Imperial College London


Faculty of EngineeringDepartment of Bioengineering




+44 (0)20 7594 1055a.foust Website CV




RSM 4.05Royal School of MinesSouth Kensington Campus





The ability to manipulate and track neuronal communication is essential to understanding the mechanisms underlying our sensations, perceptions, thoughts, emotions and actions. With a growing toolbox of optical dyes, genetic sensors and actuators, Neuroscience has made science fiction-scale progress toward realizing this important prerequisite for neural circuit reverse engineering. A parallel revolution in photonics research is taking shape to exploit the full potential of photo-molecular tools for brain circuit interrogation. My goal is to engineer bridges between recent optical technology and Neurophysiologists endeavoring to close the loop between theory and experimentation.



Howe CL, Quicke P, Song P, et al., 2020, Comparing synthetic refocusing to deconvolution for the extraction of neuronal calcium transients from light-fields

Quicke P, Howe CL, Song P, et al., 2020, Subcellular resolution 3D light field imaging with genetically encoded voltage indicators, Neurophotonics, Vol:7, ISSN:2329-4248


Verinaz-Jadan H, Song P, Howe CL, et al., 2021, Deep learning for light field microscopy using physics-based models, Pages:1091-1094, ISSN:1945-7928

Song P, Jadan HV, Howe CL, et al., 2021, MODEL-INSPIRED DEEP LEARNING FOR LIGHT-FIELD MICROSCOPY WITH APPLICATION TO NEURON LOCALIZATION, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Pages:8087-8091

More Publications