger scales of vorticity. On the other hand, three-dimensional instabilities of
filaments of vorticity generally produce smaller vorticity structures.

In this paper we study the interscale transfer properties of the leading-order terms
in the Lundgren family of two-dimensional solutions. Specifically we study the nature
of interscale energy transfer in the O(1) terms which satisfy the axisymmetric passive
differential rotation equation

∂ω

∂t
+ Ω(r)

∂ω

∂θ
= 0. (3)

This is the equation of passive scalar advection by an axisymmetric azimuthal
velocity field, and we generalize our approach to the study of passive scalar advection
by a non-axisymmetric azimuthal velocity field, which is governed by the equation

∂ω

∂t
+ Ω(r, θ)

∂ω

∂θ
= 0, (4)

where ω stands for passive scalar and rΩ(r, θ) is the non-axisymmetric azimuthal
velocity.

The mathematical framework and method for the study of interscale transfer in
two-dimensional compact vortices that we develop in this paper does not seem to be
well suited to the analysis of radial advection which is therefore not dealt with here.
It should be stressed that the family of solutions studied here has a certain degree of
generality. The functional dependences of the vorticity ω and streamfunction ψ on
r and θ − Ω(r) t are not specified. What is specified is that the explicit dependences
on the time t are series of non-negative powers of t−1 and that ω is O(1). A lot
of the results presented here on interscale transfer in this family of two-dimensional
compact vortices are valid irrespective of the specific forms of ω and ψ and are in
this sense quite general. However, we also present results for specific choices of ω and
ψ for the sake of more detailed illustrative insight into interscale energy transfer in
specific two-dimensional compact vortices.
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In the following section we describe the mathematical framework that we introduce
for the study of energy transfer between different scales of motion in two-dimensional
compact vortices. In §§ 3 and 4 we present the study of transfer properties in an
axisymmetric azimuthal velocity field. These transfer properties are linear and a con-
sequence of the axisymmetric differential circular advection by the imposed azimuthal
velocity rΩ(r), equation (3). In § 5 the technique is generalized to non-axisymmetric
azimuthal advection. We conclude in § 6.

2. Mathematical framework
In the case of a compact structure, a field ω(r, θ) in polar coordinates and its

Fourier transform ω̂(k, ϕk), where the wave-vector k = k [cosϕk, sinϕk], can both be
expressed as Fourier series

ω(r, θ) =
∑
n

ωn(r) einθ, ω̂(k, ϕk) =
∑
n

ω̂n(k) einϕk , (5)

with the subscript n corresponding to azimuthal modes. A few standard manipulations
lead to (Sneddon 1974; Gilbert 1988)

ω̂n(k) =
1

(2π)2

∫ ∞
0

∫ 2π

0

(−i)n ω(r, θ) e−i nθJn(kr) r dr dθ. (6)

Equation (6) shows that a two-dimensional Fourier transform in polar coordinates
becomes a coupled azimuthal Fourier series and radial Hankel transform of corre-
sponding order (Sneddon 1974), i.e. the nth Fourier harmonic, ω̂n(k), is the nth-order
Hankel transform of the nth Fourier harmonic ωn(r)

ωn(r) = 2πin
∫ ∞

0

ω̂n(k)Jn(kr) k dk,

ω̂n(k) =
(−i)n

2π

∫ ∞
0

ωn(r)Jn(kr) r dr.

 (7)

For ω(r, θ) to be real it must be that ω−n(r) = ω∗n(r), where the asterisk denotes
complex conjugate, and it then follows that ω̂−n(k) = (−1)n ω̂∗n(k).

From a mathematical point of view, the object of this work is to write the
evolution equation for the quantity ω̂n(k) and to analyse the coupling between
different wavenumbers.

3. Axisymmetric passive differential rotation
In this section we consider a passive scalar or vorticity field which does not diffuse

and is advected by an axisymmetric azimuthal velocity r Ω(r) so that it obeys equation
(3). Standard representation in Fourier space with the aid of equations (5) gives∑

n

∂ω̂n(k)

∂t
einϕk + im

∫ ∞
0

∫ 2π

0

Ω̂(|k − p|)∑
m

ω̂m(p) eimϕpp dϕp dp = 0,

where the zeroth-order Hankel transform of the axisymmetric rotation field is (see (7))

Ω̂(k) =
1

2π

∫ ∞
0

Ω(r)J0(kr) r dr. (8)
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Introduction of the geometrical equality

|k − p| = (k2 + p2 − 2kp cos(ϕp − ϕk))1/2 (9)

and the change of variables β = ϕp −ϕk eliminates the ϕk-dependence leading to the
final form

∂ω̂n(k)

∂t
+ in

∫ ∞
0

ω̂n(p)An(k, p)p dp = 0, (10)

where the transfer kernel An(k, p) is defined as

An(k, p) =

∫ 2π

0

Ω̂((k2 + p2 − 2kp cos β)1/2) ei nβ dβ. (11a)

It is worth noting that the vorticity at wavevector k varies in time as a consequence
of triadic interactions between k, k− p and p for all wavevectors p, and that β is the
angle between k and p. The transfer kernel is an integral over this angle β, each value
of β corresponding to a differently shaped triad with the length of one side equal to
k = |k| and that of the other equal to p = |p|.

The symmetric function An(k, p) = An(p, k) appearing in (10) plays the role of a
transfer kernel and represents the filter through which the field at wavenumber p
influences its evolution at wavenumber k. This formalism gives an alternative way to
look at interactions between scales in compact structures. The transfer kernel couples
wavenumbers p and k of the advected field ω by integrating over all differently shaped
triads corresponding to different triadic interactions via the driving field Ω which, in
general, has energy distributed over all wavenumbers.

An alternative formula for the transfer kernel can be obtained by a more direct
approach. From (3)

∂ω̂n(k)

∂t
=

(−i)n

2π

∫ ∞
0

∂ωn(r)

∂t
r Jn(kr) dr;

inserting the equation of motion ∂ωn/∂t = −inΩ(r)ωn(r) and expressing ωn(r) in terms
of its nth-order Hankel transform we finally get

∂ω̂n(k)

∂t
= −in

∫ ∞
0

ω̂n(p)

∫ ∞
0

Ω(r) Jn(pr) Jn(kr) r dr p dp = 0,

which is equivalent to (10) and gives an alternative mathematical definition for the
transfer kernel

An(k, p) =

∫ ∞
0

Ω(r) Jn(pr) Jn(kr) r dr. (11b)

Formula (11a) has a clearer geometrical or physical interpretation; however it requires
the intermediate passage of evaluating Ω̂(k). Formula (11b) allows in some cases an
easier analytical evaluation of the integral.

The rate of energy transfer can be evaluated from the transfer kernel: when ω(r, θ)
is the vorticity field the energy spectrum is given by (Gilbert 1988)

E(k) =
4π3

k

{
ω2

0(k) + 2

∞∑
n=0

ω̂n(k) ω̂
∗
n(k)

}
, (12)

where the ∗ superscript stands for complex conjugate. Noticing that

∂

∂t

(
ω̂n(k) ω̂

∗
n(k)
)

= 2 Re

(
in ω̂∗n(k)

∫ ∞
0

ω̂n(p)An(k, p) p dp

)
,
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where equation (10) has been used and Re stands for the real part, then we may write
the energy equation

∂E(k)

∂t
+

∫ ∞
0

T (k, p) dp = 0, (13)

where the rate of energy transfer T (k, p) is given by

T (k, p) = 16π3 p

k

∞∑
n=1

nAn(k, p)Re
(
iω̂∗n(k) ω̂n(p)

)
, (14)

and characterizes the transfer of energy from the wavenumber shell p to the wavenum-
ber shell k. When the field ω is a passive scalar the same procedure applies, with
the only difference that its power spectrum is obtained by multiplying by k2 the
right-hand side of equation (12).

The function T (k, p) represents the actual energy transfer once the advecting and
advected fields are specified; by contrast the transfer kernel is a characteristic of the
advecting field only, and describes how advection provokes interactions between scales.
The transfer kernel An(k, p) encapsulates what drives the transfer between scales and
its study permits one to understand phenomena involving scale interactions. It is
a characteristic of the advecting field independently of the advected one. The next
section is devoted to its analysis.

4. Transfer kernel of axisymmetric passive differential advection
4.1. Algebraic axisymmetric advection

Let us analyse the transfer kernel An(k, p) corresponding to a differential rotation
Ω(r) = r−1/α. The same field has been used by Flohr & Vassilicos (1997) and Angilella
& Vassilicos (1999) in their studies of scalar and vorticity dissipation and by Gilbert
(1988) to estimate the energy spectrum in two-dimensional vortex fields.

The Hankel transform (8) is given by (Gradshteyn & Ryzhik 1965)

Ω̂(k) =

Γ

(
2α− 1

2α

)
21/απΓ

(
1

2α

)k(1−2α)/α, (15)

where Γ ( ) is the gamma function. The result (15) is valid only for 1
2
< α < 2. The

lower bound is necessary for the Hankel transform (8) not to diverge at the origin,
r = 0; the upper bound is necessary for the Hankel transform (8) not to diverge at
infinity, r →∞. It is important to remark that this rotation field Ω is not a large-scale
structure; it is a singular compact structure which has energy distributed over all
wavenumbers.

Use of formula (11b) gives

An(k, p; α) =

Γ

(
n+ 1− 1

2α

)
2(1−α)/αΓ

(
1

2α

)
Γ (n+ 1)

(kp)1/2α−1(s+ s−1 + 2)1/2α−n−1

×F
(
n+ 1− 1

2α
, n+

1

2
; 2n+ 1;

4(
s+ s−1 + 2

)), (16)
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where s = k/p and F(a, b; c; d) is the Gauss hypergeometric series (Gradshteyn &
Ryzhik 1965, 6.576-2; Abramowitz & Stegun 1965). Alternatively, inserting (15) in
(11a) gives

An(k, p; α) =

Γ

(
2α− 1

2α

)
21/απΓ

(
1

2α

) (kp)(1−2α)/2αBn

(
k

p
; α

)
, (17)

with

Bn(s; α) =

∫ 2π

0

einβ(
s+ 1/s− 2 cos β

)(2α−1)/2α
dβ. (18)

The normalized transfer kernel Bn(s; α) contains the information about the coupling
between different scales as a function of the scale ratio. It is more easily integrable
numerically than the hypergeometric function in (16) and is of easier interpretation.
Because of symmetry Bn(s; α) = Bn(1/s; α), and it is therefore sufficient to study (18)
in the interval (1,∞). Note also that Bn is a real function because of parity. Finally,
attention must be drawn to the fact that the integrand in Bn(s; α) can be singular only
when s = 1 and that this singularity is at β = 0, 2π thus indicating the importance of
local transfer at k = p by distant triadic interactions (when β is close to 0 or 2π and
k = p, |k − p| � k which is a signature of a distant triad – see Brasseur & Wei 1994).

Equation (18) can be integrated exactly (Gradshteyn & Ryzhik 1965) only for α = 1
and n = 0. In general it can be integrated numerically, with some care when s → 1
because of the singularity at s = 1. Based on our numerical results the asymptotic
behaviour has been estimated to be

Bn(s; α) ' 2π

(
2α− 1

2α

)√n
s−(n+(2α−1)/2α) as s→∞. (19)

It is not easy to obtain this result from asymptotics of (16). This approximation is
excellent for α > 1, and slightly less accurate (in the coefficient not in the scaling) for
1
2
< α < 1.
Numerical integrations of the normalized transfer kernel Bn(s; α) are reported in

figure 1 for α = 1.8, and in figure 2 for α = 0.6, where they are plotted against the
asymptotic approximation (19). The normalized transfer kernel is extremely peaked
at s = 1, i.e. k = p, indicating that the transfer is essentially local in the sense that the
major contribution to the evolution of ω̂n(k) comes from wavenumbers p close to k
(see (10), (17), (18) and figure 1).

The asymptotic behaviour when s→ 1 is relevant because the normalized transfer
kernel assumes larger values and dominates the transfer. Different behaviours are
observable when α is larger or smaller than 1. When s → 1 the integrand in (18)
becomes increasingly peaked about the points β = 0, 2π, and these points dominate
the integral or at least its scaling. In other words the normalized transfer kernel is
dominated by distant triads (β = 0, 2π) when s→ 1, and a formal integration leads to
a scaling ∼ ∫ (s− 1)(1−2α)/α resulting in the following asymptotic behaviours as s→ 1:

Bn(s; α) ∼ |s− 1|(1−α)/α , α > 1;

Bn(s; α) =

{−2 log(|s− 1| /8), n = 0,
−2 log

(
n |s− 1|) , n > 0,

α = 1;

Bn (s; α) ∼ finite value, α < 1.

 (20)
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Figure 1. Normalized transfer kernel for an algebraic axisymmetric advection, Bm(s), defined by
(18), for α = 1.8 and m = 1, 2, 3, 4, 8, 16 (from higher to lower values, respectively). The dashed
lines represent asymptotic behaviour (19). Semi-logarithmic representation (a), bilogarithmic (b).

The result for α = 1 can be found analytically; the actual limit value for α < 1
can be obtained from (16) evaluated at k = p. These asymptotic behaviours near
s = 1 are plotted in figure 3 where it is seen that the numerical results confirm the
asymptotic approximations (20). The normalized transfer kernel is power-law singular
when α > 1, and is not singular when α < 1. The singular behaviour at α > 1 reflects
the unboundness of the azimuthal velocity uθ = r Ω(r) ∼ r(α−1)/α as r →∞.

The well-defined sharp peak of the transfer kernel at k = p indicates that the
transfer is local in the sense that every wavenumber k evolves, see (10), excited via
the differential rotation by itself and neighbouring wavenumbers only. This excitation
occurs via the differential rotation and more specifically mostly via distant triadic
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Figure 2. Like figure 1 but for α = 0.6.

interactions because the transfer kernel at k = p is dominated by the contributions of
β around 0 and 2π. Finally, in the evolution of the field ω̂n(k) every mode n depends
just on itself (axisymmetric advection in the azimuthal direction).

The locality becomes increasingly sharp with increasing α (see (20) and figures
1, 2, and 3) corresponding to a decrease in steepness of the differential rotation’s
profile, and therefore to a more uniform local shear. Interactions between scales are
widened when the differential rotation is steeper thus suggesting that delocalization
is induced by the non-uniformity of shear. This important conclusion can be directly
understood by inspection of equation (11a): the transfer kernel between two scales

k and p is given by integration of the transformed rotation Ω̂ in the range between
|k − p| and (k + p). When the scales k and p are well separated this range is very
narrow about the largest of k and p, and only a highly non-uniform shear (differential
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Figure 3. Representation near s = 1 of the normalized transfer kernel for an algebraic axisymmetric
advection, Bm(s), defined by (18), for α = 1.8 (a), α = 1 (b), α = 0.6 (c), and m = 1, 2, 3, 4, 8, 16 (from
higher to lower values, respectively). The dashed lines represent asymptotics (20).

rotation) about such a scale can give a non-zero integral and thereby lead to a direct
interaction between the wavenumbers k and p. Conversely, when the scales k and p
are comparable, even a slow variation of shear over the whole range from about zero
to k + p is enough to produce a significant local interaction between k and p.

We may now draw the following physical picture which we confirm in the following
sections. Transfer is produced by the presence of differential rotation (shear). The
locality of the transfer kernel is a consequence of the uniformity of shear; and only
the presence of a variation of shear over a certain scale can generate a non-local
interaction between this and other scales in the evolution of ω̂n(k), equation (10). As
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Figure 4. Contour plot of the transfer kernel for an algebraic axisymmetric advection, Am(k, p),
defined by (17), for α = 0.6 and m = 2. Outer to inner levels from 0.2 to 8.2, step 0.4 .

a consequence, the transfer kernel is more local at increasing wavenumbers. Indeed,
these are associated with smaller physical scales over which the shear is increasingly
uniform. The locality of the transfer kernel is also more pronounced for higher
modes n, as depicted in figures 1(b) and 2(b). This is due to the particular character
of the Fourier–Hankel transform where azimuthal and radial transformations are
not totally decoupled and high modes n correspond to high wavenumbers k. This
relation between high modes n and high wavenumbers k follows from the behaviour
of the Bessel function in (7b). The complete two-dimensional shape of the transfer
kernel An(k, p) can be obtained from equation (17); it is reported in figure 4 for
α = 0.6 and n = 2, and confirms the increase of transfer kernel locality at high
wavenumbers.

The study of the transfer kernel is attractive because it is general in the sense that
it applies to any form of the advected field ω. It is also quite far-reaching in the
sense that a good understanding of the transfer kernel is enough to derive from (10)
the transfer properties within ω from one mode ω̂n(k) to another. Different advected
fields ω correspond to different initial conditions for the solution of (10) and the
transfer kernel’s transfer properties are therefore in this sense independent of initial
conditions. In particular we have learned that the locality of the transfer kernel is
dominated by distant triads and this property is independent of the initial form of ω.
However, a complete picture of transfer should also include a description of energy
transfer which cannot be given without specifying the advected field ω, see equation
(14). What can, however, be said about the rate of energy transfer independently of
the choice of ω and by direct inspection of (14) is that T (k, k) = 0.

We calculate T (k, p), from (14), for a single spiral vortex sheet form of ω (see
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Figure 5. Transfer spectrum T (k, p) for an algebraic axisymmetric advection with α = 0.6 of a
spiral vortex sheet, as a function of k for p = 101.5, 102, 102.5.

equations (A 1), (A 2) and (A 5) in Vassilicos & Brasseur 1996 where the specific
form of a single two-dimensional Lundgren spiral vortex sheet ω is given) and
Ω(r) = r−1/α.

The Fourier series – Hankel transform (6), (7) of the spiral vorticity field cannot be
evaluated analytically, but an approximation can be obtained for large wavenumber k.
For large kr we can approximate the Bessel function by its asymptotic form and the
resulting integral is then approximated by the method of stationary phase to eventually
give an analytical expression for ω̂n(k) (neglecting the contribution of the singularity
of ω(r, θ) at the centre, on the basis of the results given in the following § 4.2). The
rate of transfer spectrum is then computed by equation (14) using the numerically
evaluated transfer kernel presented above in this section.

In figure 5 we report a numerical calculation of T (k, p) for α = 0.6. Following Yeung
& Brasseur (1991) we plot T (k, p) as a function of k for different logarithmically spaced
values of p. The shape of the functional dependence of T (k, p) on k is the same for
the three values of p because of the self-similarity of the vortex structure. We find
that T (k, p) is positive for k > p and negative for k < p which indicates an energy
flux from large to small lengthscales. Also, T (k, p) is peaked very close to k = p on
both sides of k = p, thereby indicating locality of energy transfer in wavenumber
space, and the intensity of this peak increases with wavenumber. This behaviour
seems qualitatively analogous to that observed by Yeung & Brasseur (1991) in three-
dimensional homogeneous isotropic turbulence (see their figure 4) where T (k, p) has
the same qualitative signature but with a locality of energy transfer that is not so
sharp.
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4.2. Smoothed and bounded axisymmetric advection

The results of the previous subsection have been derived for a singular and unbounded
differential rotation. To ascertain the general validity of our physical conclusions it is
necessary to verify them when the advecting field is everywhere regular.

Let us begin by considering the algebraic rotation of the previous section but with
the extra care of smoothing it out close to the origin to avoid the presence of a
singularity at r = 0. Let us consider a core radius ρ such that

Ω(r) =


Ωρ, r6 ρ,

Ωρ

(
r

ρ

)−1/α

, ρ6 r.
(21)

Recalling the relations

κ(r) = 2πr2Ω(r),
dκ

dr
= 2πrγ(r),

where κ(r) is the circulation and γ(r) is the azimuthally averaged vorticity, then we
have

κ(r)

2π
=


Ωρ r

2, r6 ρ,

Ωρ r
2

(
r

ρ

)−1/α

, ρ6 r;
γ(r) =


2Ωρ, r6 ρ,

2α− 1

α
Ωρ

(
r

ρ

)−1/α

, ρ6 r.

It must be noticed that, physically, this smoothed field corresponds to substituting
the singular vorticity field γ(r) = [(2α− 1)/α]r−1/α inside the core radius ρ with a
constant vorticity field having the same total circulation. However this substitution is
only meaningful for α > 1

2
otherwise the circulation is infinite inside the core (non-

integrable singularity). The smoothed field (21) can nevertheless be considered even
when α6 1

2
in which case it should be kept in mind that the constant-vorticity core

does not derive from smoothing of a singular field. In the case where the differential
rotation is induced by a spiral vortex sheet the core size should increase with time
because of viscous dissipation, but this time dependence would only contribute a time
dependence to the transfer kernel without affecting the properties of the transfer itself
which derives from instantaneous pictures of the advecting field.

The Hankel transform (8) of the differential rotation (21) can be written in dimen-
sionless form (i.e. ρ = 1, Ωρ = 1) as follows:

Ω̂(k) =
1

2π

{∫ 1

0

J0(kr) r dr +

∫ ∞
0

r−1/αJ0(kr) r dr −
∫ 1

0

r−1/αJ0(kr) r dr

}
. (22)

Let us examine the three contributions separately. The first integral∫ 1

0

J0(kr) r dr = k−1J1(k) ∼
{

const, k � 1,

k−3/2, k � 1;
(23a)

the second is given by (15)

∫ ∞
0

r−1/αJ0(kr) r dr =

2(α−1)/αΓ

(
2α− 1

2α

)
Γ

(
1

2α

) k(1−2α)/α ∼ k(1−2α)/α; (23b)

and the third integral can be written in terms of products of Bessel and Struve
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functions (Gradshteyn & Ryzhik 1965) which can also be written as (Abramowitz &
Stegun 1965)

∫ 1

0

r−1/αJ0(kr) r dr =

Γ

(
2α− 1

2α

)
Γ

(
1

2α

) k−1

∞∑
n=0

(2n+ 1)Γ

(
1

2α
+ n

)
Γ

(
2− 1

2α
+ n

) J2n+1(k)

∼
{

const, k � 1,
k(1−2α)/α, k � 1.

(23c)

The second contribution (23b) dominates at small wavenumbers; at large wavenum-
bers the sum of contributions (23b) and (23c), if considered with their exact coefficients
(which are oscillatory functions of k), produce cancellations of the k(1−2α)/α terms lead-
ing to a k−3/2 scaling which combines with (23a) to give a steeper − 5

2
power law;

thus

Ω̂(k) ∼
{
k(1−2α)/α, k � 1,
k−5/2, k � 1.

(24)

This result has been verified numerically with particular care taken in evaluating the
summation in (23c). The transfer kernel corresponding to the smoothed differential
rotation (21) has been evaluated numerically on the basis of (22) and (23) and
confirms the results concerning the locality of transfer kernel obtained in the previous
subsection for the unsmoothed case. In fact this locality is determined by the small-

wavenumber behaviour of Ω̂(k) which is not modified by smoothing. Non-local
transfer is as before a minor contribution to equation (10) but now decays even faster

with s because of the faster decay of Ω̂(k) at large wavenumbers. The smoothing at
the origin eliminates variations of shear over the smallest length-scales and thereby
reduces non-local interactions between scales.

Because the small-wavenumber limit is relevant to the properties of transfer be-
tween comparable wavenumbers, we now consider a smoothed differential rotation
corresponding to zero vorticity beyond a finite radial location. Normalizing with this
external radius and the rotation there we consider the rotation field

Ω(r) =

ρ
−1/α, r6 ρ,
r−1/α, ρ6 r6 1,
r−2, 16 r,

(25)

with Hankel transform (8) given by

Ω̂(k) =
1

2π

{
ρ−1/α

∫ ρ

0

J0(kr) r dr +

∫ 1

ρ

r−1/αJ0(kr) r dr +

∫ ∞
1

r−2J0(kr) r dr

}
. (26)

The first two integrals can be evaluated from formulae (23a) and (23c), respectively.
These two integrals dominate the large-wavenumber behaviour and imply that the
same scaling (24) is valid for the bounded field (26) at small scales (k � ρ−1 > 1).
In the limit of small wavenumbers the first two integrals tend to a constant. The
last integral in (26) can be expressed either in terms of a generalized hypergeometric
function (namely 2F3) or as∫ ∞

1

r−2J0(kr) r dr = −γ − log
k

2
−

∞∑
n=1

(− 1
4
k2
)n

2n (n!)2
∼−→

k→0
− log k, (27)
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Figure 6. Contour plot of the transfer kernel for a Gaussian axisymmetric advection, Am(k, p),
defined by (28), for m = 2. Outer to inner levels from 5× 10−4 to 5.8× 10−2 , step 2.5× 10−3.

and dominates the small-wavenumber limit of Ω̂(k) which is logarithmically divergent.
This result influences the behaviour of the transfer kernel in the limit k/p → 1 and
inhibits the power-law singularity (20) which appears when the azimuthal velocity
is divergent at r → ∞. The kernel is now non-singular independently of α, a fact
that has also been verified numerically. Thus the degree of transfer kernel locality
in a bounded field is reduced for α> 1 and is about unchanged for α < 1. How-
ever the overall shape of the transfer kernel remains substantially the same in all
cases.

A physically relevant and particularly simple case of a regular field is the Gaussian

advection Ω(r) = e−r2

. It corresponds to Ω̂(k) = (4π)−1 e−k2/4 and from either formulae
(11) the transfer kernel can be evaluated analytically (Gradshteyn & Ryzhik 1965) as

An(k, p) =
1

2
In

(
kp

2

)
e−(k2+p2)/4, (28)

where In( ) is the modified Bessel function. As for the previous cases the transfer
kernel is peaked at k = p indicating the dominance of local transfer in equation
(10) and presents an exponential decay with s. The smoothness at the origin and the
exponential decrease of the Gaussian field makes it particularly prone to numerical
treatment. The shape of the transfer kernel (28) is reported in figure 6 for n = 2. At
high wavenumbers it is analogous to the singular shape reported in figure 4, even
though the decay is now exponential rather than algebraic. An absence of transfer can
be observed at lengthscales larger than the characteristic lengthscale of the Gaussian
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advection, here of order one. No such lengthscale exists in the case of the self-similar
algebraic advection.

These results confirm the conclusion that an axisymmetric advection by a mono-
tonic differential rotation leads to predominantly local interactions between modes
ω̂n(k). This locality derives from the relative uniformity of shear over a given scale.
Some degree of delocalization can occur at smaller wavenumbers because the shear’s
variation is more likely to be felt over larger lengthscales; on the other hand locality
is more pronounced at higher wavenumbers and also for higher azimuthal modes,
which are associated with smaller lengthscales, because relative to them any dominant
large-scale shear appears as uniform.

The connection between locality and uniformity of shear would also imply
that non-local interactions can occur when the azimuthal velocity presents radial
oscillations with a well-defined wavelength λ. In this case, the Hankel transform
(8) is peaked about λ−1 and the transfer kernel An(k, p) is non-zero only where
|k − p| < λ−1 < (k + p) resulting in a non-local interaction. This conclusion has been
verified explicitly for some rather academic cases of radially oscillating differential
rotations.

4.3. Non-axisymmetric transfer during wind-up of spiral vortex sheets

In the case of a spiral vortex sheet the axisymmetric transfer results assume a deeper
relevance because of the special form taken by the leading, O(t−1), non-axisymmetric
terms appearing in equation (2). In fact it is shown below that the sum of such terms
is exactly zero and the leading correction is of order t−2.

A general single spiral vorticity field, with azimuthally averaged angular velocity
Ω(r), can be expressed in Fourier series (5) (Lundgren 1982) with each mode expressed
in the form

ωn(r) = fn(r) e−inΩ(r) t, (29)

where the fn(r) are generic O(1) functions. This vorticity field corresponds, in incom-
pressible flow, to streamfunction azimuthal modes (Vassilicos & Brasseur 1996)

ψn(r) =
fn(r)(

nt dΩ/dr
)2

e−inΩ(r)t + o(t−2), (30)

from which the velocity components can be obtained.
Let us look at the O(t−1) terms in equation (2), namely the third and fourth terms.

We want to compare the two nonlinear products in Fourier space[
∂ψ

∂r

]
n

[
∂ω

∂θ

]
m

and

[
∂ψ

∂θ

]
n

[
∂ω

∂r

]
m

.

From (29), (30) it is easy to verify that the first product[
∂ψ

∂r

]
n

[
∂ω

∂θ

]
m

= −fn(r)fm(r)

t dΩ/dr

m

n
e−i (n+m)Ω(r) t,

is exactly equal and opposite in sign to the second one leading to the conclusion
that, in the case of an evolving spiral vortex sheet, the leading correction to the
axisymmetric advection is O(t−2).

The transfer properties associated with an axisymmetric differential advection have
been obtained in the previous sections where the O(t−1) terms in the evolution of a
general Lundgren vortex were neglected. This subsection’s result shows that, when
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considering the transfer in a Lundgren spiral vortex sheet, the O(t−1) terms cancel
exactly and the leading correction is O(t−2), independently of the specific spiral
geometry, rotation and vorticity distribution along the sheet. Hence, in the case of
an evolving spiral vortex sheet of the Lundgren type, the conclusions obtained in
the previous sections concerning the locality of transfer in an axisymmetric advection
field remain correct to a good approximation even when the leading non-axisymmetric
terms of the advection field are included.

5. Non-axisymmetric differential rotation of a passive scalar field
5.1. Convolution of an azimuthally sinusoidal term and a generic field

When writing the Fourier representation of the equation of motion (4) the main
difficulty is in expressing the convolution terms in a form analogous to the linear term.
In §§ 3 and 4 we have analysed the case where the advecting field is axisymmetric,
i.e. the second term in equation (4). Let us now consider a generic azimuthally
sinusoidal advecting field Ω(r, θ) = Ωm(r)eimθ and how its product with an arbitrary
field f(r, θ), which represents the θ-derivative of ω, can be written as a convolution
in Hankel–Fourier space.

Using the same notation as in § 3 we can write

Ω(r, θ)f(r, θ) =

∫ ∫ ∫ ∫ +∞

−∞
Ω̂(k − p) f̂(p) dp ei k·x dk

=

∫ ∫ +∞

−∞

{∫ ∞
0

∫ 2π

0

Ω̂(|k − p| , ϕk−p) f̂(p, ϕp) dϕp p dp

}
ei k·x dk. (31)

The part inside the braces represents the Fourier transform of the product field and
can be expressed as∫ ∞

0

∫ 2π

0

Ω̂(|k − p| , ϕk−p) f̂(p, ϕp) dϕp p dp

=

∫ ∞
0

∑
`

f̂`(p)

{∫ 2π

0

Ω̂m(|k − p|) eimϕk−pei`ϕp dϕp

}
p dp. (32)

It is now necessary to express the modulus and phase of k − p in terms of moduli
and phases of k and p separately. The former is given by equation (9); for the latter
we must write down the components

|k − p|
[

cosϕk−p
sinϕk−p

]
=

[
k cosϕk − p cosϕp

k sinϕk − p sinϕp

]
;

and multiplications by cosϕp and sinϕp and subsequent summation results in

ϕk−p = ϕp + tan−1

(
sin
(
ϕk − ϕp)

cos
(
ϕk − ϕp)− p/k

)
, (33)

where tan−1 is the four quadrants inverse tangent. Equation (33) is very important in
what follows and the fact that ϕk−p−ϕp depends on ϕk −ϕp only and not on ϕk and
ϕp separately allows the necessary simplifications.
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Using (9) and (33) the part inside the braces in equation (32) can be rewritten as
follows: ∫ 2π

0

Ω̂m

(√
k2 + p2 − 2kp cos

(
ϕp − ϕk))

×exp

(
i(m+ `)ϕp + im tan−1

(
sin
(
ϕk − ϕp)

cos
(
ϕk − ϕp)− (p/k)

))
dϕp

= ei(m+`)ϕk

∫ 2π

0

Ω̂m

(√
k2 + p2 − 2kp cos β

)
×exp

(
i (m+ `) β − im tan−1

(
sin β

cos β − p/k
))

dβ, (34)

where the change of variable β = ϕp − ϕk has been used and the periodicity of the
functions under the integral sign allowed the shift of the integration interval.

Inserting (34) back in (32), and then (32) back in (31) we can finally write

Ω(r, θ)f(r, θ) =

∫ ∫ +∞

−∞

∑
n

{∫ ∞
0

f̂n−m(p)Am,n(k, p) p dp

}
einϕkei k·xdk, (35)

where the transfer kernel Am,n (k, p) is given by

Am,n(k, p) =

∫ 2π

0

Ω̂m

(√
k2 + p2 − 2kp cos β

)
×exp

(
i nβ − im tan−1

(
sin β

cos β − p/k
))

dβ. (36a)

This generalized transfer kernel represents coupling in wavenumber space, due to
forcing mode m, between azimuthal modes n and n− m and wavenumbers k and p.

By analogy with the procedure in § 3 an alternative formula to (36a) can be given
in this case too; starting from the identity

Ω(r, θ)f(r, θ)

=

∫ ∫ +∞

−∞

∑
n

{
(−i)n

(2π)2

∫ ∞
0

∫ 2π

0

Ω(r, θ)f(r, θ) e−i n θJn(kr) dθr dr

}
einϕkei k·x dk,

the term inside the braces corresponds to the term inside braces in (35). Inserting the
Fourier–Hankel representation of f(r, θ) and the azimuthal Fourier representation of
Ω(r, θ), it can be rewritten as

(−i)n

2π

∫ ∞
0

∫ ∞
0

∑
`

i`Ωm(r)f̂`(p)J`(pr)Jn(kr)

∫ 2π

0

ei(`+m− n) θdθr drp dp

= (−i)m
∫ ∞

0

f̂n−m(p)

{∫ ∞
0

Ωm(r)Jn−m(pr)Jn(kr) r dr

}
p dp.

Comparison with (35) gives the alternative formula

Am,n(k, p) = (−i)m
∫ ∞

0

Ωm(r)Jn−m(pr)Jn(kr) r dr, (36b)
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which is generally better suited for analytical integration whereas (36a) is more suited
to numerical integration.

From (36) we derive the symmetry property of the non-axisymmetric transfer kernel

Am,n(k, p) = (−1)mAm,m−n (p, k) , (37)

and the reality condition Ωm(r) = Ω∗−m(r) also gives Am,n = A∗−m,−n. The symmetry
property (37) implies that for some pairs m even and n = m/2 the transfer kernel
is symmetric in k and p. However the transfer kernel is not in general symmetric
and should not be expected to present a maximum at k = p which would reflect a
preponderance of local interactions between scales.

5.2. Application to non-axisymmetric differential rotation

Let us focus on equation (4)

∂ω

∂t
+ Ω(r, θ)

∂ω

∂θ
= 0.

Here ω is not the vorticity field but a passive scalar field because the relation between
vorticity and velocity is not accounted for. Using the Fourier series representation
Ω(r, θ) =

∑
m Ωm(r) eimθ , a straightforward application of (35) to (4) gives

∂ω̂n(k)

∂t
+
∑
m

∫ ∞
0

{i (n− m) ω̂n−m(p)Am,n (k, p)} p dp = 0, (38)

with obvious meaning of symbols.
It must be said that the application of this same procedure to radial advection is not

straightforward because the Hankel transform of the radial derivative, [∂̂ω/∂r]n(k),
cannot be expressed in general in terms of ω̂m(p) (Sneddon 1974).

6. Conclusions
We have shown that the transfer between scales in Lundgren two-dimensional

evolving compact vortices is predominantly local in wavenumbers and due to distant
triadic interactions. Transfer is local at a given lengthscale when the shear (differential
rotation) does not vary much over that lengthscale. Local transfer between different
modes (equations (10) and (38)) is therefore more pronounced at higher wavenumbers
and for higher azimuthal modes, both associated with smaller lengthscales, because
any differential rotation appears increasingly uniform over decreasing lengthscales.
Non-local interactions can occur at a given scale only if the advecting field presents
significant variation of shear over that scale.

A new framework has been developed to describe the transfer between scales
inside compact structures which may also find useful applications in other situations.
The analysis of the transfer kernel may shed some light on a variety of advection
phenomena as well as reveal signatures of instabilities.

Locality of scale interactions has been shown to be a typical phenomenon in ax-
isymmetric advection, especially when the vortex field has a spiral structure. However,
in the case of non-axisymmetric advection, azimuthal oscillations imply the presence
of physical wavelengths that may give rise to non-local interactions.

We conclude by mentioning that non-local interactions may be expected to be a
common phenomenon in non-axisymmetric flows. As a simple example, let us consider
the azimuthal advection due to a quadripolar physical structure Ω±2 = r2e−r2/2 whose
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Figure 7. Non-axisymmetric m = 2 transfer kernel, given by (39), as a function of the ratio k/p for
a fixed value kp = 1 at various n. The pairs of non-symmetric functions (n pairing with 2 − n) as
given by relations (37), are shown with continuous and dashed lines, respectively.

corresponding transfer kernel is (Prudnikov, Brychkov & Marichev 1986, 2.12.39-4)

A2,n(k, p) = (2− n) k−2
{
kp
(
2− k2

)
In−1(kp)− kp (2n+ k2

)
In−3(kp)

+
[
4n (n− 2) + k2

(
2n− 4 + p2

)
+ k4

]
In−2(kp)

}
e−(k2+p2)/2. (39)

The function (39) is shown in figure 7, for kp = 1, as a function of k/p. The transfer
kernel of this field, which may represent a m = 2 perturbation over an otherwise
axisymmetric field, shows the presence of non-local interactions for all modes n. The
analysis of such features in a realistic case may be useful to uncover some phenomena
observed in physical systems.
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