Imperial College London

ProfessorAbbasDehghan

Faculty of MedicineSchool of Public Health

Professor in Molecular Epidemiology
 
 
 
//

Contact

 

+44 (0)20 7594 3347a.dehghan CV

 
 
//

Location

 

Sir Michael Uren HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

403 results found

Walton E, Hemani G, Dehghan A, Relton C, Smith GDet al., 2018, Systematic evaluation of the causal relationship between DNA methylation and C-reactive protein

<jats:title>Abstract</jats:title><jats:p>Elevated C-reactive protein (CRP) levels are an indicator of chronic low-grade inflammation. Epigenetic modifications, including DNA methylation, have been linked to CRP, but systematic investigations into potential underlying causal relationships have not yet been performed.</jats:p><jats:p>We systematically performed two-sample Mendelian randomization and colocalization analysis between CRP and DNA methylation levels, using GWAS and EWAS summary statistics as well as individual level data available through the ARIES subset of the Avon Longitudinal Study of Parents and Children (ALSPAC; 1,616 participants).</jats:p><jats:p>We found no convincing examples for a causal association from CRP to DNA methylation. Testing for the reverse (a putative causal effect of DNA methylation on CRP), we found three CpG sites that had shared genetic effects with CRP levels after correcting for multiple testing (cg26470501 (offspring: beta=0.07 [0.03, 0.11]; mothers: beta=0.08 [0.04, 0.13]), cg27023597 (offspring: beta=0.18 [0.10, 0.25]; mothers: beta=0.20 [0.12, 0.28]) and cg12054453 (offspring: beta=0.09 [0.05, 0.13])) influenced CRP levels. For all three CpG sites, linked to the genes <jats:italic>TMEM49, BCL3</jats:italic> and <jats:italic>MIR21</jats:italic>, increased methylation related to an increase in CRP levels. Two CpGs (cg27023597 and cg12054453) were influenced by SNPs in genomic regions that had not previously been implicated in CRP GWASs, implicating them as novel genetic associations.</jats:p><jats:p>Overall, our findings suggest that CRP associations with DNA methylation are more likely to be driven by either confounding or causal influences of DNA methylation on CRP levels, rather than the reverse.</jats:p>

Working paper

Dhana K, Braun KVE, Nano J, Voortman T, Demerath EW, Guan W, Fornage M, van Meurs JBJ, Uitterlinden AG, Hofman A, Franco OH, Dehghan Aet al., 2018, An Epigenome-Wide Association Study of Obesity-Related Traits., Am J Epidemiol, Vol: 187, Pages: 1662-1669

We conducted an epigenome-wide association study on obesity-related traits. We used data from 2 prospective, population-based cohort studies: the Rotterdam Study (RS) (2006-2013) and the Atherosclerosis Risk in Communities (ARIC) Study (1990-1992). We used the RS (n = 1,450) as the discovery panel and the ARIC Study (n = 2,097) as the replication panel. Linear mixed-effect models were used to assess the cross-sectional associations between genome-wide DNA methylation in leukocytes and body mass index (BMI) and waist circumference (WC), adjusting for sex, age, smoking, leukocyte proportions, array number, and position on array. The latter 2 variables were modeled as random effects. Fourteen 5'-C-phosphate-G-3' (CpG) sites were associated with BMI and 26 CpG sites with WC in the RS after Bonferroni correction (P < 1.07 × 10-7), of which 12 and 13 CpGs were replicated in the ARIC Study, respectively. The most significant novel CpGs were located on the Musashi RNA binding protein 2 gene (MSI2; cg21139312) and the leucyl-tRNA synthetase 2, mitochondrial gene (LARS2; cg18030453) and were associated with both BMI and WC. CpGs at BRDT, PSMD1, IFI44L, MAP1A, and MAP3K5 were associated with BMI. CpGs at LGALS3BP, MAP2K3, DHCR24, CPSF4L, and TMEM49 were associated with WC. We report novel associations between methylation at MSI2 and LARS2 and obesity-related traits. These results provide further insight into mechanisms underlying obesity-related traits, which can enable identification of new biomarkers in obesity-related chronic diseases.

Journal article

Aslibekyan S, Agha G, Colicino E, Do AN, Lahti J, Ligthart S, Marioni RE, Marzi C, Mendelson MM, Tanaka T, Wielscher M, Absher DM, Ferrucci L, Franco OH, Gieger C, Grallert H, Hernandez D, Huan T, Iurato S, Joehanes R, Just AC, Kunze S, Lin H, Liu C, Meigs JB, van Meurs JBJ, Moore AZ, Peters A, Prokisch H, Raikkonen K, Rathmann W, Roden M, Schramm K, Schwartz JD, Starr JM, Uitterlinden AG, Vokonas P, Waldenberger M, Yao C, Zhi D, Baccarelli AA, Bandinelli S, Deary IJ, Dehghan A, Eriksson J, Herder C, Jarvelin M-R, Levy D, Arnett DKet al., 2018, Association of methylation signals with incident coronary heart disease in an epigenome-wide assessment of circulating tumor necrosis factor alpha, JAMA CARDIOLOGY, Vol: 3, Pages: 463-472, ISSN: 2380-6583

Importance Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine with manifold consequences for mammalian pathophysiology, including cardiovascular disease. A deeper understanding of TNF-α biology may enhance treatment precision.Objective To conduct an epigenome-wide analysis of blood-derived DNA methylation and TNF-α levels and to assess the clinical relevance of findings.Design, Setting, and Participants This meta-analysis assessed epigenome-wide associations in circulating TNF-α concentrations from 5 cohort studies and 1 interventional trial, with replication in 3 additional cohort studies. Follow-up analyses investigated associations of identified methylation loci with gene expression and incident coronary heart disease; this meta-analysis included 11 461 participants who experienced 1895 coronary events.Exposures Circulating TNF-α concentration.Main Outcomes and Measures DNA methylation at approximately 450 000 loci, neighboring DNA sequence variation, gene expression, and incident coronary heart disease.Results The discovery cohort included 4794 participants, and the replication study included 816 participants (overall mean [SD] age, 60.7 [8.5] years). In the discovery stage, circulating TNF-α levels were associated with methylation of 7 cytosine-phosphate-guanine (CpG) sites, 3 of which were located in or near DTX3L-PARP9 at cg00959259 (β [SE] = −0.01 [0.003]; P = 7.36 × 10−8), cg08122652 (β [SE] = −0.008 [0.002]; P = 2.24 × 10−7), and cg22930808(β [SE] = −0.01 [0.002]; P = 6.92 × 10−8); NLRC5 at cg16411857 (β [SE] = −0.01 [0.002]; P = 2.14 × 10−13) and cg07839457 (β [SE] = −0.02 [0.003]; P = 6.31 ×

Journal article

Zhou B, Bentham J, Di Cesare M, Bixby HRH, Danaei G, Hajifathalian K, Taddei C, Carrillo-Larco R, Khatibzadeh S, Lugero C, Peykari N, Zhang WZ, Bennett J, Bilano V, Stevens G, Riley L, Cowan M, Chen Z, Hambleton I, Jackson RT, Kengne A-P, Khang Y-H, Laxmaiah A, Liu J, Malekzadeh R, Neuhauser H, Soric M, Starc G, Sundstrom J, Woodward M, Ezzati Met al., 2018, Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: a pooled analysis of 1,018 population-based measurement studies with 88.6 million participants, International Journal of Epidemiology, Vol: 47, Pages: 872-883i, ISSN: 1464-3685

BackgroundChange in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure.MethodsWe pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20–29 years to 70–79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probit-transformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure.ResultsIn 2005–16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the high-income Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association.ConclusionsChange in mean bloo

Journal article

Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, Hagenaars SP, Ritchie SJ, Marioni RE, Fawns-Ritchie C, Liewald DCM, Okely JA, Ahola-Olli AV, Barnes CLK, Bertram L, Bis JC, Burdick KE, Christoforou A, DeRosse P, Djurovic S, Espeseth T, Giakoumaki S, Giddaluru S, Gustavson DE, Hayward C, Hofer E, Ikram MA, Karlsson R, Knowles E, Lahti J, Leber M, Li S, Mather KA, Melle I, Morris D, Oldmeadow C, Palviainen T, Payton A, Pazoki R, Petrovic K, Reynolds CA, Sargurupremraj M, Scholz M, Smith JA, Smith AV, Terzikhan N, Thalamuthu A, Trompet S, van der Lee SJ, Ware EB, Windham BG, Wright MJ, Yang J, Yu J, Ames D, Amin N, Amouyel P, Andreassen OA, Armstrong NJ, Assareh AA, Attia JR, Attix D, Avramopoulos D, Bennett DA, Boehmer AC, Boyle PA, Brodaty H, Campbell H, Cannon TD, Cirulli ET, Congdon E, Conley ED, Corley J, Cox SR, Dale AM, Dehghan A, Dick D, Dickinson D, Eriksson JG, Evangelou E, Faul JD, Ford I, Freimer NA, Gao H, Giegling I, Gillespie NA, Gordon SD, Gottesman RF, Griswold ME, Gudnason V, Harris TB, Hartmann AM, Hatzimanolis A, Heiss G, Holliday EG, Joshi PK, Kahonen M, Kardia SLR, Karlsson I, Kleineidam L, Knopman DS, Kochan NA, Konte B, Kwok JB, Le Hellard S, Lee T, Lehtimaki T, Li S-C, Liu T, Koini M, London E, Longstreth WT, Lopez OL, Loukola A, Luck T, Lundervold AJ, Lundquist A, Lyytikainen L-P, Martin NG, Montgomery GW, Murray AD, Need AC, Noordam R, Nyberg L, Ollier W, Papenberg G, Pattie A, Polasek O, Poldrack RA, Psaty BM, Reppermund S, Riedel-Heller SG, Rose RJ, Rotter JI, Roussos P, Rovio SP, Saba Y, Sabb FW, Sachdev PS, Satizabal CL, Schmid M, Scott RJ, Scult MA, Simino J, Slagboom PE, Smyrnis N, Soumare A, Stefanis NC, Stott DJ, Straub RE, Sundet K, Taylor AM, Taylor KD, Tzoulaki I, Tzourio C, Uitterlinden A, Vitart V, Voineskos AN, Kaprio J, Wagner M, Wagner H, Weinhold L, Wen KH, Widen E, Yang Q, Zhao W, Adams HHH, Arking DE, Bilder RM, Bitsios P, Boerwinkle E, Chiba-Falek O, Corvin A, De Jager PL, Debette S, Donohoe G, Elliott P, Fitzpet al., 2018, Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function, Nature Communications, Vol: 9, ISSN: 2041-1723

General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16–102) and find 148 genome-wide significant independent loci (P < 5 × 10−8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.

Journal article

Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, Gan W, Kitajima H, Taliun D, Rayner NW, Guo X, Lu Y, Li M, Jensen RA, Hu Y, Huo S, Lohman KK, Zhang W, Cook JP, Prins BP, Flannick J, Grarup N, Trubetskoy VV, Kravic J, Kim YJ, Rybin DV, Yaghootkar H, Mueller-Nurasyid M, Meidtner K, Li-Gao R, Varga TV, Marten J, Li J, Smith AV, An P, Ligthart S, Gustafsson S, Malerba G, Demirkan A, Tajes JF, Steinthorsdottir V, Wuttke M, Lecoeur C, Preuss M, Bielak LF, Graff M, Highland HM, Justice AE, Liu DJ, Marouli E, Peloso GM, Warren HR, Afaq S, Afzal S, Ahlqvist E, Almgren P, Amin N, Bang LB, Bertoni AG, Bombieri C, Bork-Jensen J, Brandslund I, Brody JA, Burtt NP, Canouil M, Chen Y-DI, Cho YS, Christensen C, Eastwood SV, Eckardt K-U, Fischer K, Gambaro G, Giedraitis V, Grove ML, de Haan HG, Hackinger S, Hai Y, Han S, Tybjaerg-Hansen A, Hivert M-F, Isomaa B, Jager S, Jorgensen ME, Jorgensen T, Karajamaki A, Kim B-J, Kim SS, Koistinen HA, Kovacs P, Kriebel J, Kronenberg F, Lall K, Lange LA, Lee J-J, Lehne B, Li H, Lin K-H, Linneberg A, Liu C-T, Liu J, Loh M, Magi R, Mamakou V, McKean-Cowdin R, Nadkarni G, Neville M, Nielsen SF, Ntalla I, Peyser PA, Rathmann W, Rice K, Rich SS, Rode L, Rolandsson O, Schonherr S, Selvin E, Small KS, Stancakova A, Surendran P, Taylor KD, Teslovich TM, Thorand B, Thorleifsson G, Tin A, Tonjes A, Varbo A, Witte DR, Wood AR, Yajnik P, Yao J, Yengo L, Young R, Amouyel P, Boeing H, Boerwinkle E, Bottinger EP, Chowdhury R, Collins FS, Dedoussis G, Dehghan A, Deloukas P, Ferrario MM, Ferrieres J, Florez JC, Frossard P, Gudnason V, Harris TB, Heckbert SR, Howson JMM, Ingelsson M, Kathiresan S, Kee F, Kuusisto J, Langenberg C, Launer LJ, Lindgren CM, Mannisto S, Meitinger T, Melander O, Mohlke KL, Moitry M, Morris AD, Murray AD, de Mutsert R, Orho-Melander M, Owen KR, Perola M, Peters A, Province MA, Rasheed A, Ridker PM, Rivadineira F, Rosendaal FR, Rosengren AH, Salomaa V, Sheu WH-H, Sladek R, Smith BH, Strauch K, Uitterlinden AG, Varma R, Wilet al., 2018, Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes, Nature Genetics, Vol: 50, Pages: 559-559, ISSN: 1061-4036

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

Journal article

Pazoki R, Dehghan A, Evangelou E, Warren H, Gao H, Caulfield M, Elliott P, Tzoulaki Iet al., 2018, Genetic predisposition to high blood pressure and lifestyle factors. Associations with midlife blood pressure levels and cardiovascular events, Circulation, Vol: 137, Pages: 653-661, ISSN: 0009-7322

Background:High blood pressure (BP) is a major risk factor for cardiovascular diseases (CVDs), the leading cause of mortality worldwide. Both heritable and lifestyle risk factors contribute to elevated BP levels. We aimed to investigate the extent to which lifestyle factors could offset the effect of an adverse BP genetic profile and its effect on CVD risk.Methods:We constructed a genetic risk score for high BP by using 314 published BP loci in 277 005 individuals without previous CVD from the UK Biobank study, a prospective cohort of individuals aged 40 to 69 years, with a median of 6.11 years of follow-up. We scored participants according to their lifestyle factors including body mass index, healthy diet, sedentary lifestyle, alcohol consumption, smoking, and urinary sodium excretion levels measured at recruitment. We examined the association between tertiles of genetic risk and tertiles of lifestyle score with BP levels and incident CVD by using linear regression and Cox regression models, respectively.Results:Healthy lifestyle score was strongly associated with BP (P<10–320) for systolic and diastolic BP and CVD events regardless of the underlying BP genetic risk. Participants with a favorable in comparison with an unfavorable lifestyle (bottom versus top tertile lifestyle score) had 4.9, 4.3, and 4.1 mm Hg lower systolic BP in low, middle, and high genetic risk groups, respectively (P for interaction=0.0006). Similarly, favorable in comparison with unfavorable lifestyle showed 30%, 33%, and 31% lower risk of CVD among participants in low, middle, and high genetic risk groups, respectively (P for interaction=0.99).Conclusions:Our data further support population-wide efforts to lower BP in the population via lifestyle modification. The advantages and disadvantages of disclosing genetic predisposition to high BP for risk stratification needs careful evaluation.

Journal article

Ghanbari M, Peters MJ, De Vries PS, Boer CG, Van Rooij JGJ, Lee YC, Kumar V, Uitterlinden AG, Ikram MA, Wijmenga C, Ordovas JM, Smith CE, Van Meurs JBJ, Erkeland SJ, Franco OH, Dehghan Aet al., 2018, A systematic analysis highlights multiple long non-coding RNAs associated with cardiometabolic disorders, Journal of Human Genetics, Vol: 63, Pages: 431-446, ISSN: 1434-5161

Genome-wide association studies (GWAS) have identified many susceptibility loci for cardiometabolic disorders. Most of the associated variants reside in non-coding regions of the genome including long non-coding RNAs (lncRNAs), which are thought to play critical roles in diverse biological processes. Here, we leveraged data from the available GWAS meta-analyses on lipid and obesity-related traits, blood pressure, type 2 diabetes, and coronary artery disease and identified 179 associated single-nucleotide polymorphisms (SNPs) in 102 lncRNAs (p-value < 2.3 × 10-7). Of these, 55 SNPs, either the lead SNP or in strong linkage disequilibrium with the lead SNP in the related loci, were selected for further investigations. Our in silico predictions and functional annotations of the SNPs as well as expression and DNA methylation analysis of their lncRNAs demonstrated several lncRNAs that fulfilled predefined criteria for being potential functional targets. In particular, we found evidence suggesting that LOC157273 (at 8p23.1) is involved in regulating serum lipid-cholesterol. Our results showed that rs4841132 in the second exon and cg17371580 in the promoter region of LOC157273 are associated with lipids; the lncRNA is expressed in liver and associates with the expression of its nearby coding gene, PPP1R3B. Collectively, we highlight a number of loci associated with cardiometabolic disorders for which the association may act through lncRNAs.

Journal article

Dehghan A, 2018, Linking metabolic phenotyping and genomic information, The Handbook of Metabolic Phenotyping, Pages: 561-569, ISBN: 9780128122945

Metabolomics is one of the “omics” that has recently become available in epidemiologic studies. Other omics, including genomics, transcriptomics, and proteomics, are also applied at population level to study complex traits and disorders. However, these approaches are mainly used in isolation. Each of these omics, in fact, pertains to only one layer of the cellular information. It is known that none of these omics capture the totality of the cellular information. Therefore, multi-omics studies are designed to enhance our understanding of the molecular interactions by adding up more layers of information. Linking to genomics is one of the first multi-omics approaches that have been put in practice for metabolites. Recent advances in genomic approaches have made it possible to search for genetics of metabolites in large scale. In this chapter, we review a number of studies that have applied genome-wide association studies (GWAS) to identify genetic determinants of metabolites measured by various metabolic assays. We show that despite their discoveries, the exact mechanisms that link the genes to metabolites are yet unknown. Moreover, we briefly review the technical complexity of the approaches and challenges that are either tackled or are still challenging such studies.

Book chapter

Chaker L, Cremers LGM, Korevaar TIM, de Groot M, Dehghan A, Franco OH, Niessen WJ, Ikram MA, Peeters RP, Vernooij MWet al., 2018, Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging., Neurobiol Aging, Vol: 61, Pages: 44-51

Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of thyroid-stimulating hormone and free thyroxine (FT4) with magnetic resonance imaging (MRI)-derived total intracranial volume, brain tissue volumes, and diffusion tensor imaging measures of white matter microstructure in 4683 dementia- and stroke-free participants (mean age 60.2, range 45.6-89.9 years). Higher FT4 levels were associated with larger total intracranial volumes (β = 6.73 mL, 95% confidence interval = 2.94-9.80). Higher FT4 levels were also associated with larger total brain and white matter volumes in younger individuals, but with smaller total brain and white matter volume in older individuals (p-interaction 0.02). There was a similar interaction by age for the association of FT4 with mean diffusivity on diffusion tensor imaging (p-interaction 0.026). These results are in line with differential effects of TH during neurodevelopmental and neurodegenerative processes and can improve the understanding of the role of thyroid function in neurodegenerative disorders.

Journal article

Dehghan A, 2018, Genome-Wide Association Studies., Pages: 37-49

Genetic association studies have made a major contribution to our understanding of the genetics of complex disorders over the last 10 years through genome-wide association studies (GWAS). In this chapter, we review the key concepts that underlie the GWAS approach. We will describe the "common disease, common variant" theory, and will review how we finally afforded to capture the common variance in genome to make GWAS possible. Finally, we will go over technical aspects of GWAS such as genotype imputation, epidemiologic designs, analysis methods, and considerations such as genomic inflation, multiple testing, and replication.

Book chapter

Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, Irvin MR, Marioni R, Shen J, Tsai P-C, Montasser ME, Jia Y, Syme C, Salfati EL, Boerwinkle E, Guan W, Mosley TH, Bressler J, Morrison AC, Liu C, Mendelson MM, Uitterlinden AG, van Meurs JB, Franco OH, Zhang G, Li Y, Stewart JD, Bis JC, Psaty BM, Chen Y-DI, Kardia SLR, Zhao W, Turner ST, Absher D, Aslibekyan S, Starr JM, Mcrae AF, Hou L, Just AC, Schwartz JD, Vokonas PS, Menni C, Spector TD, Shuldiner A, Damcott CM, Rotter JI, Palmas W, Liu Y, Paus T, Horvath S, O'Connell JR, Guo X, Pausova Z, Assimes TL, Sotoodehnia N, Smith JA, Arnett DK, Deary IJ, Baccarelli AA, Bell JT, Whitsel E, Dehghan A, Levy D, Fornage Met al., 2017, DNA Methylation Analysis Identifies Loci for Blood Pressure Regulation, AMERICAN JOURNAL OF HUMAN GENETICS, Vol: 101, Pages: 888-902, ISSN: 0002-9297

Journal article

Milaneschi Y, Lamers F, Peyrot WJ, Baune BT, Breen G, Dehghan A, Forstner AJ, Grabe HJ, Homuth G, Kan C, Lewis C, Mullins N, Nauck M, Pistis G, Preisig M, Rivera M, Rietschel M, Streit F, Strohmaier J, Teumer A, Van der Auwera S, Wray NR, Boomsma DI, Penninx BWJH, CHARGE Inflammation Working Group and the Major Depressive Disorder Working Group of the Psychiatric Genomics Consortiumet al., 2017, Genetic Association of Major Depression With Atypical Features and Obesity-Related Immunometabolic Dysregulations., JAMA Psychiatry, Vol: 74, Pages: 1214-1225

Importance: The association between major depressive disorder (MDD) and obesity may stem from shared immunometabolic mechanisms particularly evident in MDD with atypical features, characterized by increased appetite and/or weight (A/W) during an active episode. Objective: To determine whether subgroups of patients with MDD stratified according to the A/W criterion had a different degree of genetic overlap with obesity-related traits (body mass index [BMI] and levels of C-reactive protein [CRP] and leptin). Design, Setting, and Patients: This multicenter study assembled genome-wide genotypic and phenotypic measures from 14 data sets of the Psychiatric Genomics Consortium. Data sets were drawn from case-control, cohort, and population-based studies, including 26 628 participants with established psychiatric diagnoses and genome-wide genotype data. Data on BMI were available for 15 237 participants. Data were retrieved and analyzed from September 28, 2015, through May 20, 2017. Main Outcomes and Measures: Lifetime DSM-IV MDD was diagnosed using structured diagnostic instruments. Patients with MDD were stratified into subgroups according to change in the DSM-IV A/W symptoms as decreased or increased. Results: Data included 11 837 participants with MDD and 14 791 control individuals, for a total of 26 628 participants (59.1% female and 40.9% male). Among participants with MDD, 5347 (45.2%) were classified in the decreased A/W and 1871 (15.8%) in the increased A/W subgroups. Common genetic variants explained approximately 10% of the heritability in the 2 subgroups. The increased A/W subgroup showed a strong and positive genetic correlation (SE) with BMI (0.53 [0.15]; P = 6.3 × 10-4), whereas the decreased A/W subgroup showed an inverse correlation (-0.28 [0.14]; P = .06). Furthermore, the decreased A/W subgroup had a higher polygenic risk for increased BMI (odds ratio [OR], 1.18; 95% CI, 1.12-1.25; P = 1.6&thin

Journal article

Brænne I, Willenborg C, Tragante V, Kessler T, Zeng L, Reiz B, Kleinecke M, Von Ameln S, Willer CJ, Laakso M, Wild PS, Zeller T, Wallentin L, Franks PW, Salomaa V, Dehghan A, Meitinger T, Samani NJ, Asselbergs FW, Erdmann J, Schunkert Het al., 2017, A genomic exploration identifies mechanisms that may explain adverse cardiovascular effects of COX-2 inhibitors, Scientific Reports, Vol: 7

© 2017 The Author(s). Cyclooxygenase-2 inhibitors (coxibs) are characterized by multiple molecular off-target effects and increased coronary artery disease (CAD) risk. Here, we systematically explored common variants of genes representing molecular targets of coxibs for association with CAD. Given a broad spectrum of pleiotropic effects of coxibs, our intention was to narrow potential mechanisms affecting CAD risk as we hypothesized that the affected genes may also display genomic signals of coronary disease risk. A Drug Gene Interaction Database search identified 47 gene products to be affected by coxibs. We traced association signals in 200-kb regions surrounding these genes in 84,813 CAD cases and 202,543 controls. Based on a threshold of 1 × 10-5 (Bonferroni correction for 3131 haplotype blocks), four gene loci yielded significant associations. The lead SNPs were rs7270354 (MMP9), rs4888383 (BCAR1), rs6905288 (VEGFA1), and rs556321 (CACNA1E). By additional genotyping, rs7270354 at MMP9 and rs4888383 at BCAR1 also reached the established GWAS threshold for genome-wide significance. The findings demonstrate overlap of genes affected by coxibs and those mediating CAD risk and points to further mechanisms, which are potentially responsible for coxib-associated CAD risk. The novel approach furthermore suggests that genetic studies may be useful to explore the clinical relevance of off-target drug effects.

Journal article

Pazoki R, Dehghan A, Evangelou E, Warren H, Gao H, Caulfield M, Elliott P, Tzoulaki Iet al., 2017, Genetic Predisposition to High Blood Pressure and Lifestyle: Associations With Midlife Blood Pressure Levels and Cardiovascular Health Outcomes, Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Strawbridge RJ, Silveira A, Hoed MD, Gustafsson S, Luan J, Rybin D, Dupuis J, Li-Gao R, Kavousi M, Dehghan A, Haljas K, Lahti J, Gådin JR, Bäcklund A, de Faire U, Gertow K, Giral P, Goel A, Humphries SE, Kurl S, Langenberg C, Lannfelt LL, Lind L, Lindgren CCM, Mannarino E, Mook-Kanamori DO, Morris AP, de Mutsert R, Rauramaa R, Saliba-Gustafsson P, Sennblad B, Smit AJ, Syvänen A-C, Tremoli E, Veglia F, Zethelius B, Björck HM, Eriksson JG, Hofman A, Franco OH, Watkins H, Jukema JW, Florez JC, Wareham NJ, Meigs JB, Ingelsson E, Baldassarre D, Hamsten A, IMPROVE study groupet al., 2017, Identification of a novel proinsulin-associated SNP and demonstration that proinsulin is unlikely to be a causal factor in subclinical vascular remodelling using Mendelian randomisation., Atherosclerosis, Vol: 266, Pages: 196-204

BACKGROUND AND AIMS: Increased proinsulin relative to insulin levels have been associated with subclinical atherosclerosis (measured by carotid intima-media thickness (cIMT)) and are predictive of future cardiovascular disease (CVD), independently of established risk factors. The mechanisms linking proinsulin to atherosclerosis and CVD are unclear. A genome-wide meta-analysis has identified nine loci associated with circulating proinsulin levels. Using proinsulin-associated SNPs, we set out to use a Mendelian randomisation approach to test the hypothesis that proinsulin plays a causal role in subclinical vascular remodelling. METHODS: We studied the high CVD-risk IMPROVE cohort (n = 3345), which has detailed biochemical phenotyping and repeated, state-of-the-art, high-resolution carotid ultrasound examinations. Genotyping was performed using Illumina Cardio-Metabo and Immuno arrays, which include reported proinsulin-associated loci. Participants with type 2 diabetes (n = 904) were omitted from the analysis. Linear regression was used to identify proinsulin-associated genetic variants. RESULTS: We identified a proinsulin locus on chromosome 15 (rs8029765) and replicated it in data from 20,003 additional individuals. An 11-SNP score, including the previously identified and the chromosome 15 proinsulin-associated loci, was significantly and negatively associated with baseline IMTmean and IMTmax (the primary cIMT phenotypes) but not with progression measures. However, MR-Eggers refuted any significant effect of the proinsulin-associated 11-SNP score, and a non-pleiotropic SNP score of three variants (including rs8029765) demonstrated no effect on baseline or progression cIMT measures. CONCLUSIONS: We identified a novel proinsulin-associated locus and demonstrated that whilst proinsulin levels are associated with cIMT measures, proinsulin per se is unlikely to have a causative effect on cIMT.

Journal article

NCD Risk Factor Collaboration NCD-RisC, 2017, Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults., Lancet, Vol: 390, Pages: 2627-2642, ISSN: 0140-6736

BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m(2) per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m(2) per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m(2) per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m(2) per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m(2) per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Tre

Journal article

Nano J, Muka T, Ligthart S, Hofman A, Darwish Murad S, Janssen HLA, Franco OH, Dehghan Aet al., 2017, Gamma-glutamyltransferase levels, prediabetes and type 2 diabetes: a Mendelian randomization study., Int J Epidemiol, Vol: 46, Pages: 1400-1409

BACKGROUND: High levels of serum gamma-glutamyltransferase (GGT) are associated with increased risk of prediabetes and type 2 diabetes in observational studies. It is unclear whether this relationship is causal, arises from residual confounding or is a consequence of reverse causation. METHODS: We used data from a prospective population-based cohort study, compromising 8611 individuals without diabetes at baseline. Cox proportional hazard models were used to study the association between serum GGT levels and incident prediabetes and diabetes. A Mendelian randomization (MR) study was performed using a genetic risk score consisting of 26 GGT-related variants, based on a genome-wide association study (GWAS) on liver enzymes. Association with diabetes and glycaemic traits were investigated within the Rotterdam Study and large-scale GWAS. RESULTS: During follow-up, 1125 cases of prediabetes (mean follow-up 5.7 years) and 811 cases of type 2 diabetes (6.9 years) were ascertained. The predicted hazard ratios per standard deviation (SD) change in GGT levels in the multivariable model were 1.10 for prediabetes [95% confidence interval (CI): 1.02-1.19] and 1.19 for type 2 diabetes (95% CI: 1.10-1.30). The genetic risk score associated with increased GGT levels (beta per SD log GGT = 0.41, 95% CI: 0.35-0.47), explaining 3.5% of the observed variation in GGT. MR analysis did not provide evidence for a causal role of GGT, with a causal relative risk for prediabetes and type 2 diabetes per SD of log GGT of 0.97 (95% CI: 0.91-1.04) and 0.96 (95% CI: 0.89-1.04), respectively. Multiple instrumental analysis using genetic associations with type 2 diabetes and glycaemic traits from previous GWA studies detected no causal effect of GGT. CONCLUSIONS: MR analyses did not support a causal role of GGT on the risk of prediabetes or diabetes. The association of GGT with diabetes in observational studies is likely to be driven by reverse causation or confounding bias. As such, t

Journal article

Ghanbari M, Iglesias AI, Springelkamp H, van Duijn CM, Ikram MA, Dehghan A, Erkeland SJ, Klaver CCW, Meester-Smoor MA, International Glaucoma Genetics Consortium IGGCet al., 2017, A Genome-Wide Scan for MicroRNA-Related Genetic Variants Associated With Primary Open-Angle Glaucoma., Invest Ophthalmol Vis Sci, Vol: 58, Pages: 5368-5377

Purpose: To identify microRNAs (miRNAs) involved in primary open-angle glaucoma (POAG), using genetic data. MiRNAs are small noncoding RNAs that posttranscriptionally regulate gene expression. Genetic variants in miRNAs or miRNA-binding sites within gene 3'-untranslated regions (3'UTRs) are expected to affect miRNA function and contribute to disease risk. Methods: Data from the recent genome-wide association studies on intraocular pressure, vertical cup-to-disc ratio (VCDR), cupa area and disc area were used to investigate the association of miRNAs with POAG endophenotypes. Putative targets of the associated miRNAs were studied according to their association with POAG and tested in cell line by transfection experiments for regulation by the miRNAs. Results: Of 411 miRNA variants, rs12803915:A/G in the terminal loop of pre-miR-612 and rs2273626:A/C in the seed sequence of miR-4707 were significantly associated with VCDR and cup area (P values < 1.2 × 10-4). The first variant is demonstrated to increase the miR-612 expression. We showed that the second variant does not affect the miR-4707 biogenesis, but reduces the binding of miR-4707-3p to CARD10, a gene known to be involved in glaucoma. Moreover, of 72,052 miRNA-binding-site variants, 47 were significantly associated with four POAG endophenotypes (P value < 6.9 × 10-6). Of these, we highlighted 10 variants that are more likely to affect miRNA-mediated gene regulation in POAG. These include rs3217992 and rs1063192, which have been shown experimentally to affect miR-138-3p- and miR-323b-5p-mediated regulation of CDKN2B. Conclusions: We identified a number of miRNAs that are associated with POAG endophenotypes. The identified miRNAs and their target genes are candidates for future studies on miRNA-related therapies for POAG.

Journal article

Muka T, Asllanaj E, Avazverdi N, Jaspers L, Stringa N, Milic J, Ligthart S, Ikram MA, Laven JSE, Kavousi M, Dehghan A, Franco OHet al., 2017, Age at natural menopause and risk of type 2 diabetes: a prospective cohort study., Diabetologia, Vol: 60, Pages: 1951-1960

AIMS/HYPOTHESIS: In this study, we aimed to examine the association between age at natural menopause and risk of type 2 diabetes, and to assess whether this association is independent of potential mediators. METHODS: We included 3639 postmenopausal women from the prospective, population-based Rotterdam Study. Age at natural menopause was self-reported retrospectively and was treated as a continuous variable and in categories (premature, <40 years; early, 40-44 years; normal, 45-55 years; and late menopause, >55 years [reference]). Type 2 diabetes events were diagnosed on the basis of medical records and glucose measurements from Rotterdam Study visits. HRs and 95% CIs were calculated using Cox proportional hazards models, adjusted for confounding factors; in another model, they were additionally adjusted for potential mediators, including obesity, C-reactive protein, glucose and insulin, as well as for levels of total oestradiol and androgens. RESULTS: During a median follow-up of 9.2 years, we identified 348 individuals with incident type 2 diabetes. After adjustment for confounders, HRs for type 2 diabetes were 3.7 (95% CI 1.8, 7.5), 2.4 (95% CI 1.3, 4.3) and 1.60 (95% CI 1.0, 2.8) for women with premature, early and normal menopause, respectively, relative to those with late menopause (p trend <0.001). The HR for type 2 diabetes per 1 year older at menopause was 0.96 (95% CI 0.94, 0.98). Further adjustment for BMI, glycaemic traits, metabolic risk factors, C-reactive protein, endogenous sex hormone levels or shared genetic factors did not affect this association. CONCLUSIONS/INTERPRETATION: Early onset of natural menopause is an independent marker for type 2 diabetes in postmenopausal women.

Journal article

van der Schaft N, Brahimaj A, Wen K-X, Franco OH, Dehghan Aet al., 2017, The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: The Rotterdam Study, PLoS ONE, Vol: 12, ISSN: 1932-6203

BACKGROUND: Limited evidence is available about the association between serum uric acid and sub-stages of the spectrum from normoglycaemia to type 2 diabetes mellitus. We aimed to investigate the association between serum uric acid and risk of prediabetes and type 2 diabetes mellitus. METHODS: Eligible participants of the Rotterdam Study (n = 8,367) were classified into mutually exclusive subgroups of normoglycaemia (n = 7,030) and prediabetes (n = 1,337) at baseline. These subgroups were followed up for incident prediabetes (n = 1,071) and incident type 2 diabetes mellitus (n = 407), respectively. We used Cox proportional hazard models to determine hazard ratios (HRs) for incident prediabetes among individuals with normoglycaemia and incident type 2 diabetes mellitus among individuals with prediabetes. RESULTS: The mean duration of follow-up was 7.5 years for incident prediabetes and 7.2 years for incident type 2 diabetes mellitus. A standard deviation increment in serum uric acid was significantly associated with incident prediabetes among individuals with normoglycaemia (HR 1.10, 95% confidence interval (CI) 1.01; 1.18), but not with incident type 2 diabetes mellitus among individuals with prediabetes (HR 1.07, 95% CI 0.94; 1.21). Exclusion of individuals who used diuretics or individuals with hypertension did not change our results. Serum uric acid was significantly associated with incident prediabetes among normoglycaemic women (HR 1.13, 95% CI 1.02; 1.25) but not among normoglycaemic men (HR 1.08, 95% CI 0.96; 1.21). In contrast, serum uric acid was significantly associated with incident type 2 diabetes mellitus among prediabetic men (HR 1.23, 95% CI 1.01; 1.48) but not among prediabetic women (HR 1.00, 95% CI 0.84; 1.19). CONCLUSIONS: Our findings agree with the notion that serum uric acid is more closely related to early-phase mechanisms in the development of type 2 diabetes mellitus than late-phase mechanisms.

Journal article

Nano J, Ghanbari M, Wang W, de Vries PS, Dhana K, Muka T, Uitterlinden AG, van Meurs JBJ, Hofman A, BIOS consortium, Franco OH, Pan Q, Darwish Murad S, Dehghan Aet al., 2017, Epigenome-wide Association Study Identifies Methylation Sites Associated With Liver Enzymes and Hepatic Steatosis, Gastroenterology, Vol: 153, Pages: 1096-1106.e2, ISSN: 0016-5085

Background & aimsEpigenetic mechanisms might be involved in the regulation of liver enzyme level. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of liver enzymes and hepatic steatosis.MethodsWe conducted an epigenome-wide association study in whole blood for liver enzymes levels including gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), among a discovery set of 731 participants of the Rotterdam Study and sought replication in a non-overlapping sample of 719 individuals. Significant DNA methylation changes were further analysed to evaluate their relation with hepatic steatosis. Expression levels of the top identified gene were measured in 9 human liver cell lines and compared with expression profiles of its potential targets associated with lipid traits. The candidate gene was subsequently knocked down in human hepatoma cells using lentiviral vectors expressing small hairpin RNAs.ResultsEight probes annotated to SLC7A11, SLC1A5, SLC43A1, PHGDH, PSORS1C1, SREBF1, ANKS3 were associated with GGT and one probe annotated to SLC7A11 was associated with ALT after Bonferroni correction (1.0 × 10-7). No probe was identified for AST levels. Four probes for GGT levels including cg06690548 (SLC7A11), cg11376147 (SLC43A1), cg22304262 (SLC1A5) and cg14476101 (PHGDH), and one for ALT cg06690548 (SLC7A11) were replicated. DNA methylation at SLC7A11 was associated with reduced risk of hepatic steatosis in participants (odds ratio, 0.69; 95% CI= (0.55 - 0.93; P-value: 2.7 × 10-3). In functional experiments, SLC7A11 was highly expressed in human liver cells; its expression is positively correlated with expression of a panel of lipid-associated genes, indicating a role of SLC7A11 in lipid metabolism.ConclusionsOur results provide new insights into epigenetic mechanisms associated with markers of liver function and hepatic steatosis, laying the groundwork for future dia

Journal article

Herder C, Gala TDLH, Carstensen-Kirberg M, Huth C, Zierer A, Wahl S, Sudduth-Klinger J, Kuulasmaa K, Peretz D, Ligthart S, Bongaerts BWC, Dehghan A, Ikram MA, Jula A, Kee F, Pietil A, Saarela O, Zeller T, Blankenberg S, Meisinger C, Peters A, Roden M, Salomaa V, Koenig W, Thorand Bet al., 2017, Circulating Levels of Interleukin 1-Receptor Antagonist and Risk of Cardiovascular Disease Meta-Analysis of Six Population-Based Cohorts, ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, Vol: 37, Pages: 1222-+, ISSN: 1079-5642

Journal article

Song C, Burgess S, Eicher JD, O'Donnell CJ, Johnson AD, Huang J, Sabater-Lleal M, Asselbergs FW, Tregouet D, Shin SY, Ding J, Baumert J, Oudot-Mellakh T, Folkersen L, Smith NL, Williams SM, Ikram MA, Kleber ME, Becker DM, Truong V, Mychaleckyj JC, Tang W, Yang Q, Sennblad B, Moore JH, Williams FMK, Dehghan A, Silbernagel G, Schrijvers EMC, Smith S, Karakas M, Tofler GH, Silveira A, Navis GJ, Lohman K, Chen MH, Peters A, Goel A, Hopewell JC, Chambers JC, Saleheen D, Lundmark P, Psaty BM, Strawbridge RJ, Boehm BO, Carter AM, Meisinger C, Peden JF, Bis JC, McKnight B, Öhrvik J, Taylor K, Franzosi MG, Seedorf U, Collins R, Franco-Cereceda A, Syvänen AC, Goodall AH, Yanek LR, Cushman M, Müller-Nurasyid M, Folsom AR, Basu S, Matijevic N, van Gilst WH, Kooner JS, Danesh J, Clarke R, Meigs JB, Kathiresan S, Reilly MP, Klopp N, Harris TB, Winkelmann BR, Grant PJ, Hillege HL, Watkins H, Spector TD, Becker LC, Tracy RP, März W, Uitterlinden AG, Eriksson P, Cambien F, Morange PE, Koenig W, Soranzo N, van der Harst P, Liu Y, Hamsten A, Ehret GB, Munroe PB, Rice KM, Bochud M, Chasman DI, Smith AVet al., 2017, Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease, Journal of the American Heart Association, Vol: 6, ISSN: 2047-9980

Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction.

Journal article

Ghanbari M, Erkeland SJ, Xu L, Colijn JM, Franco OH, Dehghan A, Klaver CCW, Meester-Smoor MAet al., 2017, Genetic variants in microRNAs and their binding sites within gene 3UTRs associate with susceptibility to age-related macular degeneration, Human Mutation, Vol: 38, Pages: 827-838, ISSN: 1059-7794

Age-related macular degeneration (AMD), the leading cause of blindness in the elderly, is a complex disease that results from multiple genetic and environmental factors. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate target mRNAs and are frequently implicated in human diseases. Here, we investigated the association of genetic variants in miRNAs and miRNA-binding sites within gene 3′-untranslated regions (3′UTRs) with AMD using data from the largest AMD genome-wide association study. First, we identified three variants in miRNAs significantly associated with AMD. These include rs2168518:G>A in the miR-4513 seed sequence, rs41292412:C>T in pre-miR-122/miR-3591, and rs4351242:C>T in the terminal-loop of pre-miR-3135b. We demonstrated that these variants reduce expression levels of the mature miRNAs in vitro and pointed the target genes that may mediate downstream effects of these miRNAs in AMD. Second, we identified 54 variants (in 31 genes) in miRNA-binding sites associated with AMD. Based on stringent prioritization criteria, we highlighted the variants that are more likely to have an impact on the miRNA-target interactions. Further, we selected rs4151672:C>T within the CFB 3′UTR and experimentally showed that while miR-210-5p downregulates expression of CFB, the variant decreases miR-210-5p-mediated repression of CFB. Together, our findings support the notion that miRNAs may play a role in AMD.

Journal article

Saleheen D, Zhao W, Young R, Nelson CP, Ho W, Ferguson JF, Rasheed A, Ou K, Nurnberg ST, Bauer RC, Goel A, Do R, Stewart AFR, Hartiala J, Zhang W, Thorleifsson G, Strawbridge RJ, Sinisalo J, Kanoni S, Sedaghat S, Marouli E, Kristiansson K, Zhao JH, Scott R, Gauguier D, Shah SH, Smith AV, van Zuydam N, Cox AJ, Willenborg C, Kessler T, Zeng L, Province MA, Ganna A, Lind L, Pedersen NL, White CC, Joensuu A, Kleber ME, Hall AS, Maerz W, Salomaa V, O'Donnell C, Ingelsson E, Feitosa MF, Erdmann J, Bowden DW, Palmer CNA, Gudnason V, De Faire U, Zalloua P, Wareham N, Thompson JR, Kuulasmaa K, Dedoussis G, Perola M, Dehghan A, Chambers JC, Kooner J, Allayee H, Deloukas P, McPherson R, Stefansson K, Schunkert H, Kathiresan S, Farrall M, Frossard PM, Rader DJ, Samani NJ, Reilly MPet al., 2017, Loss of Cardioprotective Effects at the ADAMTS7 Locus as a Result of Gene-Smoking Interactions, CIRCULATION, Vol: 135, Pages: 2336-+, ISSN: 0009-7322

Journal article

Gorski M, Most PJVD, Teumer A, Chu AY, Li M, Mijatovic V, Nolte IM, Cocca M, Taliun D, Gomez F, Li Y, Tayo B, Tin A, Feitosa MF, Aspelund T, Attia J, Biffar R, Bochud M, Boerwinkle E, Borecki I, Bottinger EP, Chen M-H, Chouraki V, Ciullo M, Coresh J, Cornelis MC, Curhan GC, Adamo APD, Dehghan A, Dengler L, Ding J, Eiriksdottir G, Endlich K, Enroth S, Esko T, Franco OH, Gasparini P, Gieger C, Girotto G, Gottesman O, Gudnason V, Gyllensten U, Hancock SJ, Harris TB, Helmer C, Höllerer S, Hofer E, Hofman A, Holliday EG, Homuth G, Hu FB, Huth C, Hutri-Kähönen N, Hwang S-J, Imboden M, Johansson Å, Kähönen M, König W, Kramer H, Krämer BK, Kumar A, Kutalik Z, Lambert J-C, Launer LJ, Lehtimäki T, de Borst MH, Navis G, Swertz M, Liu Y, Lohman K, Loos RJF, Lu Y, Lyytikäinen L-P, McEvoy MA, Meisinger C, Meitinger T, Metspalu A, Metzger M, Mihailov E, Mitchell P, Nauck M, Oldehinkel AJ, Olden M, Wjh Penninx B, Pistis G, Pramstaller PP, Probst-Hensch N, Raitakari OT, Rettig R, Ridker PM, Rivadeneira F, Robino A, Rosas SE, Ruderfer D, Ruggiero D, Saba Y, Sala C, Schmidt H, Schmidt R, Scott RJ, Sedaghat S, Smith AV, Sorice R, Stengel B, Stracke S, Strauch K, Toniolo D, Uitterlinden AG, Ulivi S, Viikari JS, Völker U, Vollenweider P, Völzke H, Vuckovic D, Waldenberger M, Wang JJ, Yang Q, Chasman DI, Tromp G, Snieder H, Heid IM, Fox CS, Köttgen A, Pattaro C, Böger CA, Fuchsberger Cet al., 2017, Corrigendum: 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function., Sci Rep, Vol: 7, Pages: 46835-46835

This corrects the article DOI: 10.1038/srep45040.

Journal article

Gorski M, Van der Most PJ, Teumer A, Chu AY, Li M, Mijatovic V, Nolte IM, Cocca M, Taliun D, Gomez F, Li Y, Tayo B, Tin A, Feitosa MF, Aspelund T, Attia J, Biffar R, Bochud M, Boerwinkle E, Borecki I, Bottinger EP, Chen M-H, Chouraki V, Ciullo M, Coresh J, Cornelis MC, Curhan GC, d'Adamo AP, Dehghan A, Dengler L, Ding J, Eiriksdottir G, Endlich K, Enroth S, Esko T, Franco OH, Gasparini P, Gieger C, Girotto G, Gottesman O, Gudnason V, Gyllensten U, Hancock SJ, Harris TB, Helmer C, Hoellerer S, Hofer E, Hofman A, Holliday EG, Homuth G, Hu FB, Huth C, Hutri-Kahonen N, Hwang S-J, Imboden M, Johansson A, Kahonen M, Koenig W, Kraemer H, Kramer BK, Kumar A, Kutalik Z, Lambert J-C, Launer LJ, Lehtimaki T, de Borst M, Navis G, Swertz M, Liu Y, Lohman K, Loos RJF, Lu Y, Lyytikainen L-P, McEvoy MA, Meisinger C, Meitinger T, Metspalu A, Metzger M, Mihailov E, Mitchell P, Nauck M, Oldehinkel AJ, Olden M, Penninx BWJH, Pistis G, Pramstaller PP, Probst-Hensch N, Raitakari OT, Rettig R, Ridker PM, Rivadeneira F, Robino A, Rosas SE, Ruderfer D, Ruggiero D, Saba Y, Sala C, Schmidt H, Schmidt R, Scott RJ, Sedaghat S, Smith AV, Sorice R, Stengel B, Stracke S, Strauch K, Toniolo D, Uitterlinden AG, Ulivi S, Viikari JS, Voelker U, Vollenweider P, Voelzke H, Vuckovic D, Waldenberger M, Wang JJ, Yang Q, Chasman DI, Tromp G, Snieder H, Heid IM, Fox CS, Koettgen A, Pattaro C, Boeger CA, Fuchsberger Cet al., 2017, 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function, SCIENTIFIC REPORTS, Vol: 7, ISSN: 2045-2322

Journal article

Stringa N, Brahimaj A, Zaciragic A, Dehghan A, Ikram MA, Hofman A, Muka T, Kiefte-de Jong JC, Franco OHet al., 2017, Relation of antioxidant capacity of diet and markers of oxidative status with C-reactive protein and adipocytokines: a prospective study, Metabolism: clinical and experimental, Vol: 71, Pages: 171-181, ISSN: 0026-0495

BackgroundThe role of dietary antioxidants and plasma oxidant-antioxidant status in low-grade chronic inflammation and adipocytokine levels is not established yet.ObjectivesWe aimed to evaluate whether total dietary antioxidant capacity (assessed by dietary ferric reducing antioxidant potential (FRAP)), serum uric acid (UA) and gamma glutamyltransferase (GGT) were associated with low-grade chronic inflammation and circulating adipocytokines.MethodsData of 4506 participants aged ≥ 55 years from the Rotterdam Study were analyzed. Baseline (1990–1993) FRAP score was assessed by a food frequency questionnaire. Baseline UA and GGT levels were assessed in non-fasting serum samples. Serum high sensitivity C-reactive protein (hs-CRP) was measured at baseline and 10 years later. Plasma leptin, adiponectin, plasminogen activator inhibitor-1 (PAI-1) and resistin levels were assessed 10 years later.ResultsA high FRAP score was associated with lower levels of UA and GGT. Overall, no association was found between FRAP and hs-CRP levels. FRAP score was associated with lower levels of leptin and PAI-1, higher levels of adiponectin, and no difference in resistin levels. Increased levels of UA were associated with higher levels of hs-CRP, PAI-1 and leptin; lower levels of adiponectin and no difference in resistin levels. Similarly, GGT was associated with higher levels of hs-CRP whereas no association was observed between GGT and adipocytokines.ConclusionThese findings suggest that overall antioxidant capacity of diet and low levels of UA are associated with circulating adipocytokines whereas no consistent association was found with hs-CRP.

Journal article

Böger CA, Gorski M, McMahon GM, Xu H, Chang YC, van der Most PJ, Navis G, Nolte IM, de Borst MH, Zhang W, Lehne B, Loh M, Tan ST, Boerwinkle E, Grams ME, Sekula P, Li M, Wilmot B, Moon JG, Scheet P, Cucca F, Xiao X, Lyytikäinen LP, Delgado G, Grammer TB, Kleber ME, Sedaghat S, Rivadeneira F, Corre T, Kutalik Z, Bergmann S, Nielson CM, Srikanth P, Teumer A, Müller-Nurasyid M, Brockhaus AC, Pfeufer A, Rathmann W, Peters A, Matsumoto M, de Andrade M, Atkinson EJ, Robinson-Cohen C, de Boer IH, Hwang SJ, Heid IM, Gögele M, Concas MP, Tanaka T, Bandinelli S, Nalls MA, Singleton A, Tajuddin SM, Adeyemo A, Zhou J, Doumatey A, McWeeney S, Murabito J, Franceschini N, Flessner M, Shlipak M, Wilson JG, Chen G, Rotimi CN, Zonderman AB, Evans MK, Ferrucci L, Devuyst O, Pirastu M, Shuldiner A, Hicks AA, Pramstaller PP, Kestenbaum B, Kardia SL, Turner ST, Study LC, Briske TE, Gieger C, Strauch K, Meisinger C, Meitinger T, Völker U, Nauck M, Völzke H, Vollenweider P, Bochud M, Waeber G, Kähönen M, Lehtimäki T, März W, Dehghan A, Franco OH, Uitterlinden AG, Hofman A, Taylor HA, Chambers JC, Kooner JS, Fox CS, Hitzemann R, Orwoll ES, Pattaro C, Schlessinger D, Köttgen A, Snieder H, Parsa A, Cohen DMet al., 2017, NFAT5 and SLC4A10 Loci Associate with Plasma Osmolality., Journal of the American Society of Nephrology, Vol: 28, ISSN: 1533-3450

Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at P<5.0 × 10(-6) Of these, rs9980 at NFAT5 replicated in stage 2 meta-analysis (P=3.1 × 10(-5)), with combined stages 1 and 2 genome-wide significance of P=5.6 × 10(-10) Transethnic meta-analysis further supported the association at rs9980 (P=5.9 × 10(-12)). Additionally, rs16846053 at SLC4A10 showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (P=6.7 × 10(-8)). NFAT5 encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. SLC4A10 encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for NFAT5 and SLC4A10 are cis expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in NFAT5 and SLC4A10 expression and function in the central nervous system may affect the regulation of systemic water balance.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00830410&person=true&page=6&respub-action=search.html