This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is intended as a reference point for prospective students, current students, external examiners and academic and support staff involved in delivering the programme and enabling student development and achievement.

Programme Information

<table>
<thead>
<tr>
<th>Award(s)</th>
<th>BSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associateship</td>
<td>Associateship of the Royal College of Science (ARCS)</td>
</tr>
<tr>
<td>Programme Title</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Programme code</td>
<td>C700</td>
</tr>
<tr>
<td>Awarding Institution</td>
<td>Imperial College London</td>
</tr>
<tr>
<td>Teaching Institution</td>
<td>Imperial College London</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty of Natural Sciences</td>
</tr>
<tr>
<td>Department</td>
<td>Department of Life Sciences</td>
</tr>
<tr>
<td>Mode and Period of Study</td>
<td>3 academic years full-time</td>
</tr>
<tr>
<td>Cohort Entry Points</td>
<td>Annually in October</td>
</tr>
<tr>
<td>Relevant QAA Benchmark Statement(s) and/or other external reference points</td>
<td>Biosciences</td>
</tr>
<tr>
<td>Total Credits</td>
<td>ECTS: 180</td>
</tr>
<tr>
<td>FHEQ Level</td>
<td>Level 6</td>
</tr>
<tr>
<td>EHEA Level</td>
<td>1st cycle</td>
</tr>
<tr>
<td>External Accreditor(s)</td>
<td>None</td>
</tr>
</tbody>
</table>

Specification Details

Student cohorts covered by specification	2016/17
Person responsible for the specification	Professor Anne Dell
Date of introduction of programme	
Date of programme specification/revision	August 2016
Description of Programme Contents

The BSc Biochemistry programme is a three-year degree. In the first two years students will tackle core subjects to ensure that they receive a solid grounding in fundamentals.

Students will then specialise in the final year, making their choice from a wide range of options and research projects.

Our biochemistry and biotechnology courses contain topics covering all aspects of the applied biochemistry and the biotechnology industry, such as intellectual property and patents, commercialising technology, and entrepreneurship, with lectures and case studies from biotechnology business leaders and academics.

Learning Outcomes

The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes

Knowledge and Understanding of:

- Biological chemistry; molecular biology and genetics; cell biology; protein and enzyme structure and function; (Year 1)
- Genes and genomics; macromolecular structure and function; integrative cell biology; (Year 2)
- Advanced knowledge and understanding of three specialist modules; (Year 3)

Intellectual Skills (thinking) skills - able to:

- Analyse and solve biochemistry-based problems;
- Integrate and evaluate information;
- Formulate and test hypotheses using appropriate experimental design and statistical analysis of data;
- Plan, conduct and write-up a programme of original research

Practical skills – able to:

- Plan and execute safely a series of experiments;
- Use laboratory methods to generate data;
- Analyse experimental results and determine their strength and validity;
- Prepare technical reports;
- Give technical presentations;
- Use the scientific literature effectively;
- Use computational tools and packages.

Transferable skills – able to:

- Communicate effectively through oral presentations, computer processing and presentations, and written reports;
- Work independently and as part of a team
- Integrate and evaluate information from a variety of sources;
- Use Information and Communications Technology;
- Manage resources and time;
- Learn independently with open-mindedness and critical enquiry;
- Learn effectively for the purpose of continuing professional development.
Entry Requirements

<table>
<thead>
<tr>
<th>Academic Requirement</th>
<th>The minimum entry requirements for all Biochemistry courses are AAA overall at A2 level, to include:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A in Chemistry</td>
</tr>
<tr>
<td></td>
<td>A in another science subject (Biology is preferred but not mandatory) or Mathematics</td>
</tr>
<tr>
<td></td>
<td>The ideal combinations would be Chemistry and two further science subjects or Chemistry and one further science subject and Mathematics, but other combinations are considered.</td>
</tr>
<tr>
<td></td>
<td>Two AS levels may be acceptable in place of a third A level. This is in addition to Grade B or above in GCSE Mathematics, Chemistry, Biology (or Combined Sciences)</td>
</tr>
</tbody>
</table>

| **Non-academic Requirements** | None |

Offers for our Biochemistry, Biotechnology and Biological Sciences courses are made based on information supplied on the UCAS form. Generally, we do not hold interviews.

| **English Requirement** | IELTS 6.5 with a minimum of 6.0 in each element or equivalent |

The programme’s competency standards documents can be found at: http://www.imperial.ac.uk/students/academic-support/graduate-attributes/

Learning & Teaching Strategy

<table>
<thead>
<tr>
<th>Scheduled Learning & Teaching Methods</th>
<th>• Laboratory • Lectures • Tutorials • Seminars</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-learning & Blended Learning Methods</td>
<td>• Computer-based work</td>
</tr>
<tr>
<td>Project and Placement Learning Methods</td>
<td>• Group project • Research project/dissertation • Site visits</td>
</tr>
</tbody>
</table>
Assessment Strategy

<table>
<thead>
<tr>
<th>Assessment Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Written Examinations</td>
</tr>
<tr>
<td>• Coursework</td>
</tr>
<tr>
<td>• Laboratory write-ups</td>
</tr>
<tr>
<td>• Essays</td>
</tr>
<tr>
<td>• Reports</td>
</tr>
<tr>
<td>• Dissertations</td>
</tr>
<tr>
<td>• Presentations</td>
</tr>
<tr>
<td>• Individual research project report</td>
</tr>
<tr>
<td>• Viva</td>
</tr>
</tbody>
</table>

Academic Feedback Policy

Coursework feedback is provided by a feedback form attached to items of coursework. Feedback is also provided via Blackboard on automatically-assessed pieces of coursework and on formative MCQ quizzes. Personal tutors hold timetabled tutorials at the start of the academic year to give feedback on examination performance and can be approached by their tutees at any point in the year for further guidance. The undergraduate teaching office repeatedly informs individual staff via email when coursework is due back at the appropriate time. The Director of Undergraduate Studies routinely monitors the quality and quantity of feedback provided on marked coursework. In some instances, generic class feedback is returned to all students via email or a Blackboard announcement once coursework is marked.

The College’s Policy on Re-sits is available at: www.imperial.ac.uk/registry/exams/resit

The College’s Policy on Mitigating Circumstances is available at: www.imperial.ac.uk/registry/exams

Assessment Structure

Marking Scheme

- **Regulation of Assessment**
 - Minimum pass mark is 40% overall for each course module, which must include a mark of at least 35% in the coursework component and a mark of at least 35% in the examination.
 - For course modules that include a written examination, coursework typically contributes 20-25% of the total marks available.
 - Assessment details are provided in the First, Second and Third Year Student Handbooks.
 - The final degree mark is calculated from the mean mark achieved in Years 1, 2 and 3.
 - The year weightings for students admitted in or after October 2013 are 11.1: 33.3: 55.6, respectively.
 - The year weightings for students admitted before October 2013 are 5:35:60.
 - To qualify for the award of BSc Honours, students must pass all courses.

- **Assessment Rules and Degree Classification:**
 - For undergraduate programmes classification of degrees will be according to the following range of marks:
 - First class 70 - 100%
 - Second class (upper division) 60 - 69.9%
 - Second class (lower division) 50 - 59.9%
 - Third class 40 - 49.9%
 - Fail 0-39%
<table>
<thead>
<tr>
<th>Year</th>
<th>% Year Weighting</th>
<th>Module</th>
<th>% Module Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year One</td>
<td>11.1%</td>
<td>Molecular Biology</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteins and Enzymes</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biological Chemistry</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell Biology</td>
<td>25%</td>
</tr>
<tr>
<td>Year Two</td>
<td>33.3%</td>
<td>Genes and Genomics</td>
<td>16.66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrative Cell Biology</td>
<td>16.66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundamentals of Molecular Biochemistry</td>
<td>16.66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protein Science</td>
<td>16.66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutored Dissertation</td>
<td>11.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One module from elective group (A)</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One module from elective group (B)</td>
<td>11.6%</td>
</tr>
<tr>
<td>Year Three</td>
<td>55.6%</td>
<td>EITHER: Laboratory Based Research Project OR Literature Based Dissertation AND Science Communication</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One module from elective group (C)</td>
<td>21.66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One module from elective group (D)</td>
<td>21.66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One module from elective group (E)</td>
<td>21.66%</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Core/Elective</td>
<td>Year</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>LS1-MB</td>
<td>Molecular Biology</td>
<td>CORE</td>
<td>1</td>
</tr>
<tr>
<td>LS1-PE</td>
<td>Proteins and Enzymes</td>
<td>CORE</td>
<td>1</td>
</tr>
<tr>
<td>LS1-BC</td>
<td>Biological Chemistry</td>
<td>CORE</td>
<td>1</td>
</tr>
<tr>
<td>LS1-CB</td>
<td>Cell Biology</td>
<td>CORE</td>
<td>1</td>
</tr>
<tr>
<td>LS2-GG</td>
<td>Genes and Genomics</td>
<td>CORE</td>
<td>2</td>
</tr>
<tr>
<td>LS2-ICB</td>
<td>Integrative Cell Biology</td>
<td>CORE</td>
<td>2</td>
</tr>
<tr>
<td>LS2-MSF1</td>
<td>Fundamentals of Molecular Biochemistry</td>
<td>CORE</td>
<td>2</td>
</tr>
<tr>
<td>LS2-MSF2</td>
<td>Protein Science</td>
<td>CORE</td>
<td>2</td>
</tr>
<tr>
<td>LS2-TDBC</td>
<td>Tutored Dissertation</td>
<td>CORE</td>
<td>2</td>
</tr>
<tr>
<td>LS2-TB</td>
<td>Topics in Biotechnology</td>
<td>ELECTIVE (A)</td>
<td>2</td>
</tr>
<tr>
<td>LS2-CCB</td>
<td>Challenges in Cell Biology</td>
<td>ELECTIVE (A)</td>
<td>2</td>
</tr>
<tr>
<td>LS2-AMBC</td>
<td>Applied Molecular Biochemistry</td>
<td>ELECTIVE (A)</td>
<td>2</td>
</tr>
<tr>
<td>N/A</td>
<td>Horizons</td>
<td>ELECTIVE (B)</td>
<td>2</td>
</tr>
<tr>
<td>N/A</td>
<td>Business for Professional Engineers & Scientists</td>
<td>ELECTIVE (B)</td>
<td>2</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Core/Elective</td>
<td>Year</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>LS3-FYRP</td>
<td>Lab Based Research Project</td>
<td>CORE*</td>
<td>3</td>
</tr>
<tr>
<td>LS3-FYRD</td>
<td>Literature Based Dissertation</td>
<td>CORE*</td>
<td>3</td>
</tr>
<tr>
<td>LS3-SCICOMM</td>
<td>Science Communication</td>
<td>CORE*</td>
<td>3</td>
</tr>
<tr>
<td>LS3-ATPMB</td>
<td>Plant Biotechnology and Development</td>
<td>ELECTIVE (C)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-DRIBS</td>
<td>Damage and Repair in Biological Systems</td>
<td>ELECTIVE (C)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-M3D</td>
<td>Macromolecules in Three Dimensions</td>
<td>ELECTIVE (C)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-MM</td>
<td>Medical Microbiology</td>
<td>ELECTIVE (C)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-SCRA</td>
<td>Stem Cells, Regeneration and Ageing</td>
<td>ELECTIVE (C)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-NR</td>
<td>Neuroscience Research</td>
<td>ELECTIVE (C)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-ATII</td>
<td>Advanced Topics in Immunity and Infection</td>
<td>ELECTIVE (D)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-MPMI</td>
<td>Symbiosis, Plant Immunity and Disease</td>
<td>ELECTIVE (D)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-ATPVB</td>
<td>Advanced Topics in Parasitology and Vector Biology</td>
<td>ELECTIVE (D)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-ISB</td>
<td>Integrative Systems Biology</td>
<td>ELECTIVE (D)</td>
<td>3</td>
</tr>
<tr>
<td>LS3-MGE</td>
<td>Mechanisms of Gene Expression</td>
<td>ELECTIVE (D)</td>
<td>3</td>
</tr>
</tbody>
</table>
Module List

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Core/Elective</th>
<th>Year</th>
<th>L&T Hours</th>
<th>Ind. Study Hours</th>
<th>Placement Hours</th>
<th>Total Hours</th>
<th>% Written Exam</th>
<th>% Course-work</th>
<th>% Practical</th>
<th>FHEQ Level</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS3-MNE</td>
<td>Metabolic and Network Engineering</td>
<td>ELECTIVE (D)</td>
<td>3</td>
<td>62</td>
<td>263</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>9%</td>
<td>16%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-CANCER</td>
<td>Cancer</td>
<td>ELECTIVE (D)</td>
<td>3</td>
<td>56</td>
<td>269</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>5%</td>
<td>20%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-SB</td>
<td>Synthetic Biology</td>
<td>ELECTIVE (E)</td>
<td>3</td>
<td>52</td>
<td>273</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>10%</td>
<td>15%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-BDG</td>
<td>Biodiversity Genomics</td>
<td>ELECTIVE (E)</td>
<td>3</td>
<td>40</td>
<td>285</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>10%</td>
<td>15%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-MBBI</td>
<td>Molecular Basis of Bacterial Infection</td>
<td>ELECTIVE (E)</td>
<td>3</td>
<td>53</td>
<td>272</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>0%</td>
<td>25%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-BAP</td>
<td>Biotechnology Applications of Proteins</td>
<td>ELECTIVE (E)</td>
<td>3</td>
<td>62</td>
<td>263</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>5%</td>
<td>20%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-BIOINF</td>
<td>Bioinformatics</td>
<td>ELECTIVE (E)</td>
<td>3</td>
<td>61</td>
<td>264</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>20%</td>
<td>5%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-MG</td>
<td>Medical Glycobiology</td>
<td>ELECTIVE (E)</td>
<td>3</td>
<td>63</td>
<td>262</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>16.50%</td>
<td>8.50%</td>
<td>6</td>
<td>13.00</td>
</tr>
<tr>
<td>LS3-SN</td>
<td>Systems Neuroscience</td>
<td>ELECTIVE (E)</td>
<td>3</td>
<td>44</td>
<td>281</td>
<td>0</td>
<td>325</td>
<td>75%</td>
<td>12.50%</td>
<td>12.50%</td>
<td>6</td>
<td>13.00</td>
</tr>
</tbody>
</table>

See Y3 table on page 5 (above).
<table>
<thead>
<tr>
<th>Supporting Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>The College’s entry requirements for undergraduate programmes can be found at: www.imperial.ac.uk/study/ug/apply/requirements/</td>
</tr>
<tr>
<td>The College’s Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance</td>
</tr>
</tbody>
</table>