Imperial College London

DrAdamHawkes

Faculty of EngineeringDepartment of Chemical Engineering

Reader in Energy Systems
 
 
 
//

Contact

 

+44 (0)20 7594 9300a.hawkes

 
 
//

Assistant

 

Ms Quasirat Hasnat +44 (0)20 7594 7250

 
//

Location

 

C502Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

150 results found

Few SPM, Gambhir A, Napp T, Hawkes A, Mangeon S, Bernie D, Lowe Jet al., 2017, The impact of shale gas on the cost and feasibility of meeting climate targets - a global energy system model analysis and an exploration of uncertainties, Energies, Vol: 10, ISSN: 1996-1073

There exists considerable uncertainty over both shaleand conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extractionand its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES Integrated Assessment Model),to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenariosaimed at achieving a limit to global warming of below 2°C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energy system cost is relatively small (up to0.4%), and the mitigation cost increases by 1-3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expectedleakage rates, are also considered;andare each found to have the potential to increase the cost and reduce feasibility of meeting globaltemperature goals. We concludethat the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globallycoordinatedaction, but could increase required mitigation effort if not handled sufficiently carefully.

Journal article

Napp T, Bernie D, Thomas R, Lowe J, Hawkes A, Gambhir Aet al., 2017, Exploring the feasibility of low-carbon scenarios using historical energy transitions analysis, Energies, Vol: 10, ISSN: 1996-1073

The scenarios generated by energy systems models provide a picture of the range of possible pathways to a low-carbon future. However, in order to be truly useful, these scenarios should not only be possible but also plausible. In this paper, we have used lessons from historical energy transitions to create a set of diagnostic tests to assess the feasibility of an example 2 °C scenario (generated using the least cost optimization model, TIAM-Grantham). The key assessment criteria included the rate of deployment of low carbon technologies and the rate of transition between primary energy resources. The rates of deployment of key low-carbon technologies were found to exceed the maximum historically observed rate of deployment of 20% per annum. When constraints were added to limit the scenario to within historically observed rates of change, the model no longer solved for 2 °C. Under these constraints, the lowest median 2100 temperature change for which a solution was found was about 2.1 °C and at more than double the cumulative cost of the unconstrained scenario. The analysis in this paper highlights the considerable challenge of meeting 2 °C, requiring rates of energy supply technology deployment and rates of declines in fossil fuels which are unprecedented.

Journal article

Gambhir A, Drouet L, McCollum D, Napp T, Bernie D, Hawkes A, Fricko O, Havlik P, Riahi K, Bosetti V, Lowe Jet al., 2017, Assessing the feasibility of global long-term mitigation scenarios, Energies, Vol: 10, ISSN: 1996-1073

This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH) harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2), to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2OC goal is, when compared to the 2.5-4OC goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2OC goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2OC is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required.

Journal article

Clark R, Budinis S, Hawkes A, McMartin Det al., 2017, Analysis of power production and emission reduction through the use of biogas and carbon capture and storage, Editors: Espuna, Graells, Puigjaner, Publisher: ELSEVIER SCIENCE BV, Pages: 2635-2640

Book chapter

Budinis S, Mac Dowell N, Krevor S, Dixon T, Kemper J, Hawkes Aet al., 2017, Can carbon capture and storage unlock `unburnable carbon'?, 13th International Conference on Greenhouse Gas Control Technologies (GHGT), Publisher: Elsevier Science BV, Pages: 7504-7515, ISSN: 1876-6102

The concept of ‘unburnable carbon’ emerged in 2011, and stems from the observation that if all known fossil fuel reserves are extracted and converted to CO2(unabated), it would exceed the carbon budget and have a very significant effect on the climate. Therefore, if global warming is to be limited to the COP21 target, some of the known fossil fuel reserves should remain unburnt. Several recent reports have highlighted the scale of the challenge, drawing on scenarios of climate change mitigation and their implications for the projected consumption of fossil fuels. Carbon Capture and Storage (CCS) is a critical and available mitigation opportunity and its contributionto timely and cost-effective decarbonisation of the energy system is widely recognised. However, while some studies have considered the role of CCS in enabling access to more fossil fuels, no detailed analysis on this issue has been undertaken. This paper presents a critical review focusing on the technologies that can be applied to enable access to, or ‘unlock’, fossil fuel reserves in a way that will meet climate targets and mitigate climate change. It also quantifies the impact of CCS in unlocking unburnable carbon in the first and in the second half of the century.

Conference paper

Balcombe P, Anderson K, Speirs J, Brandon N, Hawkes Aet al., 2016, The natural gas supply chain: the importance of methane and carbon dioxide emissions, ACS Sustainable Chemistry & Engineering, Vol: 5, Pages: 3-20, ISSN: 2168-0485

Natural gas is typically considered to be the cleaner-burning fossil fuel that could play an important role within a restricted carbon budget. While natural gas emits less CO2 when burned than other fossil fuels, its main constituent is methane, which has a much stronger climate forcing impact than CO2 in the short term. Estimates of methane emissions in the natural gas supply chain have been the subject of much controversy, due to uncertainties associated with estimation methods, data quality, and assumptions used. This Perspective presents a comprehensive compilation of estimated CO2 and methane emissions across the global natural gas supply chain, with the aim of providing a balanced insight for academia, industry, and policy makers by summarizing the reported data, locating the areas of major uncertainty, and identifying where further work is needed to reduce or remove this uncertainty. Overall, the range of documented estimates of methane emissions across the supply chain is vast among an aggregation of different geological formations, technologies, plant age, gas composition, and regional regulation, not to mention differences in estimation methods. Estimates of combined methane and CO2 emissions ranged from 2 to 42 g CO2 eq/MJ HHV, while methane-only emissions ranged from 0.2% to 10% of produced methane. The methane emissions at the extraction stage are the most contentious issue, with limited data available but potentially large impacts associated with well completions for unconventional gas, liquids unloading, and also the transmission stage. From the range of literature estimates, a constrained range of emissions was estimated that reflects the most recent and reliable estimates: total supply chain GHG emissions were estimated to be between 3.6 and 42.4 g CO2 eq/MJ HHV, with a central estimate of 10.5. The presence of “super emitters”, a small number of facilities or equipment that cause extremely high emissions, is found across all supply chai

Journal article

Budinis S, Krevor S, Mac Dowell N, Brandon N, Hawkes Aet al., 2016, Can technology unlock unburnable carbon?

In 2015, the Conference Of the Parties in Paris (COP21) reached a universal agreement on climate change with the aim of limiting global warming to below 2 °C. In order to stay below 2 °C, the total amount of carbon dioxide (CO2) released, or ‘carbon budget’ must be less than 1,000 gigatonnes (Gt) of CO2. At the current emission rate, this budget will be eroded within the next thirty years. Meeting this target on a global scale is challenging and will require prompt and effective climate change mitigation action.The concept of ‘unburnable carbon’ emerged in 2011, and stems from theobservation that if all known fossil fuel reserves are extracted and converted to CO2 (unabated), it would exceed the carbon budget and have a very significant effect on the climate. Therefore, if global warming is to be limited to the COP21 target, some of the known fossil fuel reserves should remain unburnt.Several recent reports have highlighted the scale of the challenge, drawing on scenarios of climate change mitigation and their implications for the projected consumption of fossil fuels. Carbon capture and storage (CCS) is a critical and available mitigation opportunity that is often overlooked. The positive contribution of CCS technology to timely and cost-effective decarbonisation of the energy system is widely recognised. However, while some studies have considered the role of CCS in enabling access to more fossil fuels, no detailed analysis on this issue has been undertaken.This White Paper presents a critical review focusing on the technologies that can be applied to enable access to, or ‘unlock’, fossil fuel reserves in a way that will meet climate targets and mitigate climate change.The paper includes an introduction to the key issues of carbon budgets and fossil fuel reserves, a detailed analysis of the current status of CCS technology, as well as a synthesis of a multi-model comparison study on global climate change mitigation strat

Report

Crow D, Giarola S, Hawkes AD, Modelling imperfect foresight in investment decisions in the upstream gas industry, Energy Systems Conference

Conference paper

Bosch J, Hawkes AD, Onshore wind potential and regional supply curves for global energy system models: A GIS approach, Energy Systems Conference

Conference paper

Giarola S, Crow DJG, Hawkes A, 2016, A framework for modelling investment decisions in gas infrastructures, 26th European Symposium on Computer Aided Process Engineering (ESCAPE), Publisher: ELSEVIER SCIENCE BV, Pages: 259-264, ISSN: 1570-7946

Conference paper

Balcombe P, Anderson K, Speirs J, Brandon N, Hawkes Aet al., 2015, Methane and CO2 emissions from the natural gas supply chain: an evidence assessment, Publisher: Sustainable Gas Institute

Report

Xie C, Hawkes AD, 2015, Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression, ENERGY, Vol: 88, Pages: 260-267, ISSN: 0360-5442

Journal article

Hawkes AD, Jalil-Vega F, A systematic assessment of the role of microgeneration in urban low carbon heat using the TURN model, Microgen IV

Conference paper

Vijay A, Hawkes AD, Modelling the value of decentralised energy resources in supply-demand balancing for low carbon electricity systems, Microgen IV

Conference paper

Bosch J, Hawkes AD, A geospatial analysis of global renewable electricity potentials (solar PV, solarthermal electricity and wind), Sustainable Development of Energy, Water and Environment Systems Conference

Conference paper

Jalil-Vega F, Hawkes AD, A mixed-integer linear programme optimisation model for determining optimal infrastructure investments and operation for decarbonising heat supply in the UK, Sustainable Development of Energy, Water and Environment Systems Conference

Conference paper

Hawkes A, Hanna R, 2015, Market and policy influences, Domestic Microgeneration Renewable and Distributed Energy Technologies, Policies and Economics, Publisher: Routledge, ISBN: 9781317448853

Renewable and Distributed Energy Technologies, Policies and Economics Iain Staffell, Daniel J.L. Brett, Nigel P. Brandon, Adam D. Hawkes. [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] ...

Book chapter

Green RJ, staffell I, Hamilton IG, 2015, The residential energy sector, Domestic Microgeneration Renewable and Distributed Energy Technologies, Policies and Economics, Editors: Staffell, Brandon, Hawkes, Brett, Publisher: Routledge, Pages: 18-48, ISBN: 9781317448853

1 Overview Whilst the primary use of microgeneration is to service the energy demands of a building or a community, microgeneration technologies could also play a role in wider energy networks such as communal heating schemes or (more ...

Book chapter

Dodds PE, Staffell L, Hawkes AD, Li F, Grunewald P, McDowall W, Ekins Pet al., 2015, Hydrogen and fuel cell technologies for heating: A review, International Journal of Hydrogen Energy, Vol: 40, Pages: 2065-2083, ISSN: 1879-3487

Journal article

Kelly NJ, Tuohy PG, Hawkes AD, 2014, Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering, APPLIED THERMAL ENGINEERING, Vol: 71, Pages: 809-820, ISSN: 1359-4311

Journal article

Gross R, Speirs JF, hawkes, Skillings S, heptonstallet al., 2014, Could retaining old coal lead to a policy own goal? Modelling the potential or coal fired power stations to undermine carbon targets in 2030

Report

Gross R, Speirs J, Hawkes AD, Skillings S, Heptonstall Pet al., 2014, Could retaining old coal lead to a policy own goal?

Report

Pinheiro L, Napp T, Hawkes AD, 2014, Can Brazil fulfil long term reduction targets? An evaluation of consequences of delayed action on its energy sector, 9th Conference on Sustainable Development of Energy, Water and Environmental Systems

Conference paper

Philbin SP, Jones D, Brandon NP, Hawkes ADet al., 2014, Exploring Research Institutes: Structures, Functioning and Typology, Proceedings of PICMET'14 (Portland International Center for Management of Engineering and Technology) Conference, Kanazawa, Japan

Conference paper

Hawkes AD, 2014, Long-run marginal CO2 emissions factors in national electricity systems, APPLIED ENERGY, Vol: 125, Pages: 197-205, ISSN: 0306-2619

Journal article

Hawkes AD, 2014, The taxonomy of energy systems modelling, Energy Systems Conference

Conference paper

Hawkes AD, The role of fuel cells and hydrogen in providing affordable, secure low carbon heat, Fuel Cell Seminar

Conference paper

McDowall W, Francis L, Staffell I, Grünewald P, Kansara T, Ekins P, Dodds P, Hawkes AD, Agnolucci Pet al., 2014, The role of fuel cells and hydrogen in providing affordable, secure and low carbon heat, London, UK

Report

Pfenninger S, Hawkes A, Keirstead J, 2014, Energy systems modeling for twenty-first century energy challenges, RENEWABLE & SUSTAINABLE ENERGY REVIEWS, Vol: 33, Pages: 74-86, ISSN: 1364-0321

Journal article

Dodds PE, Ekins P, Hawkes A, Li F, Staffell I, McDowall W, Grünewald P, Kansara T, Agnolucci Pet al., 2014, The role of hydrogen and fuel cells in providing affordable, secure low-carbon heat, Pages: 1403-1410

© (2014) by the Committee of WHEC2014. The debate on low carbon heat in Europe has become focused on a narrow range of technological options, largely neglecting hydrogen and fuel cell technologies. Yet commercial ventures installing fuel cell CHP and establishing pilot programmes for injecting hydrogen into natural gas grids have already emerged. Furthermore, recent research suggests that the potential for hydrogen and fuel cells may have been overlooked, suggesting a gap between the scientific evidence base and policy direction. Thus there is a clear need-also recognised by government-for a clear assessment of the evidence on the potential for hydrogen and fuel cells in meeting the goals of European heat policy: The provision of secure, affordable, low-carbon heat. The UK H2FC Hub, which represents the UK hydrogen and fuel cell research community, is launching a White Paper in May 2014 to set out the potential for hydrogen and fuel cells to contribute to affordable, secure, low-carbon heating in the future. This paper will provide an authoritative, accessible, detailed account that is specifically targeted at policymakers and other stakeholders. It will bring together the evidence on the technical, economic, market, system and policy issues surrounding hydrogen and fuel cell heat.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00366276&limit=30&person=true&page=3&respub-action=search.html