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One key feature for the understanding and control of turbulent flows is the relation between Eulerian
and Lagrangian statistics. This Brief Communication investigates such a relation for a laminar
quasi-two-dimensional multiscale flow generated by a multiscale �fractal� forcing, which reproduces
some aspects of turbulent flows in the laboratory, e.g., broadband power-law energy spectrum and
Richardson’s diffusion. We show that these multiscale flows abide with Corrsin’s estimation of the
Lagrangian integral time scale, TL, as proportional to the Eulerian �integral� time scale, LE /urms,
even though Corrsin’s approach was originally constructed for high Reynolds number turbulence.
We check and explain why this relation is verified in our flows. The Lagrangian energy spectrum,
��w�, presents a plateau at low frequencies followed by a power-law energy spectrum ��w�
�w−� at higher ones, similarly to turbulent flows. Furthermore, ���� scales with LE and urms with
��1. These are the key elements to obtain such a relation ���w���w−2 is not necessary� as in our
flows the dissipation rate varies as ��urms

3 /LERe�
−1. To complete our analysis, we investigate a

recently proposed relation �M. A. I. Khan and J. C. Vassilicos, Phys. Fluids 16, 216 �2004�� between
Eulerian and Lagrangian structure functions, which uses pair-diffusion statistics and the implications
of this relation on ����. Our results support this relation, ��uL�t�−uL�t+���2�= ��uE�x�−uE�x
+��2���e��2�, which leads to �=	 /2�p−1�+1. This Eulerian-Lagrangian relation is striking as in
the present flows it is imposed by the multiscale distribution of stagnation points, which are an
Eulerian property. © 2007 American Institute of Physics. �DOI: 10.1063/1.2754348�

The relations between Eulerian and Lagrangian statistics
of turbulent flows are of central importance since they hold
the key to the understanding of many phenomena such as
turbulent diffusion and pair separation. Since Taylor’s
contribution,2 it has been known that the turbulent diffusion
is proportional to the time integral of the velocity Lagrangian
autocorrelation function. Corrsin3 introduced the proportion-
ality of Eulerian, LE /urms, and Lagrangian, TL, integral time
scales for high Reynolds number turbulence �LE being the
Eulerian integral length scale and urms the turbulent inten-
sity�. Corrsin’s estimation relies on two properties of homo-
geneous turbulence: first, a kinetic energy dissipation rate per
unit of mass, �, varying according to ��urms

3 /LE; second, a
Lagrangian energy spectrum,����, possessing a plateau for
�
�L and �������−2 for ���L. From urms

2 �	����d�,
one then obtains �L�� /urms

2 ; and from TL����L� /urms
2 ,

which follows from integrating the Lagrangian autocorrela-
tion function expressed as the Fourier transform of ����, it
then follows that TL�LE /urms.

If they exist, it is important to know which key features
of the Eulerian fields are responsible for such close relations
between Eulerian and Lagrangian statistics. Rossi et al.4

have generated a steady laminar multiscale flow with
turbulent-like properties such as a broadband power-law en-
ergy spectrum and Richardson’s diffusion.5,6 Following the

work of Fung et al.7 and Davila and Vassilicos,8 these turbu-
lent properties are controlled by the multiscale distribution of
stagnation points generated by a multiscale �fractal� forcing.
If such flows are really turbulent like and withhold some key
properties of the multiscale structure of turbulent flows, it is
interesting to analyze the Eulerian-Lagrangian relations of
such flows.

Does TL�LE /urms hold in our turbulent-like laminar
multiscale flow?

A recent approach complementary to Corrsin’s estima-
tion for Eulerian-Lagrangian relation has been given by
Khan and Vassilicos.1 They compare Lagrangian and Eule-
rian second-order structure functions. We use this approach
to complete our analysis of our turbulent-like flow by study-
ing the relation between the Eulerian energy wavenumber
spectrum, the Lagrangian energy frequency spectrum, and
two-particle dispersion.

A horizontal shallow layer of brine �NaCl, 158 g/ l,
thickness H=5 mm� is forced by a fractal distribution of
opposite pairs of Lorentz forces. These electromagnetic
�EM� forces are generated by an electric current through the
brine and permanent magnets of various horizontal sizes �10,
40, and 160 mm� placed under the bottom wall, which sup-
ports the brine.

The two-component velocity field u�x , t� at the free sur-
face of the brine layer generated by these fractal EM forces
has been measured by particle image velocimetry �PIV�, us-
ing a 15-Hz, 12-bit, 2048�2048 pixel2 camera. The flow is
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measured in a large square frame �which covers all magnets�
of size LPIV=813.4 mm, which is small compared to the size
of the tank �1700�1700 mm2�. The physical length of one
pixel is about 0.3972 mm. The correlation windows have
16�16 pixels �search window 42�42 pixels�, and the over-
lap in each direction is of 9 pixels. This leads to a measure-
ment grid containing 287�287 velocity vectors. For full de-
tails on the rig and experiments, see Ref. 4, which also
shows that the flow at the free surface of the brine is quasi-
two-dimensional �Q2D�.

With steady EM forcing the flows are stationary after an
initial transient following the sudden switch on of the forces.
A Reynolds number Re2D=urmsLPIV/� can be defined based
on LPIV, the root mean square of the PIV velocity field, urms

�which is controlled by varying the intensity of the electric
current�, and the kinematic viscosity of the brine, �. In this
Brief Communication we present results obtained for 11 dif-
ferent values of Re2D from 600 to 9900. Despite the large
values of these Reynolds number, the flows are laminar as
they present no instabilities and the fluid velocity values are
never larger than a few cm/s.

Integral length scales, LE, are obtained from the spatial
autocorrelation of the velocity fields and their values slowly
increase from about 16 cm to about 20 cm as Re2D increases
from 600 to 9900. This increase of LE reflects the slight
increase of the multiscale flow’s larger eddies as a result of
the EM forcing overcoming the bottom wall’s friction over a
larger portion of space.

The Lagrangian trajectories d /dtx�t ,x0�=uL�t ,x0�
=u�x�t ,x0� , t� and their statistics, are calculated starting
from random initial positions x0 at a time t=0 well after the
initial transient caused by the sudden switch on of the elec-
tric field. These trajectories are integrated until t=6LE /urms.
Fluid elements are tracked in highly resolved PIV fields. We
export positions every �t=6/1023�LE /urms� to obtain 1024
positions tracked during 6LE /urms. The integration time is 11
times smaller than �t and is much smaller than the time
resolution of the PIV measurements.

Figure 1�a� shows the statistic of one-particle dispersion
normalized by the integral length scale, �x−x0�2 /LE. A first
ballistic motion regime, where t
0.1�LE /urms� and
�x−x0�2 /LE� t2, is later on followed by a Taylor regime,2

where t�2�LE /urms� and �x−x0�2 /LE� t1. Furthermore, it
can be noticed that all these curves are superimposed over
the entire range of Reynolds number considered in this Brief
Communication.

Figure 1�b� gives the Lagrangian correlation function,
R�t�= �uL�0� ·uL�t��, where uL�t� is the Lagrangian velocity
of the fluid element at time t. The Lagrangian correlation
functions are very similar over the entire range of Reynolds
numbers until t
LE /urms. For longer times, the Lagrangian
correlation functions present different harmonics. Figure 1�c�
is very similar to the results obtained in turbulent flows �e.g.,
Ref. 9� with a logarithmic decrease of R�t� followed by a
sudden dropoff. The main differences with turbulent flows
appear for long times with the oscillations regime. These
oscillations are induced by the steadiness �constant forcing�
of the present quasi-two-dimensional flows, leading to closed

trajectories �fitting streamlines� of various lengths. We would
expect these oscillations to disappear for time-dependent
forcing. Nevertheless, it is interesting to see that these oscil-
lations have no significant effect on the Brownian �uncorre-
lated� time dependence of single-particle dispersion; see
Fig. 1�a�.

From the Lagrangian correlation function we estimate
the Lagrangian correlation time by TL�t�=1/R�0�	0

t R�t�dt.
Figure 1�b� illustrates the evolution of R�t� /R�0� with time,
turms/LE. As shown in Fig. 2�a�, when t� �LE /urms�, TL�t� has
reached a regime where it oscillates �due to oscillations of
R�t�� around an average value, TL=TL�t�, which is defined by
averaging over the time range LE /urms
 t
6LE /urms. These

FIG. 1. �Color online� �a� One-particle dispersion for various Reynolds
numbers, Re2D from 600 to 9900; ��b�, �c�� Lagrangian correlation function
for various Reynolds numbers, Re2D: �b� linear-linear plot, �c� semi-log plot.
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values of TL are illustrated by straight �red� lines in Fig. 2�a�.
Later on, TL is called TL, and TL�t=6LE /urms� is called T̂L.

Corrsin3 states that a turbulent flow with a broad power-
law energy spectrum should exhibit a constant ratio between
the Eulerian integral time scale, LE /urms, and the Lagrangian
correlation time, TL. As this family of multiscale flows pos-
sesses a broadband power-law energy spectrum �see Ref. 4�,
we test Corrsin’s statement on these flows. To do that we plot
the ratio TL / �LE /urms� in Fig. 2�b�. This ratio is found to be

close to a constant over the considered range of Reynolds
number, Re2D, i.e., more than one decade, in agreement with
Corrsin’s estimation.

Why do these steady multiscale laminar flows abide with
Corrsin’s estimation, which has been obtained for high Rey-
nolds number turbulence? The power-law shape of the Eule-
rian energy spectrum being already demonstrated,4 we now
investigate �for these flows� the validity of the main hypoth-
eses behind Corrsin’s approach, which concern Lagrangian
energy spectra and dissipation.

The energy spectra related to the Lagrangian correlation

function, 2����� / �urms
2 T̂L�, are plotted in Fig. 2�c� for vari-

ous Reynolds numbers, Re2D. For each Reynolds number, the
Lagrangian energy spectrum presents a plateau over one de-
cade in frequency for �TL
0.1. This plateau is important as
it adds one new element of similarity between our steady
multiscale flows and turbulent flows. For example, Refs.
9–11 find such a plateau in their respective turbulent flows:
laboratory experiment, direct numerical simulation, and high
Reynolds number oceanic environment. For higher frequen-
cies, the energy spectra can be approximated as power-law
functions for about one decade with �������TL�−�, where
� varies with the Reynolds number. We should mention that
for energy values lower than 10−4 the noise of the PIV mea-
surement is dominant �accuracy at 1%; see Ref. 4� leading to
spikes and a w−2 power law for large values of �TL.

Corrsin’s estimation assumes that the dissipation varies
like ��urms

3 /LE. We compute the dissipation using the PIV
velocity fields and considering: �=2��SijSij� with Sij

= 1
2 ��ui /�xj +�uj /�xi� and �=��urms

2 /�. Figure 3�a� gives the
rescaled dissipation of these multiscale flows, �*

=� / �urms
3 /LE� versus the Reynolds number based on Taylor’s

microscale, �, Re�=urms� /�. �* evolves like 1/Re� over
more than one decade, 22
Re�
555. This relation in
1/Re� could be expected for laminar flows, where ��urms

2 .
Nevertheless, the present case is not trivial. When Re�


100 �Re2D
3000�, �*�Re�
−�1+0.02±0.02�, the streamlines re-

main effectively unchanged with changing Reynolds number
because the flow is dominated by the bottom friction, �
�urms

1.81±0.1, LE�urms
0.056±0.02, and ��urms

0.093±0.02. When Re�

�100, �*�Re�
−�1+0.096±0.02�, the strain rates have a clear mul-

tiscale structure evolving with Re� as explained in Ref. 6,
��urms

1.51±0.1, LE�urms
0.13±0.02, and ��urms

0.24±0.02.
These multiscale laminar flows have a prescribed power-

law Eulerian energy wavenumber spectrum but �*�Re�
−1

�cte, over more than one decade. Nevertheless, TL

�LE /urms. The reason for this is that ���� scales with urms

and LE, and that it has a plateau at small � followed by
�����urmsLE��LE /urms�−� at higher � with ��1 �see
Fig. 2�.

How can we estimate � in our flow? To complete our
description of the considered laminar multiscale flows and
give an estimation for �, we use a relation between Eulerian
and Lagrangian statistics proposed by Khan and Vassilicos.1

They introduced relation �1� between Eulerian and Lagrang-
ian structure functions of order 2, where uL is the Lagrangian
velocity of a fluid element, u is the Eulerian velocity, e rep-
resents normalized spatial vectors, and �2�t� is the mean-

FIG. 2. �Color online� �a� Plot of the Lagrangian integral time scale, TL

according to the duration of fluid element tracking turms/LE; �b�
TL / �LE /urms� vs Reynolds numbers Re2D; �c� Lagrangian energy spectra,

2����� /urms
2 T̂L vs �TL.
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square separation, at time t, between two fluid elements start-
ing at time t=0 with an initial displacement smaller than the
smallest length scale of the flow,

��uL�t� − uL�t + ���2� = ��u�x� − u�x + ��2���e��2� . �1�

This leads to the relation given in Eq. �2�, where 	 is the
exponent of the Richardson-like power-law function of time
for two-particle dispersion ��2� t	� and p is the exponent of
the power-law Eulerian energy wavenumber spectrum, E�k�
�k−p:

� =
	

2
�p − 1� + 1. �2�

Pair statistics are initialized with initial separations �0

=1 pixel, which is about 25 times smaller than the size of the
smallest magnet and therefore smaller than all the length
scales of the flow by the size of the smallest magnets. Sta-
tistics such as mean-square pair separations are sensitive to

the choice of �0 but the turbulent diffusivity d /dt�2 is much
less sensitive as shown recently in Ref. 12. In addition,
d � dt�2 allows us to clearly identify different dispersion re-
gimes such as the expected initial ballistic dispersion �2

� t2, the final Brownian dispersion �2� t, and a nontrivial
Richardson-like regime in an intermediate range of times
between the ballistic and the Brownian regimes �see Refs. 4
and 6�. Rossi et al.6 have shown the sensitivity to 	 to the
Reynolds number Re2D and the multiscale distribution of
stagnation points as well as their scale rate distribution. It
should be noticed that the values of � and 	 are estimated
over the same decade in time. As the energy spectra of this
family of flow can be approximated by power-law function
E�k��k−2.5 �see Ref. 4�, we take p=2.5.

The values of � extracted from the best power-law fit of
the Lagrangian energy spectra are clearly interlaced with the
values of � estimated using relation �2� as shown in Fig.
3�b�. The small increase in differences with the increase of
the Reynolds number are well under an uncertainty of ±5%
for the measurement of each value of �, 	, and p.

It is extremely interesting and encouraging to find such a
relation between Eulerian and Lagrangian structure functions
of order 2 in these steady multiscale laminar flows as, until
now, this relation has only been tested in kinematic simula-
tion with a strong time dependency.1
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FIG. 3. �Color online� �a� �*=� / �urms
3 /LE� as function of the Reynolds num-

ber, Re�=urms� /�. The line corresponds to the best power-law fit �*

�Re�
−1.063; �b� � are the values of � extracted from the best power-law fit of

the Lagrangian energy spectra; � are the values of � estimated using rela-
tion �2�.
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