Imperial College London


Faculty of EngineeringDepartment of Bioengineering




+44 (0)20 7594 1055a.foust Website CV




RSMRoyal School of MinesSouth Kensington Campus





The ability to manipulate and track neuronal communication is essential to understanding the mechanisms underlying our sensations, perceptions, thoughts, emotions and actions. With a growing toolbox of optical dyes, genetic sensors and actuators, Neuroscience has made science fiction-scale progress toward realizing this important prerequisite for neural circuit reverse engineering. A parallel revolution in photonics research is taking shape to exploit the full potential of photo-molecular tools for brain circuit interrogation. My goal is to engineer bridges between recent optical technology and Neurophysiologists endeavoring to close the loop between theory and experimentation.

Fields of Expertise

show research

Intrinsic imaging (scattering, absorbtion, birefringence)
Functional fluoroscence imaging (voltage, calcium)
Two-photon microscopy
Computer-generated holography
Temporal focusing 
Electrophysiology (patch clamp, extracellular)
Computational neuroscience
Optomechanical design and prototyping
Functional image acquisition and analysis software

Training, Professional Experience

show research

2016-present   Royal Academy of Engineering Research Fellow
2018-present   Lecturer    Imperial College London
                                          Dept. Bioengineering
                                          Centre for Neurotechnology

2015                Postdoc    Imperial College London
                                         Dept. Bioengineering
                                         Centre for Neurotechnology
                                         Advisor: Simon Schultz, Ph.D.

2013-2014       Postdoc    University Paris Descartes
                                         Dept. Neurophotonics
                                         Wavefront Engineering
                                         Advisor: Valentina Emiliani, Ph.D.

2007-2010       M.Phil.      Yale University
2007-2012       Ph.D.        With Distinction
                                         Neuroscience, Dept. Neurobiology
                                         Advisor: David A. McCormick, Ph.D.

2002-2006       B.S.          Washington State University, 
                                         Summa cum laude
                                         Emphasis EE and computation 
                                         Advisor: David M. Rector, Ph.D.


show research

Soor, J.; Quicke, P.; Howe, C.L.; Pang, K.T.; Neil, M.A.A.; Schultz, S.R.; Foust, A.J., All-Optical Crosstalk-Free Manipulation and Readout of Chronos-expressing Neurons. In press. J Phys D.

Quicke, P.; Reynolds, S.; Neil, M.; Knöpfel, T.; Schultz, S.R.; Foust, A.J. 2018. High speed functional imaging with Source Localized Multifocal Two-Photon Microscopy. Biomed Opt Exp. 9(8):3678-3693.

Cazé, R. D.; Jarvis, S.; Foust, A. J.; Schultz, S. R., 2017. Dendrites enable a robust mechanism for neuronal stimulus selectivity. Neural Computation, In press.

Guillon, M.; Forget, B. C.; Foust, A. J.; de Sars, V.; Ritsch-Marte, M.; Emiliani, V. 2017. Vortex-free phase profiles for uniform patterning with computer-generated holography. Optics Express 25(11):12640-12652.

Schultz, S. R., Copeland, C. S., Foust, A. J., Quicke, P., Schuck R., 2017. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging. Proc IEEE 105(1):139-157.

Ronzitti, E.; Conti, R.; Papagiakoumou, E.; Tanese, D.; Zampini, V.; Chaigneau, E.; Foust, A. J.; Klapoetke, N.; Boyden, E. S.; Emiliani, V., 2017. Sub-millisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of Chronos. J Neurosci. 37(44):10679-10689.

Foust, A. J., Zampini, V., Tanese, D., Papagiakoumou, E., Emiliani, V., 2015. Computer generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures. Neurophotonics 2(2):021007.

Casale, A. E., Foust, A. J., Bal, T., McCormick, D. A., 2015. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties. J Neurosci 35(47):15555-15567.

Foust, A. J., Popovic, M., Zecevic, D., McCormick, D. A., 2011.  Somatic Membrane Potential and Kv1 Channels Control Spike Repolarization in Cortical Axon Collaterals and Presynaptic Boutons. J Neurosci 31(43):15490-15498.

Popovic, M., Foust, A. J., McCormick, D. A., Zecevic, D., 2011. Spatial profile of membrane potential changes during action potential initiation and propagation in axons of layer 5 cortical pyramidal neurons. Journal of Physiology. 589(17):4167-4187.

Foust, A., Popovic, M., Zecevic, D., McCormick, D. A., May 2010.  Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. Journal of Neuroscience 30(20),6891-902.

Schei, J. L., Foust, A. J., Rojas, M. J., Navas, J. A., Rector, D. M., April 2009. State-dependent auditory evoked hemodynamic responses recorded optically with indwelling photodiodes. Applied Optics 48 (10).

Schei, J. L., McCluskey, M. D., Foust, A. J., Yao, X. C., Rector, D. M., April 2008. Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light. NeuroImage 40 (3), 1034-1043.

Foust, A. J., Schei, J. L., Rojas, M. J., Rector, D. M., 2008. In vitro and in vivo noise analysis for optical neural recording. Journal of Biomedical Optics 13 (4).

McCluskey, M. D., Sable, J. J., Foust, A. J., Gratton, G., Rector, D. M., April 2007. Recording invertebrate nerve activation with modulated light changes. Applied Optics 46 (10), 1866-1871.

Foust, A. J., Rector, D. M., March 2007. Optically teasing apart neural swelling and depolarization. Neuroscience 145 (3), 887-899.

Yao, X. C., Foust, A., Rector, D. M., Barrowes, B., George, J. S., June 2005. Cross-polarized reflected light measurement of fast optical responses associated with neural activation. Biophysical Journal 88 (6), 4170-4177.

Foust, A. J., Beiu, R. M., Rector, D. M., April 2005. Optimized birefringence changes during isolated nerve activation. Applied optics 44 (11), 2008-2012.

Research Support

show research

EPSRC Capital Award for Early Career Researchers
Role: Principal Investigator
Instrument for characterizing two-photon absorption and action spectra of red and near-infrared fluorophores and membrane conductance actuators

BBSRC Research Grant BB/R009007/1
Role: Principal Investigator
Two-photon Light Field with Neuro-active Sensing for Fast Volumetric Neural Microcircuit Readout

Wellcome Seed Award
Role: Principal Investigator
10/2016 - 9/2018
Holographic Induction of Neural Circuit Plasticity

Royal Academy of Engineering Research Fellowship       
Role: Research Fellow
1/2016 - 12/2020
Holographic Light Shaping for Reverse
Engineering Neural Circuit Learning

Imperial College London Junior Research Fellowship      
Two-photon Computer-Generated Holography for
Investigation of Dendritic Information Processing

U01 NS090501-01 (US NIH, B.R.A.I.N.)
Role: Co-Investigator
1/2015 - 12/2017
Three Dimensional Computer-Generated Holography 
For Neural Circuit Reverse Engineering

NSF Postdoctoral International Research Fellowship        
Role: Post-Doctoral Fellow
1/2013 - 12/2014
Scanless Two-Photon Voltage Imaging of Live Neuron
Activity with Holographic Wavefront Shaping

Whitaker Foundation Post-doctoral Fellowship
Awarded 2012 (declined)

NRSA F31 NS 070368-01 (NIH/NINDS)
Role: Principal Investigator
9/2010 - 5/2012
Optical Imaging of Information Processing in CNS Axons

NSF Graduate Research Fellowship
Role: Pre-Doctoral Fellow
9/2007 - 8/2010