Imperial College London

DrAmbroseTaylor

Faculty of EngineeringDepartment of Mechanical Engineering

Reader in Materials Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 7149a.c.taylor Website

 
 
//

Assistant

 

Miss Valerie Crawford +44 (0)20 7594 7083

 
//

Location

 

515City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Summary

Ambrose is a Reader in Materials Engineering, and is the leader of the ‘Nanomaterials’ group which specialises in the characterisation and modelling of particle-modified thermoset polymers. He has researched the impact and durability performance of rubber-toughened structural epoxy adhesives, and quantitatively predicted the lifetime of adhesive joints in fatigue. His current work is investigating the structure/property relationship of thermoset/inorganic hybrids, using epoxy, acrylic and cyanate ester polymers. He also has interests in using other nanomodifiers (e.g. layered silicates, carbon nanotubes and silica nanoparticles) as tougheners for thermosets. He is also investigating the microstructure and properties of epoxy adhesives modified with combinations of micro- and nanoparticles. The applications of these materials include structural adhesives, coatings and as the matrices of fibre-composite materials. He has held a prestigious Royal Academy of Engineering Post-doctoral Research Fellowship and a Royal Society Mercer Award for Innovation.

Research

Ambrose heads the Nanomaterials Research activity.

The Nanomaterials group is concerned with measuring, modelling and predicting the performance of polymers and composites modified with nanoparticles, and with the formation of nanostructure materials. There is special emphasis on the fracture performance of these materials.

For more information, visit www.imperial.ac.uk/MEnanomaterials

Research SPONSORS

AHRC, Alstom, Areva, Beckers, City & Guilds College Association, CEC, Cytec, Emerald Performance Materials, EPSRC, Evonik Hanse, Henkel, ICI, Malaysian Government, Nanoresins, Noveon, Region Rhone-Alpes, Rolls Royce, Royal Academy of Engineering, Royal Society, Trinidad & Tobago Government, TSB, US Government, Victoria & Albert Museum

Publications

Journals

Taylor AC, Awang Ngah S, Toughening performance of glass fibre composites with core-shell rubber and silica nanoparticle modified matrices, Composites Part a - Applied Science and Manufacturing, ISSN:1359-835X

Carolan D, Ivankovic A, Kinloch AJ, et al., 2017, Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices, Journal of Materials Science, Vol:52, ISSN:0022-2461, Pages:1767-1788

Hanhan I, Selimov A, Carolan D, et al., 2017, Quantifying Alumina Nanoparticle Dispersion in Hybrid Carbon Fiber Composites Using Photoluminescent Spectroscopy, Applied Spectroscopy, Vol:71, ISSN:0003-7028, Pages:258-266

Keller A, Chong HM, Taylor AC, et al., 2017, Core-shell rubber nanoparticle reinforcement and processing of high toughness fast-curing epoxy composites, Composites Science and Technology, Vol:147, ISSN:0266-3538, Pages:78-88

Olowojoba GB, Kopsidas S, Eslava S, et al., 2017, A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide, Journal of Materials Science, Vol:52, ISSN:0022-2461, Pages:7323-7344

More Publications