Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Fisher RA, Gollan B, Helaine S, 2017,

    Persistent bacterial infections and persister cells

    , Nature Reviews Microbiology, Vol: 15, Pages: 453-464, ISSN: 1740-1526

    Many bacteria can infect and persist inside their hosts for long periods of time. This can be due to immunosuppression of the host, immune evasion by the pathogen and/or ineffective killing by antibiotics. Bacteria can survive antibiotic treatment if they are resistant or tolerant to a drug. Persisters are a subpopulation of transiently antibiotic-tolerant bacterial cells that are often slow-growing or growth-arrested, and are able to resume growth after a lethal stress. The formation of persister cells establishes phenotypic heterogeneity within a bacterial population and has been hypothesized to be important for increasing the chances of successfully adapting to environmental change. The presence of persister cells can result in the recalcitrance and relapse of persistent bacterial infections, and it has been linked to an increase in the risk of the emergence of antibiotic resistance during treatment. If the mechanisms of the formation and regrowth of these antibiotic-tolerant cells were better understood, it could lead to the development of new approaches for the eradication of persistent bacterial infections. In this Review, we discuss recent developments in our understanding of bacterial persisters and their potential implications for the treatment of persistent infections.

  • Journal article
    Witcomb LA, Czupryna J, Francis KP, Frankel G, Taylor PWet al., 2017,

    Non-invasive three-dimensional imaging of Escherichia coli K1 infection using diffuse light imaging tomography combined with micro-computed tomography

    , Methods, Vol: 127, Pages: 62-68, ISSN: 1046-2023

    In contrast to two-dimensional bioluminescence imaging, three dimensional diffuse light imaging tomography with integrated micro-computed tomography (DLIT-μCT) has the potential to realise spatial variations in infection patterns when imaging experimental animals dosed with derivatives of virulent bacteria carrying bioluminescent reporter genes such as the lux operon from the bacterium Photorhabdus luminescens. The method provides an opportunity to precisely localise the bacterial infection sites within the animal and enables the generation of four-dimensional movies of the infection cycle. Here, we describe the use of the PerkinElmer IVIS SpectrumCT in vivo imaging system to investigate progression of lethal systemic infection in neonatal rats following colonisation of the gastrointestinal tract with the neonatal pathogen Escherichia coli K1. We confirm previous observations that these bacteria stably colonize the colon and small intestine following feeding of the infectious dose from a micropipette; invading bacteria migrate across the gut epithelium into the blood circulation and establish foci of infection in major organs, including the brain. DLIT-μCT revealed novel multiple sites of colonisation within the alimentary canal, including the tongue, oesophagus and stomach, with penetration of the non-keratinised oesophageal epithelial surface, providing strong evidence of a further major site for bacterial dissemination. We highlight technical issues associated with imaging of infections in new born rat pups and show that the whole-body and organ bioburden correlates with disease severity.

  • Journal article
    Tabib-Salazar A, Liu B, Shadrin A, Burchell L, Wang Z, Wang Z, Goren MG, Yosef I, Qimron U, Severinov K, Matthews SJ, Wigneshweraraj Set al., 2017,

    Full shut-off of Escherichia coli RNA-polymerase by T7 phage requires a small phage-encoded DNA-binding protein

    , Nucleic Acids Research, Vol: 45, Pages: 7697-7707, ISSN: 1362-4962

    Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development.

  • Journal article
    Imbert PRC, Louche A, Luizet J-B, Grandjean T, Bigot S, Wood TE, Gagne S, Blanco A, Wunderley L, Terradot L, Woodman P, Garvis S, Filloux A, Guery B, Salcedo SPet al., 2017,

    A Pseudomonas aeruginosa TIR effector mediates immune evasion by targeting UBAP1 and TLR adaptors

    , EMBO JOURNAL, Vol: 36, Pages: 1869-1887, ISSN: 0261-4189
  • Journal article
    Khara JS, Obuobi S, Wang Y, Hamilton MS, Robertson BD, Newton SM, Yang YY, Langford PR, Ee PLRet al., 2017,

    Disruption of drug-resistant biofilms using de novo designed short α-helicalantimicrobial peptides with idealized facial amphiphilicity

    , Acta Biomaterialia, Vol: 57, Pages: 103-114, ISSN: 1878-7568

    The escalating threat of antimicrobial resistance has increased pressure to develop novel therapeutic strategies to tackle drug-resistant infections. Antimicrobial peptides have emerged as a promising class of therapeutics for various systemic and topical clinical applications. In this study, the de novo design of α-helical peptides with idealized facial amphiphilicities, based on an understanding of the pertinent features of protein secondary structures, is presented. Synthetic amphiphiles composed of the backbone sequence (X1Y1Y2X2)n, where X1 and X2 are hydrophobic residues (Leu or Ile or Trp), Y1 and Y2 are cationic residues (Lys), and n is the number repeat units (2 or 2.5 or 3), demonstrated potent broad-spectrum antimicrobial activities against clinical isolates of drug-susceptible and multi-drug resistant bacteria. Live-cell imaging revealed that the most selective peptide, (LKKL)3, promoted rapid permeabilization of bacterial membranes. Importantly, (LKKL)3 not only suppressed biofilm growth, but effectively disrupted mature biofilms after only 2 h of treatment. The peptides (LKKL)3 and (WKKW)3 suppressed the production of LPS-induced pro-inflammatory mediators to levels of unstimulated controls at low micromolar concentrations. Thus, the rational design strategies proposed herein can be implemented to develop potent, selective and multifunctional α-helical peptides to eradicate drug-resistant biofilm-associated infections.

  • Journal article
    Liew N, Mazon Moya MJ, Wierzbicki CJ, Hollinshead M, Dillon MJ, Thornton CR, Ellison A, Cable J, Fisher MC, Mostowy Set al., 2017,

    Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitise non-amphibian vertebrate hosts

    , Nature Communications, Vol: 8, ISSN: 2041-1723

    Aquatic chytrid fungi threaten amphibian biodiversity worldwide owing to their ability to rapidly expand their geographical distributions and to infect a wide range of hosts. Combating this risk requires an understanding of chytrid host range to identify potential reservoirs of infection and to safeguard uninfected regions through enhanced biosecurity. Here we extend our knowledge on the host range of the chytrid Batrachochytrium dendrobatidis by demonstrating infection of a non-amphibian vertebrate host, the zebrafish. We observe dose-dependent mortality and show that chytrid can infect and proliferate on zebrafish tissue. We also show that infection phenotypes (fin erosion, cell apoptosis and muscle degeneration) are direct symptoms of infection. Successful infection is dependent on disrupting the zebrafish microbiome, highlighting that, as is widely found in amphibians, commensal bacteria confer protection against this pathogen. Collectively, our findings greatly expand the limited tool kit available to study pathogenesis and host response to chytrid infection.

  • Journal article
    Hall A, Gollan B, Helaine S, 2017,

    Toxin-antitoxin systems: reversible toxicity

    , Current Opinion in Microbiology, Vol: 36, Pages: 102-110, ISSN: 1879-0364

    Toxin–antitoxin (TA) systems encoded on the plasmids and chromosomes of bacteria are emerging as key players in stress adaptation. In particular, they have been implicated in the induction of persisters non-growing cells that can evade antibiotic exposure. TA toxins operate by a diverse range of mechanisms, either destructive or conservative, leading to the reversible growth arrest of bacterial cells. Whilst the molecular mechanisms of intoxication are now well understood, we still have very little information on how corrupted cells reawaken. Alongside the phenomenon of conditional cooperativity, new evidence suggests that the effects of some TA toxins can be reversed, allowing non-growing cells to be detoxified and growth to resume.

  • Journal article
    McCarthy RR, Mazon-Moya MJ, Moscoso JA, Hao Y, Lam JS, Bordi C, Mostowy S, Filloux Aet al., 2017,

    Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion

    , Nature Microbiology, Vol: 2, ISSN: 2058-5276

    Pseudomonas aeruginosa is a Gram-negative bacterial pathogen associated with acute and chronic infections. The universal cyclic-di-GMP second messenger is instrumental in the switch from a motile lifestyle to resilient biofilm as in the cystic fibrosis lung. The SadC diguanylate cyclase is associated with this patho-adaptive transition. Here, we identify an unrecognized SadC partner, WarA, which we show is a methyltransferase in complex with a putative kinase, WarB. We established that WarA binds to cyclic-di-GMP, which potentiates its methyltransferase activity. Together, WarA and WarB have structural similarities with the bifunctional Escherichia coli lipopolysaccharide (LPS) O antigen regulator WbdD. Strikingly, WarA influences P. aeruginosa O antigen modal distribution and interacts with the LPS biogenesis machinery. LPS is known to modulate the immune response in the host, and by using a zebrafish infection model, we implicate WarA in the ability of P. aeruginosa to evade detection by the host.

  • Journal article
    Pean CB, Schiebler M, Tan S, Sharrock J, Kierdorf K, Brown K, Maserumule M, Menezes S, Platova M, Bronda K, Guermonprez P, Stramer BM, Floto R, Dionne MSet al., 2017,

    Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection

    , Nature Communications, Vol: 8, ISSN: 2041-1723

    Mycobacterium tuberculosis remains a global threat to human health yet the molecular mechanisms regulating immunity remain poorly understood. Cytokines can promote or inhibit mycobacterial survivalinside macrophages, andthe underlying mechanisms represent potential targets for host-directed therapies. Here we show that cytokine-STAT signaling promotesmycobacterial survivalwithin macrophages by deregulating lipid droplets via ATG2 repression. In Drosophilainfected withMycobacterium marinum,mycobacterium-induced STAT activitytriggered by unpaired-familycytokinesreduces Atg2 expression, permittingderegulation of lipid droplets. Increased Atg2expression, or reduced macrophage triglyceride biosynthesis,normalizes lipid deposition in infected phagocytes and reduces numbersof viable intracellular mycobacteria. In human macrophages,addition ofIL-6promotes mycobacterial survival and BCG-induced lipid accumulation by a similar, but probably not identical, mechanism. Our results reveal Atg2regulation as amechanism by which cytokines can control lipid droplet homeostasis and consequently resistance to mycobacterial infectionin Drosophila.

  • Journal article
    Dominguez-Huettinger E, Boon NJ, Clarke TB, Tanaka RJet al., 2017,

    Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment

    , FRONTIERS IN PHYSIOLOGY, Vol: 8, ISSN: 1664-042X

    Streptococcus pneumoniae (Sp) is a commensal bacterium that normally resides on the upper airway epithelium without causing infection. However, factors such as co-infection with influenza virus can impair the complex Sp-host interactions and the subsequent development of many life-threatening infectious and inflammatory diseases, including pneumonia, meningitis or even sepsis. With the increased threat of Sp infection due to the emergence of new antibiotic resistant Sp strains, there is an urgent need for better treatment strategies that effectively prevent progression of disease triggered by Sp infection, minimizing the use of antibiotics. The complexity of the host-pathogen interactions has left the full understanding of underlying mechanisms of Sp-triggered pathogenesis as a challenge, despite its critical importance in the identification of effective treatments. To achieve a systems-level and quantitative understanding of the complex and dynamically-changing host-Sp interactions, here we developed a mechanistic mathematical model describing dynamic interplays between Sp, immune cells, and epithelial tissues, where the host-pathogen interactions initiate. The model serves as a mathematical framework that coherently explains various in vitro and in vitro studies, to which the model parameters were fitted. Our model simulations reproduced the robust homeostatic Sp-host interaction, as well as three qualitatively different pathogenic behaviors: immunological scarring, invasive infection and their combination. Parameter sensitivity and bifurcation analyses of the model identified the processes that are responsible for qualitative transitions from healthy to such pathological behaviors. Our model also predicted that the onset of invasive infection occurs within less than 2 days from transient Sp challenges. This prediction provides arguments in favor of the use of vaccinations, since adaptive immune responses cannot be developed de novo in such a short time. We furthe

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=288&limit=10&page=4&respub-action=search.html Current Millis: 1563694444613 Current Time: Sun Jul 21 08:34:04 BST 2019