Tip-enhanced Raman mapping with top-illumination AFM

K. L. Andrew Chan and Sergei G. Kazarian*

Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK

Keywords: single wall carbon nanotubes; Confocal; Imaging; Upright configuration; reflection; scattering; spectroscopy; top-illumination

Abstract

Tip-enhanced Raman mapping is a powerful emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on inverted configuration where tips and laser are approaching the sample from the opposite side. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. TERS image of single wall carbon nanotube has been achieved with a spatial resolution of ~20-50 nm demonstrating the potential of this technique for studying non-transparent nanoscale materials.
Introduction

Tip-enhanced Raman mapping is potentially a very powerful analytical technique. It combines the high spatial resolution offered by an atomic force microscopy (AFM) with the high chemical specificity of Raman spectroscopy. The basic concept in a TERS experiment is to focus the laser beam at a metal tip with the light polarised along the tip axis and to collect the surface enhanced Raman scattered light from the sample in the enhancement zone of the tip using corresponding optics. One of the first TERS experiments achieved this by adapting the inverted mode configuration which involves illuminating samples from below with a tip approaching from above.[1] While this arrangement has the advantage of high collection efficiency, it is limited to study transparent samples only. For opaque samples, the tip and laser beam will have to be introduced from one side or using coated transparent probes for illumination.[2, 3] Sun and Shen have shown that TERS images can be obtained in an upright microscope by adding a small mirror to direct the focusing laser light to the tip.[4] In this arrangement, the laser is, effectively, side-illuminating the tip and the angle of incidence can be adjusted in order to maximise the enhancement effect. Another approach also found to be effective was using a side-illuminating objective to focus the laser light at the tip while collecting the scattered light either from the same objective[5] or from an upright objective.[6] This method has been applied to image carbon nanotube[7] molecules deposited on a gold surface[8] and to study the strain distribution on silicon wafers.[4, 9, 10] Apart from the side illumination, a parabolic mirror with a numerical aperture (NA) of 1 has also been used to increase the efficiency of signal collection as well as to generate a desirable polarisation for the maximum enhancement effect.[11-13] The advantages and disadvantages of top illuminated and inverted geometries are discussed in a recent publication.[14] Relatively few examples of tip-enhanced Raman mapping have been demonstrated using an upright microscope where laser beam and scattered light are focused and collected from the same upright microscope objective due to the difficulties in avoiding shadowing of the scattered signals from the AFM tip. Schultz et al[15] adapted a similar system employed by Sun and Shen[4] and obtained TERS image of carbon nanotubes without the added side mirror. In this work, a glass AFM tip with a <200 nm gold nanoparticle at the tip end and a radially polarised laser beam was used. Since the nanoparticle was relatively large, the spatial resolution reported was on the order of 125 nm. Recently, Stadler et al[16] published a work on a top-illuminated TERS experiment of thin film of dyes on gold surfaces in gap mode (the thin sample is located between a gold surface and a silver tip) using a scanning tunnelling microscopy (STM) approach. A spatial resolution of at least 15 nm and an enhancement level of $\sim 10^7$ have been reported. Since the
measurement is based on STM and gap mode, it is currently limited to study very thin conductive samples. In this work, we demonstrate the possibility of obtaining TERS images with a high spatial resolution using a gold coated Si AFM tip in top-illumination mode using an upright microscope with a linearly polarised laser beam. The measurement can be performed on any substrates and it is demonstrated without the use of gap mode.

Experimental

TERS images were obtained using an integrated system which consist of an upright microscope with an 100x long working distance objective (NA of 0.7) and an integrated AFM head (NTEGRA, NT-MDT), a Raman spectrometer (nVia Raman Microscope, Renishaw, UK) with a 633 nm HeNe laser and an 1024 x 400 pixels CCD (Andor detector) connected to the microscope/AFM system (NTEGRA Spectra, NT-MDT). A schematic of the TERS system set-up is shown in Figure 1. The location of the laser spot can be precisely controlled by a mirror with a piezomotor such that the laser spot can be aligned to the AFM tip. The sample is placed on an XYZ peizo stage. In this design, the laser beam is focused and the scattered light is collected by the same objective.

Contact mode Si AFM tips (ATEC-CONT, Nanosensors) were sputtered with a thin layer of gold coating (K550X, Emitech, Quorum Technologies, UK) under the condition of 10⁻¹ mbar of Argon, coating current of 35 mA, 45 mm distance from the sputtering source and 2 minutes of coating time. The soft piezo approach technique was adapted to avoid damage of the gold on the tip and the lowest contact pressure settings were used to minimise the impact between the tip and sample.[17] The laser beam at a power of <1 mW was used. An aperture was inserted to mask the laser beam such that the backscattering of the laser light from the back of the cantilever was minimised. The laser was focused on the sample and the apex of the gold coated AFM tip. This was achieved by scanning the laser beam, by moving the mirror, across the approaching tip. Whenever the laser spot entered the tip area, an apparent small increase in fluorescent background was noticed. The area with the strongest background is regarded as the “hot spot”. The sample was scanned by moving the XYZ piezo stage and the topography image and the tip enhanced Raman image were collected simultaneously. One second integration time was used to collect the Raman signal at each point of the image. Data analysis was performed using the Nova software (NT-MDT).

Carbon nanotubes (P2-SWNT, Carbon Solutions) were sonicated in solvent (chloroform) for 2 hours followed by spreading on a glass substrate. The solvent was evaporated at room temperature under a fume hood. The sample was stored at room condition until being used.
Results and Discussion

The Si tip employed in this study is called the “tip at the end of the cantileverTMr”, where the tip protrudes out from the end of the cantilever such that shadowing from the cantilever is minimised. The tip contacts the sample at an angle of ~20° from the normal to the surface of the sample (see insert in Figure 1). To maximise the tip enhancement effect, the polarisation of the laser light should be parallel to the tip axis.[18] In upright configuration, this can be achieved by using a radially polarised light[19, 20] and it has been applied in TERS studies.[19, 21, 15] However, when using side illumination, this also can be achieved with the linear polarised light.[22] Here we employ a technique that will create a side-illumination with the unmodified upright objective allowing the experiment to be carried out with linear polarised laser light. This was achieved by masking ~4/5 of the laser beam that enters the objective which eventually only illuminates the sample from the opposite to the cantilever side (the left hand side, see Figure 1). The angle of incidence of the laser beam was just below 45° based on the fact that the NA of the objective was 0.7. While the angle of incidence of the laser light did not align with the axis of the tip exactly, it was the closest match with the current setup. Since the AFM tip and the laser beam approach the sample from the same side and the cantilever employed in this study was not transparent, the back of the cantilever will be shadowing that part of the objective. The introduced mask, in this case, also has the advantage of reducing the scattered light from the top surface of the cantilever. While the ~4/5 of the laser beam is masked, the scattered light collected by the same objective is only shadowed by the cantilever which is blocking less than a half of the objective.

The AFM system can be operated in two possible modes: semi-contact mode or contact mode. In the contact mode, the sample is always in contact with the gold coated tip and it is exposed to the intense enhancement zone of the tip apex. On the other hand in semi-contact mode, the tip is oscillating such that the sample only enters the enhancement zone near the tip apex at a regular time interval. Previous studies[7, 23] have shown that the tip enhancement effect diminishes within 5-15 nm between a sample and a tip. To achieve the maximum enhancement in semi contact mode, a setting that would give a small oscillation at an amplitude of 5-10 nm was adapted. However, in this study, it was not possible to obtain any TERS signal from the gold coated tips when operating in semi-contact mode even when the amplitude of the oscillation was reduced to ~5 nm. Schultz et al[24] suggested that when TERS experiment is carried out with linear or azimuthally polarised laser beams, the enhancement zone at the tip is along the X and Y directions rather than at the Z axis along
the tip. Furthermore, the polarization of the laser light was not aligned exactly to the tip axis, hence, the enhancement effect is diminished even when the tip is just a few nanometers away from the surface. With the setup presented in this work, TERS effect was only observed when the system was operated in the contact mode. Note that when the tip is scanning very near the sample, as in most of the TERS experiments, the comparison of Raman signals between tip approaching and tip retracted does not always provide certainty of having TERS signals. When the AFM is operated in contact or even in semi-contact mode the tip is in close proximity to the sample, a small amount of material can be transferred to the tip, thus providing a false enhancement of Raman signal when tip is approaching. It is therefore important to check if the apparent enhancement is sensitive to the location of the tip related to the sample. This is automatically achieved when an image is scanned. When an image is obtained by scanning the tip across the sample, only a TERS active tip provides a distribution map at a spatial resolution that is better than what can be achieved with a conventional confocal microscope. In all the images that were scanned in semi-contact mode, no improvement in spatial resolution was observed based on the carbon nanotube distribution map despite the apparent increase in carbon nanotube signals when comparing the Raman signals obtained with tip approaching and tip retracted.

When the tip scans in contact mode, fine features of the individual carbon nanotubes can be observed and the result is shown in Figure 2. The Raman image is generated based on the G band of the carbon nanotube at ~1590 cm\(^{-1}\) (Figure 2A) and is simultaneously obtained with the topographic image (Figure 2B). The close agreement between the topographic image and the Raman image and the high spatial resolution obtained has ensured that a TERS image has been successfully obtained with this upright configuration. Spectra have been extracted from the locations marked on Figure 2A. The spectrum extracted from a location far away (>300 nm) from the carbon nanotubes has shown a weak signal of the carbon nanotube (spectrum c in Figure 2D) which is indicative of some small amounts of carbon nanotubes were transferred to the tip surface, which has emphasised the importance of the comparison of the Raman signal obtained from different locations of the sample to ensure that the enhanced signal is from TERS effect rather than the contamination of the tip. Comparison of that spectrum to the one extracted from an area near the carbon nanotube (~50 nm away from the carbon nanotube) has shown that the contribution from far-field Raman signals was very small. The difference spectrum is shown in Figure 2E which demonstrated the far-field signal is not noticeable while the enhanced signal can be clearly seen. A Raman intensity profile across the carbon nanotube region has been extracted and shown in Figure 2F. From this profile, the full width half maximum was estimated to be ~20-50 nm (a range was indicated here because the noise level of the image prevent more
accurate estimation of spatial resolution from this figure) which is similar to previous results reported by others with a side-illuminating objective.[7]

When the topographic image is overlapped with the simultaneously obtained TERS images using the contact mode measurement (Figure 2C), one can notice that the TERS image of the carbon nanotubes is slightly offset lower to the topographic image by approximately 35 nm. This is indicating that the enhancement zone is on the side of the tip apex rather than at the end of the tip. We suggest that this is caused by the mismatch between the angle of the tip and the angle of incidence of the laser light with the normal linear polarisation, which also explains why it was difficult to observe any enhancement in semi-contact mode where the tip was not directly in contact with the sample most of the time. Taking the images in Figure 2 as the reference, the cantilever is located on the top side of the image and the laser is illuminates from the bottom side, unlike what has been shown in Figure 1 which indicates that the laser was illuminated from the left. (It has been shown in this way for a more clear illustration of how the tip was illuminated rather than the actual orientation of the laser and tip relative to the image orientation). The observed offset can then be understood by considering the laser beam is approaching the tip from the bottom side of the image. Interestingly the enhancement is observed only to one side of the nanotube rather than both sides, suggesting that the enhancement zone is only formed at one side of the tip. This actually results in a better spatial resolution than in the case if the enhancement zone surrounded all of the tip end. Nevertheless, there are opportunities to further improve the current set up to maximise the enhancement signals such as introducing a tilt to the tip or to modify that tip to match the angle of incidence of the laser light or to use radially polarised light. Very recently, Raschke and co-workers[25] have demonstrated the possibility of obtaining TERS spectra from thick samples using adiabatic Plasmon focusing into the tip apex region for better efficiency of TERS. Significantly improved TERS spectra have been reported without imaging data yet.[25]

Conclusions

In this work, we have demonstrated that TERS images with nanometers spatial resolution can be obtained by using an upright microscope and a gold coated Si AFM cantilever working in contact mode using top-illumination. The approach involved introducing a mask to the laser light to create a side-illumination effect while collecting the scattered light with the same upright microscope objective. Shadowing from the cantilever was minimised by employing a “tip at the end of the cantilever” type AFM probe. However, no TERS images can be obtained when the AFM is operating in semi-contact mode in this setup suggesting that the enhancement zone was created at the side rather than at the bottom of the AFM tip.
With the current setup, the polarisation of the laser light was not perfectly aligned to the axis of the tip, leaving opportunity for further improvement on the enhancement level that may be achieved in this upright mode. The spatial resolution achieved with this system in upright rather than the inverted configuration was ~20-50 nm, demonstrating the potential of this technique to study non-transparent nanoscale materials without limitation on samples conductivity.

Acknowledgements

SGK acknowledges the research funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC advanced grant agreement n° [227950].

References

Sackrow M, Stanciu C, Lieb M A and Meixner A J 2008 Imaging nanometre-sized hot spots on smooth Au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy Chemphyschem 9 316-20

Berweger S and Raschke M B Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique Anal. Bioanal. Chem. 396 115-23

Novotny L and Stranick S J 2006 Near-field optical microscopy and spectroscopy with pointed probes Annual Review of Physical Chemistry 57 303-31

Quabis S, Dorn R and Leuchs G 2005 Generation of a radially polarized doughnut mode of high quality Applied Physics B-Lasers and Optics 81 597-600

Pettinger B, Domke K F, Zhang D, Picardi G and Schuster R 2009 Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement Surface Science 603 1335-41

Figure 1: A schematic diagram showing the arrangement of the TERS system in an upright configuration. Note that the object is used to focus laser light on the sample as well as to collect the scattered light to the spectrometer. The scattered light is shown with the dotted line boundaries.
Figure 2: A) TERS image of carbon nanotube. Image is generated based on the changes in the area under the G band at ~1590 cm\(^{-1}\) across the mapped region with the baseline area subtracted. B) AFM topographic image of the same area of sample measured simultaneously. C) An overlapping image of A and B. D) Extracted spectra from locations indicated on image A. E) Difference spectra of a and c (the spectrum extracted from nanotube region, a, subtracting the spectrum from non-nanotube region, c) and b and c (the spectrum extracted from ~50 nm away from nanotube region, b, subtracting the spectrum extracted from non-nanotube region, c). F) Raman intensity profile across the dotted line indicated on image A.