Imperial College London

Anthony M J Bull FREng

Faculty of EngineeringDepartment of Bioengineering

Professor of Musculoskeletal Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 5186a.bull Website

 
 
//

Location

 

Uren 514aSir Michael Uren HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

358 results found

Papi E, Bull A, McGregor A, 2019, Spinal segments do not move together predictably during daily activities, Gait and Posture, Vol: 67, Pages: 277-283, ISSN: 0966-6362

Background: Considering the thoracic, lumbar spine or whole spine as rigid segments has been the norm until recent studies highlighted the importance of more detailed modelling. A better understanding of the requirement for spine multi-segmental analysis could guide planning of future studies and avoid missing clinically-relevant information.Research question: This study aims to assess the correlation between adjacent spine segments movement thereby evaluating segmental redundancy in both healthy and participants with low back pain (LBP).Methods: A 3D motion capture system tracked the movement of upper and lower thoracic and lumbar spine segments in twenty healthy and twenty participants with LBP. Tasks performed included walking, sit-to-stand and lifting, repeated 3 times. 3D angular kinematics were calculated for each spine segment. Segmental redundancy was evaluated through cross-correlation (Rxy) analysis of kinematics time series and correlation of range of motion (RROM) of adjacent spine segments.Results: The upper/lower lumbar pairing showed weak correlations in the LBP group for all tasks and anatomical planes (Rxyrange:0.02–0.36) but moderate and strong correlations during walking (Rxy _frontalplane:0.4) and lifting (Rxy _sagittalplane:0.64) in the healthy group. The lower thoracic/upper lumbar pairing had weak correlations for both groups during lifting and sit-to-stand in the frontal plane and for walking (Rxy:0.01) in the sagittal plane only. The upper/lower thoracic pairing had moderate correlations during sit-to-stand in sagittal and transverse plane in patients with LBP (Rxy _sagittalplane:0.41; Rxy _transverse plane:−0.42) but weak in healthy (Rxy _sagittalplane:0.23; Rxy _transverseplane:−0.34); the contrary was observed during lifting.The majority of RROM values (55/72) demonstrated weak correlations.Significance:The results suggest that multi-segmental analysis of the spine is necessary if spine movement characteristics are to be

Journal article

Kedgley AE, Saw TH, Segal NA, Hansen UN, Bull AMJ, Masouros SDet al., 2019, Predicting meniscal tear stability across knee-joint flexion using finite-element analysis, Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 27, Pages: 206-214, ISSN: 0942-2056

Purpose: To analyse the stress distribution through longitudinal and radial meniscal tears in three tear locations in weight-bearing conditions and use it to ascertain the impact of tear location and type on the potential for healing of meniscal tears. Methods: Subject-specific finite-element models of a healthy knee under static loading at 0°, 20°, and 30° knee flexion were developed from unloaded magnetic resonance images and weight-bearing, contrast-enhanced computed tomography images. Simulations were then run after introducing tears into the anterior, posterior, and midsections of the menisci. Results: Absolute differences between the displacements of anterior and posterior segments modelled in the intact state and those quantified from in vivo weight-bearing images were less than 0.5 mm. There were tear-location-dependent differences between hoop stress distributions along the inner and outer surfaces of longitudinal tears; the longitudinal tear surfaces were compressed together to the greatest degree in the lateral meniscus and were most consistently in compression on the midsections of both menisci. Radial tears resulted in an increase in stress at the tear apex and in a consistent small compression of the tear surfaces throughout the flexion range when in the posterior segment of the lateral meniscus. Conclusions: Both the type of meniscal tear and its location within the meniscus influenced the stresses on the tear surfaces under weight bearing. Results agree with clinical observations and suggest reasons for the inverse correlation between longitudinal tear length and healing, the inferior healing ability of medial compared with lateral menisci, and the superior healing ability of radial tears in the posterior segment of the lateral meniscus compared with other radial tears. This study has shown that meniscal tear location in addition to type likely plays a crucial role in dictating the success of non-operative treatment of the menisci. T

Journal article

Smith SHL, Bull A, 2018, Rapid calculation of bespoke body segment parameters using 3D infra-red scanning, Medical Engineering and Physics, Vol: 62, Pages: 36-45, ISSN: 1350-4533

Body segment parameters such as segment mass, centre of mass and moment of inertia, serve as important inputs for musculoskeletal modelling. These parameters are normally derived from regression tables; however, can be poorly representative of the study population with variations of up to 40% recorded between different tables. More recent methods, such as 3D scanning, present a rapid and accurate way to produce subject-specific body segment parameters for use in musculoskeletal models. An infra-red 3D scanner was used to produce full-body scans of 95 males and females. Each was put through an algorithm to calculate bespoke segment mass, centre of mass and inertial properties for each segment of the body, with results comparable to cadaveric data. These methods could be used to increase the specificity of musculoskeletal modelling outputs for individual subjects, improving the accuracy of modelling outputs in biomechanics-related research.

Journal article

Rosenberg N, Bull AMJ, 2018, Application of a mechanobiological algorithm to investigate mechanical mediation of heterotopic bone in trans-femoral amputees, Scientific Reports, Vol: 8, Pages: 1-11, ISSN: 2045-2322

Heterotopic ossification (HO) is the process of bone formation in tissues that are not usually osseous. It occurs in 60% of those with blast-related amputations. HO can result in reduced range of motion, pain, nerve impingement and can affect prosthesis fitting and is caused by a combination of mechanical, biological, local and systemic factors. As with normal bone formation and remodelling, it is expected that heterotopic bone responds to mechanical stimuli and understanding this relationship can give insight into the pathology. The objective of this research was to investigate whether a physiological 2D computational model that considers both mechanical and biological factors can be used to simulate HO in the residual limb of a trans-femoral amputee. The study found that characteristic morphologies of HO were reproduced by adjusting the loading environment. Significant effects were produced by changing the loading direction on the femur; this is potentially associated with different initial surgical interventions such as muscle myodesis. Also, initial treatment such as negative pressure through a dressing was found to change the shape of heterotopic bone.

Journal article

Majed A, Thangarajah T, Krekel P, Nelissen R, Reilly P, Bull A, Emery Ret al., 2018, Simulation of bone-determined range of motion in proximal humeral fractures., Shoulder Elbow, Vol: 10, Pages: 186-191, ISSN: 1758-5732

Background: Predicting the outcome following fractures of the proximal humerus is an important consideration when effectively counselling patients and planning treatment. The purpose of the present study was to analyze different proximal humeral fracture configurations, using a computerized simulation model, aiming to predict the range of motion (ROM). Methods: The computer tomography scans of 79 proximal humeral fractures were analyzed using a customized software system that simulated the range of movement at the glenohumeral joint. Four fracture patterns were investigated: (1) head split fractures; (2) greater tuberosity fractures; (3) lesser tuberosity fractures; and (4) combined tuberosity fractures. Results: Intra-articular fractures had the smallest mean (SE) range of abduction and forward flexion [34.3° (6.6°) and 60.7° (12.4°)]. Isolated displaced greater tuberosity resulted in limited abduction but not forward flexion [75.0° (5.9°) and 118.2° (4.9°)]. Isolated lesser tuberosity fractures displayed a ROM comparable to that of healthy subjects [89.3° (3.3°) and 122.6° (3.4°) versus 102.3° (2.8°) and 96.2° (3.8°)]. The reduced head inclination angle was a relatively strong predictor of a limited range of abduction for all fracture types. Conclusions: The present study describes a novel simulation system used to quantify the bone-determined ROM in proximal humeral fractures and may be a useful adjunct in the diagnostic armamentarium for proximal humeral fractures.

Journal article

Papi E, Bull A, McGregor A, 2018, Is there evidence to use kinematic/kinetic measures clinically in low back pain patients? A systematic review, Clinical Biomechanics, Vol: 55, Pages: 53-64, ISSN: 0268-0033

BackgroundCurrently, there is a widespread reliance on self-reported questionnaires to assess low back pain patients. However, it has been suggested that objective measures of low back pain patients' functional status should be used to aid clinical assessment. The aim of this study is to systematically review which kinematic /kinetic parameters have been used to assess low back pain patients against healthy controls and to propose clinical kinematic/kinetic measures.MethodsPubMed, Embase and Scopus databases were searched for relevant studies. Reference lists of selected studies and hand searches were performed. Studies had to compare people with and without non-specific low back pain while performing functional tasks and report body segment/joint kinematic and/or kinetic data. Two reviewers independently identified relevant papers.FindingsSixty-two studies were included. Common biases identified were lack of assessor blinding and sample size calculation, use of samples of convenience, and poor experimental protocol standardization. Studies had small sample sizes. Range of motion maneuvers were the main task performed (33/62). Kinematic/kinetic data of different individual or combination of body segments/joints were reported among the studies, commonest was to assess the hip joint and lumbar segment motion (13/62). Only one study described full body movement. The most commonly reported outcome was range of motion. Statistically significant differences between controls and low back pain groups were reported for different outcomes among the studies. Moreover, when the same outcome was reported disagreements were noted.InterpretationThe literature to date offers limited and inconsistent evidence of kinematic/kinetic measures in low back pain patients that could be used clinically.

Journal article

Bull A, Mayhew E, Reavley P, Tai N, Taylor Set al., 2018, Paediatric blast injury: challenges and priorities., Lancet Child Adolesc Health, Vol: 2, Pages: 310-311

Journal article

Britzman D, Igah I, Eftaxiopoulou T, Macdonald W, Bull AMJet al., 2018, Tibial osteotomy as a mechanical model of primary osteoarthritis in rats, Scientific Reports, Vol: 8, ISSN: 2045-2322

This study has presented the first purely biomechanical surgical model of osteoarthritis (OA) in rats, which could be more representative of the human primary disease than intra-articular techniques published previously. A surgical tibial osteotomy (TO) was used to induce degenerative cartilage changes in the medial knee of Sprague-Dawley rats. The presence of osteoarthritic changes in the medial knee compartment of the operated animals was evaluated histologically and through analysis of serum carboxy-terminal telepeptides of type II collagen (CTX-II). In-vivo biomechanical analyses were carried out using a musculoskeletal model of the rat hindlimb to evaluate the loading conditions in the knee pre and post-surgically. Qualitative and quantitative medial cartilage degeneration consistent with OA was found in the knees of the operated animals alongside elevated CTX-II levels and increased tibial compressive loading. The potential avoidance of joint inflammation post-surgically, the maintenance of internal joint biomechanics and the ability to quantify the alterations in joint loading should make this model of OA a better candidate for modeling primary forms of the disease in humans.

Journal article

Klemt C, Prinold J, Morgans S, Smith SHL, Nolte D, Reilly P, Bull AMJet al., 2018, Analysis of shoulder compressive and shear forces during functional activities of daily life, Clinical Biomechanics, Vol: 54, Pages: 34-41, ISSN: 0268-0033

Background:Knowledge of forces acting through the glenohumeral joint during activities of daily living is a prerequisite for improving implant design and aiding rehabilitation planning. Existing data are limited by the number of activities performed and, in some cases, the lack of representation of the glenohumeral loading direction, although high shear force components may cause joint dislocation or implant loosening. This study aims to analyse shoulder compression and shear force components during essential functional activities of daily living.Methods:This is a combined modelling and experimental study. Motion data and external forces measured from 25 participants for 26 activities of daily living serve as input into an upper limb musculoskeletal model that quantifies glenohumeral loading.Findings:The shoulder contact force exceeds 50% of the body weight in 10/26 activities of daily living with a maximum contact force of 164% of the body weight (SD 69%) for a sit to stand task. The ratio of glenohumeral shear force component to compression force component exceeds 0.5 in 8/26 functional activities, with maximum ratios for reaching across the body (1.09; SD 0.41) and pick and place an everyday object (0.88; SD 0.36).Interpretation:This study demonstrates substantial loads through the glenohumeral joint during activities of daily living. The ratios of glenohumeral shear force component to compression force component are considerable when high loads act at long lever arms and at high angles of arm elevation. These glenohumeral ratios represent a key component of loading that should be considered when designing implants, surgical procedures, or rehabilitation protocols.

Journal article

Karunaratne A, Li S, Bull A, 2018, Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate, Scientific Reports, Vol: 8, ISSN: 2045-2322

Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here we investigate the nano scale mechanical property changes of human ligament using mechanical testing combined with synchrotron X-ray diffraction. With increasing strain rate, we observe a significant increase in fibril modulus and a reduction of fibril to tissue strain ratio, revealing that tissue-level stiffening is mainly due to the stiffening of collagen fibrils. Further, we show that the reduction in fibril deformation at higher strain rates is due to reduced molecular strain and fibrillar gaps, and is associated with rapid disruption of matrix-fibril bonding. This reduction in number of interfibrillar cross-links explains the changes in fibril strain; this is verified through computational modelling.

Journal article

Rosenberg N, Bull AMJ, 2018, Simulating localised cellular inflammation and substrate properties in a strain energy density based bone remodelling algorithm for use in modelling trauma, Computer Methods in Biomechanics and Biomedical Engineering, Vol: 21, Pages: 208-218, ISSN: 1025-5842

Bone responds to mechanical stimulus and a range of pre-existing finite element models have been suggested to reproduce the internal physiological structure of bone. Inflammation effects are not included in these models, yet inflammation is a key component of bone repair in trauma. Therefore, a model is proposed and tested here that extends these methods to include parameters that could be considered to represent the behaviour of bone remodelling when influenced by inflammation. The proposed model regulates remodelling based on findings from recent studies into the nature of heterotopic ossification, the formation of heterotopic bone, which have revealed information about the nature of bone after high levels of trauma. These parameters include consideration of the distance from the zone of trauma, the density of mesenchymal stem cells, and substrate stiffness as a trigger for cells becoming osteogenic. The method is tested on a two-dimensional plate model and shows that the new extended algorithm can produce a range of structures depending on inputs that could be used in the future to replicate physiological scenarios.

Journal article

Czasche MB, Goodwin JE, Bull AMJ, Cleather DJet al., 2018, Effects of an 8-week strength training intervention on tibiofemoral joint loading during landing: a cohort study., BMJ Open Sport and Exercise Medicine, Vol: 4, ISSN: 2055-7647

Objectives: To use a musculoskeletal model of the lower limb to evaluate the effect of a strength training intervention on the muscle and joint contact forces experienced by untrained women during landing. Methods: Sixteen untrained women between 18 and 28 years participated in this cohort study, split equally between intervention and control groups. The intervention group trained for 8 weeks targeting improvements in posterior leg strength. The mechanics of bilateral and unilateral drop landings from a 30 cm platform were recorded preintervention and postintervention, as was the isometric strength of the lower limb during a hip extension test. The internal muscle and joint contact forces were calculated using FreeBody, a musculoskeletal model. Results: The strength of the intervention group increased by an average of 35% (P<0.05; pre: 133±36 n, post: 180±39 n), whereas the control group showed no change (pre: 152±36 n, post: 157±46 n). There were only small changes from pre-test to post-test in the kinematics and ground reaction forces during landing that were not statistically significant. Both groups exhibited a post-test increase in gluteal muscle force during landing and a lateral to medial shift in tibiofemoral joint loading in both landings. However, the magnitude of the increase in gluteal force and lateral to medial shift was significantly greater in the intervention group. Conclusion: Strength training can promote a lateral to medial shift in tibiofemoral force (mediated by an increase in gluteal force) that is consistent with a reduction in valgus loading. This in turn could help prevent injuries that are due to abnormal knee loading such as anterior cruciate ligament ruptures, patellar dislocation and patellofemoral pain.

Journal article

Azmi NL, Ding Z, Xu R, Bull AMJet al., 2018, Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects, PLoS ONE, Vol: 13, ISSN: 1932-6203

The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.

Journal article

Klemt C, Nolte D, Grigoriadis G, Di Federico E, Reilly P, Bull AMJet al., 2017, The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis, Computer Methods in Biomechanics and Biomedical Engineering, Vol: 20, Pages: 1613-1622, ISSN: 1025-5842

Journal article

Pearce AP, Bull AMJ, Clasper JC, 2017, Re: Mediastinal injury is the strongest predictor of mortality in mounted blast amongst UK deployed forces: Methodological issues, Injury: International Journal of the Care of the Injured, Vol: 48, Pages: 2610-2610, ISSN: 0020-1383

Journal article

Bull AMJ, Pandis P, 2017, A low cost 3D laser surface scanning approach for defining body segment parameters, Proceedings of the Institution of Mechanical Engineers Part H - Journal of Engineering in Medicine, Vol: 231, Pages: 1064-1068, ISSN: 0954-4119

Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.

Journal article

Junaid S, Sanghavi S, Anglin C, Bull A, Emery R, Amis AA, Hansen Uet al., 2017, Treatment of the Fixation Surface Improves Glenoid Prosthesis Longevity in vitro., Journal of Biomechanics, Vol: 61, Pages: 81-87, ISSN: 0021-9290

Many commercial cemented glenoid components claim superior fixation designs and increased survivability. However, both research and clinical studies have shown conflicting results and it is unclear whether these design variations do improve loosening rates. Part of the difficulty in investigating fixation failure is the inability to directly observe the fixation interface, a problem addressed in this study by using a novel experimental set-up. Cyclic loading-displacement tests were carried out on 60 custom-made glenoid prostheses implanted into a bone substitute. Design parameters investigated included treatment of the fixation surface of the component resulting in different levels of back-surface roughness, flat-back versus curved-back, keel versus peg and more versus less conforming implants. Visually-observed failure and ASTM-recommended rim-displacements were recorded throughout testing to investigate fixation failure and if rim displacement is an appropriate measure of loosening. Roughening the implant back (Ra>3µm) improved resistance to failure (P<0.005) by an order of magnitude with the rough and smooth groups failing at 8712±5584 cycles (mean±SD) and 1080±1197 cycles, respectively. All other design parameters had no statistically significant effect on the number of cycles to failure. All implants failed inferiorly and 95% (57/60) at the implant/cement interface. Rim-displacement correlated with visually observed failure. The most important effect was that of roughening the implant, which strengthened the polyethylene-cement interface. Rim-displacement can be used as an indicator of fixation failure, but the sensitivity was insufficient to capture subtle effects. LEVEL OF EVIDENCE: Basic Science Study, Biomechanical Analysis.

Journal article

Pearce AP, Bull AMJ, Clasper JC, 2017, Mediastinal injury is the strongest predictor of mortality in mounted blast amongst UK deployed forces., Injury, Vol: 48, Pages: 1900-1905, ISSN: 0020-1383

BACKGROUND: Blast injury has been the most common cause of morbidity and mortality encountered by UK forces during recent conflicts. Injuries sustained by blast are categorised by the injuring component of the explosion and depend upon physical surroundings. Previous work has established that head injuries and intra cavity haemorrhage are the major causes of death following exposure to under body (mounted) blast but has yet to explore the precise nature of these torso injuries nor the effect of particular injuries upon survival. This study examines the patterns of torso injury within the mounted blast environment in order to understand the effect of these injuries upon survivability. METHODS: This retrospective study examined the UK Joint Theatre Trauma Registry to determine precise injury patterns of mounted blast casualties within a 13year period of UK military deployments. Survival rates of individual injuries were compared and a multivariable logistic regression model was developed in order to assess the effect that each injury had upon likelihood of death. RESULTS: 426 mounted casualties were reviewed of whom 129 did not survive. Median NISS and ISS for non-survivors was found to be 75. Torso injuries were significantly more common amongst non-survivors than survivors and high case fatality rates were associated with all haemorrhagic torso injuries. Multivariable analysis shows that mediastinal injuries have the largest odds ratio for mortality (20.4) followed by lung laceration and head injury. CONCLUSIONS: Non-compressible torso haemorrhage is associated with mortality amongst mounted blast. Of this group, mediastinal injury is the strongest predictor of death and could be considered as a surrogate marker of lethality. Future work to link blast loading characteristics with specific injury patterns will inform the design of mitigating strategies in order to improve survivability of underbody blast.

Journal article

Panagiotakis E, Mok K-M, Fong DT-P, Bull AMJet al., 2017, Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games: Understanding when, how and why ligament failure occurs, Journal of Science and Medicine in Sport, Vol: 20, Pages: 1057-1061, ISSN: 1440-2440

OBJECTIVES: Ankle sprains due to landing on an opponent's foot are common in basketball. There is no analysis to date that provides a quantification of this injury mechanism. The aim of this study was to quantify the kinematics of this specific injury mechanism and relate this to lateral ankle ligament biomechanics. DESIGN: Case series. METHODS: The model-based image-matching technique was used to quantify calcaneo-fibular-talar kinematics during four ankle inversion sprain injury incidents in televised NBA basketball games. The four incidents follow the same injury pattern in which the players of interest step onto an opponent's foot with significant inversion and a diagnosed ankle injury. A geometric analysis was performed to calculate the in vivo ligament strains and strain rates for the anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL). RESULTS: Despite the controlled selection of cases, the results show that there are two distinct injury mechanisms: sudden inversion and internal rotation with low levels of plantarflexion; and a similar mechanism without internal rotation. The first of these mechanisms results in high ATFL and CFL strains, whereas the second of these strains the CFL in isolation. CONCLUSIONS: The injury mechanism combined with measures of the ligament injury in terms of percentage of strain to failure correlate directly with the severity of the injury quantified by return-to-sport. The opportunity to control excessive internal rotation through proprioceptive training and/or prophylactic footwear or bracing could be utilised to reduce the severity of common ankle injuries in basketball.

Journal article

Ramasamy A, masouros S, grigoriadis, 2017, The lower extremities: Computational Modelling Attempts to Predict Injury, Military Injury Biomechanics The Cause and Prevention of Impact Injuries, Publisher: CRC Press, ISBN: 9781498742825

An international team of experts have been brought together to examine and review the topics. The book is intended for researchers, postgraduate students and others working or studying defence and impact injuries.

Book chapter

Fratini A, Bonci T, Bull AM, 2016, Whole body vibration treatments in postmenopausal women can improve bone mineral density: results of a stimulus focussed meta-analysis., PLOS One, Vol: 11, ISSN: 1932-6203

Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect.The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes.Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g., amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body a

Journal article

Rane L, Bull AMJ, 2016, Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking, Arthritis Research & Therapy, Vol: 18, ISSN: 1478-6354

Background: By altering muscular activation patterns, internal forces acting on the human body during dynamic activity may be manipulated. The magnitude of one of these forces, the medial knee joint reaction force (JRF), is associated with disease progression in patients with early osteoarthritis (OA), suggesting utility in its targeted reduction. Increased activation of gluteus medius has been suggested as a means to achieve this. Methods: Motion capture equipment and forceplate transducers were used to obtain kinematic and kinetic data for 15 healthy subjects during level walking, with and without the application of functional electrical stimulation (FES) to gluteus medius. Musculoskeletal modelling was employed to determine the medial knee JRF during stance phase for each trial. A further computer simulation of increased gluteus medius activation was performed using data from normal walking trials by a manipulation of modelling parameters. Relationships between changes in the medial knee JRF, kinematics and ground reaction force were evaluated. Results: In simulations of increased gluteus medius activity, the total impulse of the medial knee JRF was reduced by 4.2% (p=0.003) compared to control. With real-world application of FES to the muscle, the magnitude of this reduction increased to 12.5% (p<0.001), with significant inter-subject variation. Across subjects, the magnitude of reduction correlated strongly with kinematic (p<0.001) and kinetic (p<0.001) correlates of gluteus medius activity. Conclusions: The results support a major role for gluteus medius in the protection of the knee for patients with OA, establishing the muscle’s central importance to effective therapeutic regimes. FES may be used to achieve increased activation in order to mitigate distal internal loads, and much of the benefit of this increase can be attributed to resulting changes in kinematic parameters and the ground reaction force. The utility of interventions targeting g

Journal article

Cheong VS, Karunaratne A, Amis AA, Bull AMJet al., 2016, Strain rate dependency of fractures of immature bone, Journal of the Mechanical Behavior of Biomedical Materials, Vol: 66, Pages: 68-76, ISSN: 1751-6161

Radiological features alone do not allow the discrimination between accidental paediatric long bone fractures or those sustained by child abuse. Therefore, there is a clinical need to elucidate the mechanisms behind each fracture to provide a forensic biomechanical tool for the vulnerable child. Four-point bending and torsional loading tests were conducted at more than one strain rate for the first time on immature bone, using a specimen-specific alignment system, to characterise structural behaviour at para-physiological strain rates. The bones behaved linearly to the point of fracture in all cases and transverse, oblique, and spiral fracture patterns were consistently reproduced. The results showed that there was a significant difference in bending stiffness between transverse and oblique fractures in four-point bending. For torsional loading, spiral fractures were produced in all cases with a significant difference in the energy and obliquity to fracture. Multiple or comminuted fractures were seen only in bones that failed at a higher stress or torque for both loading types. This demonstrates the differentiation of fracture patterns at different strain rates for the first time for immature bones, which may be used to match the case history given of a child and the fracture produced.

Journal article

Grigoriadis G, Carpanen D, Bull AMJ, Masouros SDet al., 2016, A finite element model of the foot and ankle for prediction of injury in under-body blast, International Research Council on the Biomechanics of Injury, Publisher: IRCOBI, Pages: 457-458, ISSN: 2235-3151

Conference paper

Nolte D, Tsang CK, Zhang KY, Ding Z, Kedgley AE, Bull AMJet al., 2016, Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models, Journal of Biomechanics, Vol: 49, Pages: 3576-3581, ISSN: 1873-2380

Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank – up to 26 mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods.

Journal article

Grigoriadis G, Newell N, Carpanen D, Christou A, Bull AMJ, Masouros Set al., 2016, Material properties of the heel fat pad across strain rates, Journal of the Mechanical Behavior of Biomedical Materials, Vol: 65, Pages: 398-407, ISSN: 1751-6161

The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150 s−1. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast.

Journal article

Southgate DFL, Childs PRN, Bull AMJ, 2016, Introduction, ISBN: 9781786340429

Book

Eftaxiopoulou T, Chaillot V, Bull AMJ, 2016, Interaction between equipment and athlete performance in racket sports: A cricketing story, Sports Innovation, Technology and Research, Pages: 43-62, ISBN: 9781786340412

Book chapter

Greenberg N, Bull A, Wessely S, 2016, Chilcot: Physical and mental legacy of Iraq war on UK service personnel, BMJ, Vol: 354, ISSN: 0959-8138

Journal article

Barnett-Vanes A, Sharrock A, Eftaxiopoulou T, Arora H, Macdonald W, Bull AM, Rankin SMet al., 2016, CD43Lo classical monocytes participate in the cellular immune response to isolated primary blast lung injury, Journal of Trauma and Acute Care Surgery, Vol: 81, Pages: 500-511, ISSN: 2163-0763

BACKGROUND: Understanding of the cellular immune response to primary blast lung injury (PBLI) is limited, with only the neutrophil response well documented. Moreover, its impact on the immune response in distal organs remains poorly understood. In this study, a rodent model of isolated primary blast injury was used to investigate the acute cellular immune response to isolated PBLI in the circulation and lung; including the monocyte response, and investigate distal sub-acute immune effects in the spleen and liver 6hr after injury. METHODS: Rats were subjected to a shock wave (~135kPa overpressure, 2ms duration) inducing PBLI or sham procedure. Rat physiology was monitored and at 1, 3 and 6 hr thereafter blood, lung, and Broncho-alveolar lavage fluid (BALF) were collected and analysed by flow cytometry (FCM), ELISA and Histology. In addition, at 6hr spleen and liver were collected and analysed by FCM. RESULTS: Lung histology confirmed pulmonary barotrauma and inflammation. This was associated with rises in CXCL-1, IL-6, TNF-α and albumin protein in the BALF. Significant acute increases in blood and lung neutrophils and CD43Lo/His48Hi (classical) monocytes/macrophages were detected. No significant changes were seen in blood or lung 'non-classical' monocyte, NK, B or T Cells. In the BALF, significant increases were seen in neutrophils, CD43Lo monocyte-macrophages and MCP-1. Significant increases in CD43Lo and Hi monocyte-macrophages were detected in the spleen at 6hr. CONCLUSIONS: This study reveals a robust and selective response of CD43Lo/His48Hi (classical) monocytes - in addition to neutrophils - in blood and lung tissue following PBLI. An increase in monocyte-macrophages was also observed in the spleen at 6hr. This profile of immune cells in the blood and BALF could present a new research tool for translational studies seeking to monitor, assess or attenuate the immune response in blast injured patients. EVIDENCE: Experimental laboratory study.WC- 300.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00157574&limit=30&person=true&page=4&respub-action=search.html