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In this paper high resolution wave probe records are examined using wavelet techniques
with a view to determining the sources and relative contributions of capillary wave energy
along representative wind wave forms. Wavelets enable computations of conditional spec-
tra and turn out to be powerful tools for the study of the development and propagation
of capillary waves. They also enable the detailed analyses of the relative contributions
to the spectrum of the wave peaks and troughs.

1. Introduction
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Fig. 1. Part of the signal analysed in this paper
The height A(t) in mm as a function of time ¢ in ms, the fetch dy is 4.35 m and the

wind speed u,, is 48 ms™1!.

The generation and dissipation of waves on the surface of the ocean under the
influence of wind is a complicated process which has been investigated intensively
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over many years. With the advent of remote sensing techniques based on microwave
backscatter from the ocean surface, particular interest has surrounded the mi-
croscale of those surface waves with wavelengths less than approximately 0.5 m.
In the meantime wavelet methods have been developed and are now applied to a
wide range of problems see e.g. [Silverman & Vassilicos, 2000]. Recent years have
seen the development of Continuous Wavelet Transform (CWT), filter and thresh-
old techniques, (which corresponds to the topic of this paper) details can be found
in the review paper by Farge et al. (1992). There are also other applications of
wavelets as reconstruction tools for synthetic turbulence methods (STM) (see for
example the work of Zhou et al. (2014)). The study of wavelet energy spectrum for
two-dimensional turbulence can also be found in [Schneider et al. (2004)].

In this contribution we report investigations of the structure of wind-forced mi-
croscale waves as elucidated by wavelet techniques. In particular, we focus on the
behaviour of small scale capillary waves (with wavelengths less than approximately
20 mm) in relation to the larger scale gravity forms. Data used in this paper are
tank waves measured by Banner & Peirson(1998). A small part of this 2!® point
long set of data is shown in figure 1 where the displacement of the wave h(t) is the
quantity measured as a function of time ¢, the fetch dy is 4.35 m and the wind speed
Uy is 48 m s~1. In §2 we introduce general definitions and results about wavelets.
In §3 we compare wavelet and Fourier spectra of the tank waves and detail the
respective contributions to the spectrum of the signal’s peaks and troughs. In §4
we define conditional spectra which we use to achieve a better understanding of
capillary waves. Finally in §5 we compare our results to a fractal distribution of
A-crest.

2. Mathematical background and definitions
2.1. The Wavelet transform

A wavelet transform of the function h(t) is defined as follows

!
htr) =7 [ hie o () ar, 1)
where 9 (t) is the mother wavelet, * indicates conjugate value, h is a function of two
variables t and 7, ¢ is the position in the physical space (here time), 7 the wavelet
scale (here it is a scale of time that is a time lag or period).
The wavelet transform of h(t) can be expressed as a function of its Fourier
transform ® h(w) = [ h(t)e~™! dt and the Fourier transform ¢(w) = [ (t)e= ™"t dt
of 1 as follows:

h(t,7) = T_l/ﬁ(w)iﬁ(rw)eiw'T dw. (2)

awith the standard definition i2 = —1
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w is the frequency that is the Fourier space variable corresponding to the time ¢ in
the real space. Figure 2 shows a smaller sample of the signal studied in this paper
(upper frame), the ordinate is the height of the water level (h(t)) and it is measured
as a function of time which we refer to as the physical space (t) throughout this
paper. The lower frame shows its wavelet transform, the ordinate axis holds the

(2, 7)]

Fig. 2. Wavelet analysis of the 1024 first points of the wave signal in figure 1
Upper plot is the displacement A(t) in mm as a function of time ¢ in ms, lower plot
is its wavelet transform (same as figure 3 but viewed from a different angle). In
this latter, the scale 7 is the ordinate and the time t the abscissa, curves represent
iso-values of the wavelet transform modulus |h(t,7)|. The mother-wavelet is the
Mexican-hat.

wavelet scale 7 and abscissa axis t the physical parameter. As shown in figure 3, the
wavelet transform h(t,7) should be drawn along a third axis (upper plot), but in
order to avoid complex 3-dimensional plots we opt for the drawing of h(t, 7) iso-value

curves in the (¢,7) plane, that is curves defined as |h(t, 7)| = cst. In practice, in
this paper two mother-wavelets are used: the Mexican-hat wavelet (see appendix A)
defined as
A2 _1p
Y(t) = 2e (3)

and the Morlet wavelet (see B) defined as
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Both wavelets are based on the e~ 3¢ shape, the Morlet-wavelet introducing a phase
in the complex space. This Gaussian-type shape is quite close to the actual shape
of an isolated tank wave. This is clear when comparing Figures 9 and 10 to the
Mexican-hat mother-wavelet given in Figure 17, so we use this latter in particular
to emphasize capillary and indentation effects in sections 4.3 and 4.4. The merit of
each wavelet is discussed later on and in the appendices.

Fig. 3. Wavelet transform of signal in figure 2

Upper plot: Mexican-hat wavelet transform, lower plot: projection of the iso-value
curves.

2.2. Filtering

Wavelet transforms enable scale-filtering of signals. It is possible to inverse the
wavelet transformation and reconstruct the signal. This inverse wavelet transforma-
tion is possible only when the mother wavelet verifies some properties of integrabil-
ity, in particular that [¢(t)dt = 0 (see Farge(1992)); wavelets used in this paper
verify the required properties). The original signal can be expressed as a linear
combination of its wavelet transform coefficients; the expression for this inversion is

ne) = [ [he.n) v (5)

Discarding certain scales in this reconstruction process defines a scale-filter. Such
a filtering is particularly interesting for our data as it clearly appears that they
contain at least two different ranges of scales (see section 3 and beyond):

i) the main gravity wave scale,

ii) the capillary waves and small scale indentations.
As we will see in §4 the wavelet-scales involved in the main gravity waves are clearly
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an order of magnitude or two larger than those involved in the capillarity effects
and small-scales indentations. We propose to define the small-scales filtered signal
hry (t) as follows:

by (t) = B(ta TB) (6)
This is equivalent to using the filter 72§(7 — Tp)d(t' — t) in the integration of the
right hand side of (5). Figure 4 shows a portion of the signal h(¢) in figure 1 and
hry (t) the result of the filtering out of scales smaller and larger than T'p.
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Fig. 4. Example of filtered signal
Top, the 4096 first points of the signal in figure 1, bottom the scale-filtering for a
scale Tg = 0.4.

2.3. Local spectrum

From the wavelet transform of h(t) we can compute the local energy density
[Farge(1992)]

E(t,7) = |h(t, 7)* 72, (7)

Equation (7) gives information about energy density associated with scale 7 and
localised at time ¢. The global wavelet spectrum E(7) is the sum of all these local
wavelet spectra,

Br) = / Bt 7 dt. (8)

It relates to the Fourier spectrum:

B = [1 [[hw)itra)e dof .
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With superscript * indicating conjugate value,
E(r) = ///ﬁ(w)ﬁ)(Tw)iAL*(w’)d;*(Tw’)ei(“”“")t dw duw’ dt,
that is:

By = [ [{ [ eterar} hpitraic (i () dw s

E(r) = / / §(w — W) h(w)h* (W) (Tw)* (1w dw de’

and eventually

B(r) = / () 2l (reo)? dio. (9)

The wavelet spectrum therefore appears as an average of Fourier spectra E(w) =
|h(w)]? weighted with the wavelet term |¢)(7w)]|?.

If the Fourier spectrum has a power law over a range of frequencies, i.e. F(w) ~ w™P
when w — oo, the change of variable &’ = 7w can be used to obtain the power law
of E(r) when 7 — 0. Indeed with this change of variables,

B0 =2 [ pepar. (10
and in the limit 7 — 0 we have
E(r) = 2TP*1/k'*p|z/S(k')|2dk’,
that is:
E(r) ~ 7P~ (11)

This result is independent of the choice of the wavelet 1) but due to the fact that
the integral in (10) is in practice taken over a finite range of &, some wavelets give
better results than others. We use here the Morlet wavelet to educe cut-off scales
(see appendix B) and the Mexican-hat wavelet to educe power law spectra (see
appendix A).

2.4. Conditional spectrum

The definition of the wavelet spectrum allows definitions of conditional spectra. A
conditional spectrum is defined as the integration of the wavelet local spectrum over
a given region (V.) in the physical space where the required condition is met.

E.(1) = %/V E(t,7)dt. (12)

In our case of analysing tank waves, we can define different conditions to educe
the contribution of the peaks, troughs and different parts of the elementary waves
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to the global spectrum. The variation of EC(T) according to the definition of V,
gives information on how the global spectrum relates to the different regions in the
physical space. For instance contribution to the spectrum of peaks in the data can
be estimated by setting the condition

ht) > €, (13)

as in §3-3.3. The higher the value of € the more affected is the conditional spectrum
by the peaks. Similarly, the condition

h(t) < e (14)

gives information on how the global spectrum relates to the trough regions as in §3-
3.4. It is also possible to condition the spectrum on different parts of each elementary
wave as shown in §4.

3. Spectrum of the tank waves

3.1. Wawvelet spectrum
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Fig. 5. Wavelet spectrum of a sample of the signal shown in figure 1
E(7) using the Morlet wavelet for a 131072 point long data sample; solid line: entire
signal, dash line: filtered signal hry (¢).

Figure 5 shows the wavelet spectrum E(7) of the displacement h(t) as a function
of the scale 7. Solid lines correspond to the entire 131072 point long data sample
of the signal shown in figure 1 and dash lines to the same signal hp, (7) filtered at
the scale Tp = 0.4. Note how the Morlet wavelet spectrum can be used to educe
characteristic frequencies, which can of course also be done by Fourier methods.
The filtered signal has virtually no wavelet intensity at small scales. All the wavelet
intensity is focused on the scale 0.3 corresponding to the distance 2\ between two
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minima or two maxima of the signal. Direct measurement of the average value
of A\ over the entire signal gives A ~ 0.13. Filtering the signal does not alter the
position of its zero-crossings but it drastically changes the shapes of the waves
mainly by smoothing them and naking them more top-bottom symmetric. (see
figure 4). Hence one can conclude from figure 5 that the small-7 part of the wavelet
spectrum (7 < 0.13) is mainly due to the shape of each individual wave, a fact
confirmed by the analysis of an isolated wave in §4.
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Fig. 6. Wavelet and Fourier spectra of a 131072 point long data sample of the signal shown in
figure 1

a) Wavelet spectra E(7) as a function of 7 for Mexican-hat (upper curve) and
Morlet wavelet (lower curve). b) 73E(7) (upper curve) and 723 E(7) (lower curve)
as functions of 7 for the spectrum based on the Mexican-hat wavelet. c) Fourier
spectrum E(w) as a function of w for the same data sample. d) w?E(w) as a function

3 2
of w (upper curve) and w”E(w) (lower curve) - w ~ =<,

Figures 6a,b show the wavelet spectrum E‘(T) of the signal in figure 1 based on
the Mexican-hat wavelet which is suitable for educing power laws. It is not possible
to conclude on the existence of power laws for these data, the range of scales being
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very small, but it is possible to educe two different regions. Asymptotically for 7
small we seem to have E(T) ~ 723 (see figure 6b) in the range 7. < 7 < Tirans
where 7. = 0.002 is the lower cut-off scale of the data® and 7y.qns the upper limit
for this first region (here 7¢pqns ~ 0.03). For larger scales (7 > Ttrqns) We seem to
have E(7) ~ 73 (see figure 6b), which according to (11) corresponds to a Fourier

4 a result consistent with the existence of A-crests (that is

spectrum E(w) ~ w™
crests with discontinuity in slope) all of same duration. In §33.2 we show that the

accuracy on E(T) is by far superior to that on E(w).

3.2. Comparison with Fourier spectrum analysis

The Fourier spectrum of h(t) is classically defined as
E(w) = |h(w). (15)

The Fourier spectrum of the signal in figure 1 is given in figure 6¢. It contains a lot
of noise which is not the case of the wavelet spectra curves E(7) (figure 6a). The
peak is reached at w = 13.5, that is 7 = 27 /w = 0.465, and a slope may be observed
in the range 15-300. Figure 6d shows both w*E(w) and w?E(w). Due to the noise
it is difficult to decide whether E(w) ~ w™* or F(w) ~ w™3. It seems however that
E(w) ~ w™* in the range 15-300 and E(w) ~ w~? in the range 300-1000. We show
in section 4 that this value of w ~ 300 or 7 ~ 0.003 is rather close to the scale
(~ 0.010) of very small perturbations observed on certain parts of the signal.

3.3. Energy spectrum of peaks in the signal

In this section, condition (13) is used to compute conditional spectra for the 131072
first points of the signal in figure 1. Figure 7a shows the compensated non condi-
tioned spectrum 723 E (1) (lower curve) and the compensated conditional spectrum
(upper curve) based on the criterion h(t) > 5. This latter spectrum is associated
with peaks: from figure 1, one can see that for ¢ > 5, the conditioned signal is just
a sum of isolated wave-crests. It is clear from figure 7a that peaks play no part in
the power law E(T) ~ 723 observed for the small scales (i.e. T < Tyrans) in the non
conditioned signal. Figure 7b shows the compensated spectrum T*3E(T) obtained
from the entire signal and from the condition h(t) > 5. The conditional spectrum
is closer to E‘(T) ~ 73 down to small scales T < Tyrans. A transition still appears at
the scale 7 = Tyrans but it is much less stressed than in the case of the entire signal.

From this spectral analysis we can conclude that the signal’s peaks are close
to discontinuities in slope. Indeed, it is known from Fourier analysis that such
discontinuities are characterised by a w™* spectrum. This indicates that for 7 >
Ttrans, the signal’s spectrum is dominated by wave-crests. (See §44.1 for the analysis
of an isolated crest.)

b Actually it is 0.001, but the smallest time-scale which can be observed by the wavelet cannot be
smaller than twice the lower cut-off scale.
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Fig. 7. Conditional spectra based on the condition h(t) > €
From the signal in figure 1, power spectra are based on 131072 points and we use
the Mexican-hat wavelet. a) 7~23E,(7) against 7 for the entire signal (lower curve)
and for € = 5, b) 7 3E.(7) against 7 for the entire signal (lower curve) and for
€=5.

3.4. Energy spectrum of the troughs in the signal

Using condition (14) we now analyse the local spectrum of the troughs. The con-
ditional wavelet spectra shown in figure 8 give some idea of the shape of the local
spectrum associated with troughs. Again there are two ranges of scales 7 separated
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Fig. 8. E(r), spectra conditioned on the troughs: h(t) < e
For € = 0 solid line and € = —5 dash line, a) wavelet spectrum, b) 7=35E(r) for
the spectrum conditioned on h(t) < 0 (solid line) and 7=*E(7) for the spectrum
conditioned on h(t) < —5 (dash line), spectra are measured on a 27 point long
sample and based on the Mexican-hat wavelet.

by a value Tyrqns, and the lower € - i.e. the closer to the troughs - the smaller
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Terans. Figure 8b shows the compensated spectra TO‘E(T). It seems that troughs
do not have a 73 wavelet spectrum but are closer to a 7* power law in the range

Terans < T < 0.2. Trough and peak regions have different contributions to the global
energy spectrum.

4. Capillary effects

4.1. Analysis of an isolated wave

005 01 015 02 025
d)
Fig. 9. Isolated wave, 256 points
a) Displacement h(t) measured as a function of ¢ given in milliseconds. b) Wavelet
transform of the displacement, plot in semi-log, the y-axis holds the scale parameter
7 and the x-axis holds the physical parameter ¢ given in seconds. Curves are iso-
values of the wavelet energy |h(t, 7)| = cst. ¢) Wavelet spectra based on Mexican-hat

(solid line) and Morlet (dashed line) wavelets. d) h(t,7 = 0.005) using the Mexican-
hat wavelet.

We can limit our study to an isolated wave such as the one in figure 9a. A
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common feature of water waves is the small scale parasitic capillary waves which
are present on the forward faces. Water waves with lengths less than about 10mm
are called capillary waves and those riding on the forward faces of the larger gravity
forms are called parasitic capillaries because they derive their energy from the larger
wave. These capillary waves are clearly educed with the use of wavelet transform as
can be seen in figure 9b. The wavelet transform clearly localises a main discontinuity
at t = 0.09 4+ 0.001. Capillary waves appear as blobs of wavelet intensity in the
interval 0 < ¢ < 0.09 (i.e. on the forward face), and they are associated with a
characteristic period (scale 7) of the order of 7 ~ 0.01.

Figure 9c¢ shows the wavelet spectra based on Mexican-hat (solid line) and Morlet
(dashed line) wavelets for the signal in figure 9a. The Morlet wavelet is good at
educing cut-off scales and the wave frequency. The wave period and half-period are
shown by the arrows at 0.257 and 0.127, the third arrow points to the capillary wave
period 0.0056. These values are consistent with an examination of figure 9b, i.e. the
capillary wave period is 1/50 of the characteristic period of the larger scale gravity
wave which appears as large scale blobs at the top of figure 9b. The Mexican-hat
wavelet is clearly better at educing the spectral power law F (1) ~ 7P. Slopes 2 and
3 are drawn in figure 9c giving an indication of possible power laws but ranges are
too small to conclude here.

The scale associated to the capillary effect being clearly educed, figure 9 shows
the filtered the signal for this scale 7 = 0.005.

4.2. Wavelet spectra conditioned on phases
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Fig. 10. Definition of the elementary parts of an isolated wave on an example of a wave different
from figure 9

It is also possible to condition the spectrum on the different part of each elemen-
tary wave as shown in figure 10. Wind blows from 4 to 1; four conditional spectra
can be defined corresponding to each region 1,2,3,4 of the wave. The wave breaking
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occurs in region 2 and capillary effects are observed in region 1 and 4.

An especially important feature of our data is the propagation of capillary waves
in the highly sheared current of the viscous boundary layer. Parasitic capillary waves
are generated by small-scale gravity waves. Extensive theoretical and numerical in-
vestigations by Longuet-Higgins(1995) (see references there in) has revealed the
mechanisms linking the formation of small scale gravity waves with the parasitic
capillary waves located downwind of their crests. The combined effects of surface
tension and high curvature at the crests of small gravity waves form a localised
moving disturbance at the surface. This disturbance generates capillary waves up-
stream and gravity waves downstream due to the dispersion relation near the grav-
ity/capillary transition.

The breaking of small scale gravity waves results in the generation of capillary
waves. During the breaking process, wave energy is not only dissipated by subsurface
turbulence but is also radiated from the breaking region [Rapp & Melville(1990)].
The relationship between these generated waves and the underlying gravity wave
form is probably most clearly revealed by the laboratory experiments of Banner &
Fooks 1985. Notably, the frequencies of these waves are substantially higher than
the gravity wave and the influence of capillarity makes these waves highly dissi-
pative and, therefore, short lived. Their random formation and rapid dissipation
makes monitoring their motion exceedingly difficult.

Uncertainty existed as to the direction of propagation of waves generated by break-
ing as it has been suggested that the wind drift at the crest was greatly intensified
by local tangential stresses. Recent work by Banner & Peirson(1998) has shown
that relative to the moving wave form (except in the immediate vicinity of the
spilling region) the mean wind drift is approximately 0.3(+ — 0.1)u, and transport
is in an upwind direction. Whilst the sources of capillary wave energy have been
identified, very few investigations have endeavoured to distinguish between their
relative contributions to surface wave energy. In particular, the investigations of
Banner & Fooks 1985 have ignored the role of wind, yet the wind itself is plainly
able to generate capillary ripples. Furthermore, the conclusions of these two detailed
studies is that a strong relationship exists between the larger scale wave and the
high frequency motions which occur on its surface. Yet the spectral relationships
determined take no account of these directly.

Here, the high resolution wave probe record is examined using wavelet techniques
with a view to determining the sources and relative contributions of capillary wave
energy along representative wind wave forms. Figures 11 show comparisons of the
entire spectrum, upper curves in each plot, with conditional spectra based on sec-
tor 1,2,3,4 defined in figure 10. Note that these spectra are obtained from the entire
data set and not from individual waves such as figures 10 and 9a, thus providing
conclusions on the average behaviour of sectors 1,2,3 and 4. These conclusions are:

i) figure 11b shows that the dominant contribution of small scale energy comes
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Fig. 11. Conditional spectra, 1,2,3,4 refer to conditions described in figure 10

from sector 2, that is where the breaking of the wave occurs.

ii) Sector 1 (figure 11a) shows higher levels of small scale energy than sector 3
(figure 11c) this is consistent with a major contribution from the parasitic capillaries
developing in sector 1.

iii) Sector 3 shows higher levels of large scale energy that sector 1, this may be
associated with the non-linearity of the waves in this part.

iv) Sector 4 (figure 11d) shows a slightly higher level of small scale energy that
sector 3, indicating some capillary leakage towards the downwind crest.

These conclusions support the view that the direction of propagation of waves
generated by breaking is from sector 2, to sector 1 to sector 4 of the subsequent
wave with no indication that these waves exist in sector 3.

4.3. The distribution of capillary wave periods

In the wavelet spectra shown in figure 11, samples larger than 2'7 have been used.
One can see from these spectra that the capillary wave period disappears from the
total energy spectrum based on 2'7 points. The sample length can be varied to
get an idea of the breadth of the distribution of capillary wave periods at different
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Fig. 12. Mexican-hat wavelet spectra for different length data samples
From top to bottom 210, 211 212 213 914 915 916 917 14int long segments.

scales. Figure 12 shows wavelet spectra corresponding to different sample sizes of
the signal in figure 1. At small scales 0.001 < 7 < 0.05, the shape of the spectrum

24 points to converge, whereas the spectrum shape at

needs samples longer than
large scales is not affected. This is an indication that the distribution of capillary

wave periods is broader at small scales than at large ones.

4.4. Large scale indentations:

Fig. 13. Isolated wave with large indentations

a) 256 points long signal in milliseconds, b) wavelet transform of 13a, iso-value
sampling is the same as in figure 9 and ¢ and 7 are in seconds.

We now focus on large scale indentations like those in figure 13a. These are
indentations at scales larger than the capillary wave ones but still smaller than the
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Fig. 14. Wavelet spectrum of the isolated wave in figure 13
Solid line wavelet spectrum of the entire wave, dashed line wavelet spectrum con-
ditioned on h(t) > 5. Arrows indicate scales 0.031 and 0.036.

large scale A educed in §3(a). Figure 13b is a plot of the wavelet transform of the
signal. A comparison of figures 9b and 13b shows that the wavelet-scales of the large
scale indentations are clearly an order of magnitude smaller than A and can be up
to an order of magnitude larger than the wavelet scales involved in capillary effects.
The scales associated with the large indentations in figure 13a are not localised on
the forward face and lie between t=0.031 s and 0.036 s. They are therefore clearly
differentiated from the capillarity waves analysed in the previous section.

Figure 14 shows the wavelet spectrum and the conditional wavelet spectrum
of signal in figure 13a. The conditional spectrum is closer to the E(T) ~ 73 law
indicating that, contrary to capillary waves, the large indentations in figure 13a may
be closer to slope discontinuities, but the range is too short to enable a definitive
conclusion.

5. Analysis of a fractal distribution of A

In this section we analyse a signal having a fractal distribution of A (the distance
between two consecutive zero-crossings), that is [Belcher & Vassilicos(1997)]:

Di+1
M) dX = Minas ()\maw) d\ (16)
Amaz A
where M ()) is the number density of A-crests of size between A and A + dA and we
assume 0 < D7 and A\ < Ap,qz. This signal is constructed as a sum of A-crests which
are exactly slope-discontinuities with the same angle between two slopes forming a
discontinuity. Hence the signal is constructed as a fractal distribution of self-affine

A-crests (see figure 15).
Belcher & Vassilicos [Belcher & Vassilicos(1997)] have shown that the Fourier



February 13, 2014 10:26 WSPC/INSTRUCTION FILE tankwave-IJAM

Wavelet analysis of Wave motion 17

50
40
30
20
10

0t I I I I I I I I

0 2000 4000 6000 8000 10000 12000 14000 16000

Fig. 15. Signal h(t) constructed as a sum of a fractal distribution of A-crests for D; = 0.5,
Amin = 1 and Apae = 100.

spectrum of such a 1-D signal follows the power law
_(W)\maw)Dl (17)
for wApmae > 1. Using (11) we can deduce that

E(r) ~ 3D (18)

for -7— < 1 and can also use wavelet spectra conditioned on h(t) > € to isolate
A-crests and show that for ¢ large enough

E.(1) ~13 (19)
even though E(7) ~ 73~P1 for 5.— < 1. Hence, wavelet methods can be used to
show the existence of w™4TP1 spectra but also to demonstrate, when the case may

be, that these power-law spectra are related to A-crests which themselves have w™*

energy spectra.

Figure 16a is a log-log plot of Ap,q.M(\) versus A enabling direct verification
of the fractal distribution of A with D; = 0.5. Figure 16b is a plot of the wavelet
spectrum of the signal in figure 15 (using the 131072 points of this signal) and it
is based on the Morlet wavelet. The solid line corresponds to the entire signal, the
dash line to the signal conditioned on h(t) > € > 10. We can draw the following
conclusions:

i) there is no particular peak in these spectra as was the case in the experimental
data studied in the previous sections. This is consistent with the notion of a fractal
distribution which implies that there is no privileged scale.

ii) The spectrum of the entire data is dominated by the fractal distribution of
the peaks: the law for the wavelet-spectrum is E(T) ~ 11 which yields a Fourier
spectrum E(w) ~ w™2? in agreement with relations (17) and (18) for D; = 0.5.

iii) The spectrum associated with the A-crests is educed by the conditioned
spectrum based on the condition h(t) > 10. We find E,(7) ~ 7° which agrees with
relation (19) for slope discontinuities.
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Fig. 16. Fractal and Wavelet analyses of signal shown in figure 15
a)Probability density function of Ap,q. M (A) as a function of A for the signal’s first
300000 points. The straight line is the slope -1.5. b) Wavelet transform of the signal’s
first 131072 points based on the Morlet wavelet. The solid curve corresponds to the
entire sample, the dash curve to the condition € > 10.

6. Conclusion

In this paper we have used conditional spectra based on wavelet decompositions to
analyse time series of displacement of tank waves. We have shown that wavelets can
educe capillary waves from the signal. Wavelet spectrum analysis has also enabled
us to quantify the relative contribution of peaks and troughs to the energy spec-
trum. Wave peaks are close to slope discontinuities whereas wave troughs are not.
Wavelet spectra conditioned on wave sectors show that capillary waves are mainly
located in sector 1 with some capillary leakage downwind from the peak of the wave
indicating that capillary waves propagate downwind.

The wavelet analysis we presented here was tuned to our particular application.
There are many examples of forced microscale waves, for example the wave displace-
ment in driven metal plates in [Miquel & Mordant (2011)]; though the turbulence
there is classified as weak it is richer in scales than the case presented in this paper.
Such cases would be interesting study case as preliminary to the use of wavelet
analysis to the study of fully developed turbulence.
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Appendix
A. Mexican-hat wavelet

Wavelets based on the Gaussian function have the form:

dr 12
Y(t) = P (A1)
the case n = 2 corresponds to the Mexican-hat wavelet. Their Fourier transforms
have the simple form:

0.7 T T T T T
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mexican hat wavelet
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time
Fig. 17. Typical Mexican-hat wavelet.

D(w) = (iw) e 2" (A.2)
These wavelets are interesting for the study of the zero-crossings of signals but can
be misleading in the study of spectrum power laws. Indeed, with these functions as
mother wavelets, the wavelet spectrum asymptotic limit is

lim E(r) ~ 72",
T—0

whatever the Fourier spectrum. This is due to the fact that in practise a power law
spectrum is not verified over an infinite range of scale but has an upper w4, and
lower wy,;, cut-off scale. Using this remark and plugging (A.2) into the definition
of the wavelet spectrum (9), it yields:

~ Wmaz |2
E(7) :/ ‘h(w)‘ (Tw)?e= () du,

Wmin

that is

E(r) = 7'2"/

Wmin

-2
h(w)‘ wre= (T gy,

Because winin and wie are finite 7 can go to 0 while w is bounded, and

lim e_(”’)2 =1
7—0
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wl, <7< —L— Then

Wmin

Emw%/ i

2
h(w)‘ W™ dw,

is valid outside the range

Wmin

that is

E(t) ~ 12"

. 2
whatever the form of ‘h(w)‘ . This asymptotic behaviour proper to the wavelet can
parasite the spectrum power law we are looking for. Figure 18 shows the wavelet

spectrum form 3 wavelets: %e‘éﬁ, j—;e_%tz and the Morlet wavelet (see § B).

1e-10 il
0.001 0.01 01 1

Fig. 18. E(r) as a function of 7 for 3 different wavelets
2 2 4 2 . .
1) %e*%t ,2) Lre 2t 3) Morlet wavelet. the cut-off is the clearer with the Morlet
wavelet.

B. Morlet wavelet
The Morlet wavelet is defined as:
Y(t) = e 3t el (B.1)

and its Fourier transform is ﬁ(w) = e~ 2(@=%0)” If we use this wavelet in the com-
putation of (9) then

Br) ~ / o ‘ﬁ(w)r o (B.2)

Wmin
when 7 — 0 and there is no asymptotic power law introduced in that limit. when
7 — 0. On the other hand due to its cosine-like form, Morlet wavelet tends to focus
on a scale when it is periodic at the expense of the resolution of the power spectrum
(where it exists). As it appears in figure 18 apart from the determination of cut-off
scales, the Mexican-hat wavelet is more appropriate for the determination of the
power law of a spectrum.
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