Imperial College London

ProfessorAthanassiosManikas

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Professor of Communications and Array Processing
 
 
 
//

Contact

 

+44 (0)20 7594 6266a.manikas Website

 
 
//

Assistant

 

Miss Charlotte Grady +44 (0)20 7594 6267

 
//

Location

 

801Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

141 results found

Fang Z, Manikas A, 2017, DOA and Range Estimation of Multiple Sources Under the Wideband Assumption, IEEE GLOBECOM 2016, Publisher: Institute of Electrical and Electronics Engineers (IEEE), ISSN: 0895-1195

In this paper, two novel channel parameter estimationalgorithms are proposed under the “wideband assumption,”where a wavefront varies significantly when traversing throughthe sensors of the array. The first covariance-based approachutilizes the cross-covariance matrix between two subvectors of thereceived signal vector and the singular value decomposition to reconstructthe parameter-dependent signal subspace. Meanwhile,the second reference-based approach employs the rotation of thearray reference point so that the estimation techniques underthe “narrowband assumption” are readily applicable. Throughcomputer simulation studies, the two proposed approaches areshown to successfully estimate the channel parameters under thewideband assumption with outstanding accuracy in terms of theestimation root mean squared error

CONFERENCE PAPER

Kamil YI, Manikas A, 2017, Multisource Spatiotemporal Tracking Using Sparse Large Aperture Arrays, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, Vol: 53, Pages: 837-853, ISSN: 0018-9251

JOURNAL ARTICLE

Luo K, Manikas A, 2017, Joint Transmitter–Receiver Optimization in Multitarget MIMO Radar, IEEE Transactions on Signal Processing, Vol: 65, Pages: 6292-6302, ISSN: 1053-587X

JOURNAL ARTICLE

Sridhar V, Manikas A, 2017, Target Tracking with a Flexible UAV Cluster Array, IEEE GLOBECOM 2016, Publisher: IEEE

Unmanned aerial vehicle (UAV) cluster applications,for tasks such as target localisation and tracking, are required tocollect and utilise the data received on “flexible” sensor arrays,where the sensors, i.e. UAVs in this scenario, have time-variantpositions. In this paper, using a parametric channel model, a UAVcluster mobility model and a kinematic model of the targets, anextended Kalman based state space model is proposed that tracksthe unknown UAV positions and target parameters snapshot bysnapshot. Simulation studies illustrating the tracking capabilitiesof the proposed technique have been presented.

CONFERENCE PAPER

Wu J, Watson R, Bolla R, Manikas A, Hamdi M, Elmirghani Jet al., 2017, Guest Editorial on Green Communications, Computing, and Systems, IEEE Systems Journal, Vol: 11, Issue:2, Pages: 546-550, ISSN: 1932-8184

JOURNAL ARTICLE

Manikas A, Sridhar V, Kamil Y, 2016, Array of sensors: A spatiotemporal-state-space model for target trajectory tracking, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Publisher: IEEE, ISSN: 2151-870X

In this paper, with the objective of tracking the trajectoryof multiple mobile targets, a novel spatiotemporal-state-space modelis introduced for an array of sensors distributed in space. Underthe wideband assumption, the proposed model incorporates the arraygeometry in conjunction with crucial target parameters namely (i) ranges,(ii) directions, (iii) velocities and (iv) associated Doppler effects. Computersimulation studies show some representative examples where the proposedmodel is utilised to track the locations of sources in space with a veryhigh accuracy.

CONFERENCE PAPER

Sridhar V, Gabillard T, Manikas A, 2016, Spatiotemporal-MIMO Channel Estimator and Beamformer for 5G, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, Vol: 15, Pages: 8025-8038, ISSN: 1536-1276

JOURNAL ARTICLE

Commin H, Luo K, Manikas A, 2015, Arrayed MIMO Radar: Multi-target Parameter Estimation for Beamforming, Beamforming Sensor Signal Processing for Defence Applications, Editors: Manikas, Publisher: Imperial College Press, Pages: 119-158, ISBN: 978-1-78326-276-2

BOOK CHAPTER

Gabillard T, Sridhar V, Manikas A, 2015, Comparative Study of 2D Grid Antenna Array Geometries for Massive Array Systems, IEEE GLOBECOM 2015, Publisher: IEEE

In upcoming trends of wireless communications, such as massive MIMO, the number of antennas at the transmitter(TX) and receiver (RX) are expected to increase dramatically, aiming to provide a substantial improvement in system performance and spectral efficiency. However, an increase in the number of antennas also results in an increase in hardware, computational complexity and energy dissipation of the MIMO system. Therefore, the antenna array geometry plays a crucial role in the overall system performance. This paper is concerned with planar antenna array geometries with emphasis given to the family of 2D "grid" arrays and presents an insight into the relation between the array geometry and various performance metrics, such as detection, resolution and data-rate maximization, that may be used in different applications.

CONFERENCE PAPER

Mak K, Manikas A, 2015, A Superresolution Wide Null Beamformer for Undersampled Signal Reconstruction in SIMO SAR, IEEE Journal of Selected Topics in Signal Processing, Vol: 9, Pages: 1548-1559, ISSN: 1932-4553

JOURNAL ARTICLE

Mak K, Manikas A, 2015, Digital Beamforming for Synthetic Aperture Radar, Beamforming Sensor Signal Processing for Defence Applications, Editors: Manikas, Publisher: Imperial College Press, Pages: 63-117, ISBN: 978-1-78326-275-5

BOOK CHAPTER

Mak K, Manikas A, 2015, Beamforming for Wake Wave Detection and Estimation — An Overview —, Beamforming - Sensor Signal Processing for Defence Applications, Publisher: Imperial College Press, Pages: 159-187, ISBN: 978-1-78326-275-5

BOOK CHAPTER

Manikas A, 2015, Beamforming - Sensor Signal Processing and Defence Applications, Publisher: Imperial College Press - Communications and Signal Processing Series, ISBN: 978-1-78326-274-8

This book is concerned with adaptive sensor array processing and in particular with superresolution beamformers and their applications to sonar and radar. In the book both narrowband and wideband beamformers will be presented as well as space-only and spatiotemporal beamformers, which may operate in the presence of clutters and jammers. Furthermore, transmitter (Tx), receiver (Rx) and both Tx/Rx (MIMO) beamformers will be considered and their role in radar and sonar designs will be discussed. Design, integration and auto-calibration approaches incorporating off-the-shelf components will be also presented.

BOOK

Sridhar V, Willerton M, Manikas A, 2015, Towed Arrays: Channel Estimation, Tracking and Beamforming, Beamforming Sensor Signal Processing for Defence Applications, Editors: Manikas, Publisher: Imperial Colege Press, Pages: 159-187, ISBN: 978-1-78326-274-8

BOOK CHAPTER

Willerton M, Venieris E, Manikas A, 2015, Array Uncertainties and Auto-calibration, Beamforming - Sensor Signal Processing for Defence Applications, Editors: Manikas, Publisher: Imperial College Press, Pages: 221-262, ISBN: 978-1-78326-274-8

BOOK CHAPTER

Zhuang J, Manikas A, 2015, Robust Beamforming to Pointing Errors, Beamforming - Sensor Signal Processing for Defence Applications, Editors: Manikas, Publisher: Imperial College Press, Pages: 263-286, ISBN: 978-1-78326-274-8

BOOK CHAPTER

Akindoyin A, Willerton M, Manikas A, 2014, Localization and array shape estimation using software defined radio array testbed, Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th, Publisher: IEEE, Pages: 189-192

CONFERENCE PAPER

Venieris E, Manikas A, 2014, Preprocessing algorithm for source localisation in a multipath environment, Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th, Publisher: IEEE, ISSN: 1551-2282

Several methods have been developed which allow the estimation of the location of an existing source with considerable accuracy in the absence of multipaths. However, if, in addition to the Line-of-Sight (LOS) path, non-LOS (NLOS) paths are also present, then all existing localisation algorithms dramatically fail to estimate the location of the source. In this paper, a passive array processing algorithm is proposed, which, if used prior to a localisation approach, suppresses all the multipath contributions in the received signal except for that of the LOS path. The performance of the proposed algorithm is evaluated through computer simulation studies.

CONFERENCE PAPER

Efstathopoulos G, Manikas A, 2013, Existence and Uniqueness of Hyperhelical Array Manifold Curves, IEEE Journal on Selected Topics in Signal Processing, Vol: Special Issue on Differential Geometry in Signal Processing

Significant open issues in array processing have been successfully investigated based on the concept of the array manifold and taking advantage of our understanding of its physical geometrical shape in an N-dimensional complex space - using differential geometry. Array ambiguities, arrayuncertainties, array design and performance characterisation are just some of the areas that have benefited from this approach.Unfortunately, the investigation of the shape of the array manifold itself for most but a few array geometries has been proven to be extremely complex and restrictive - especially in the numberof geometric properties that can actually be calculated. However, special array geometries have been identified, for which the arraymanifold curve assumes a specific “hyperhelical” shape. This is one of the most important manifold shapes and its properties greatly simplifies its geometric analysis and, consequently, the analysis of the associated array os sensors. Hence, the goal of this paper is twofold: to provide the necessary and sufficient conditions for the existence of array manifold curves of hyperhelical shape; and to determine which array geometries can actually give rise to manifold curves of thisshape

JOURNAL ARTICLE

Luo K, Manikas A, 2013, Superresolution Multitarget Parameter Estimation in MIMO Radar, IEEE Transactions on Geoscience and Remote Sensing, Vol: 51, Pages: 3683-3693, ISSN: 0196-2892

JOURNAL ARTICLE

Manikas A, Commin H, Sleiman A, 2013, Array Manifold Curves in C^N and their Complex Cartan Matrix, IEEE Journal of Selected Topics in Signal Processing, Vol: 7, Pages: 670-680, ISSN: 1932-4553

The differential geometry of array manifold curves has been investigated extensively in the literature, leading to numerous applications. However, the existing differential geometric framework restricts the Cartan matrix to be purely real and so the vectors of the moving frame U(s) are found to be orthogonal only in the wide sense (i.e. only the real part of their inner product is equal to zero). Imaginary components are then accounted for separately using the concept of the inclination angleof the manifold. The purpose of this paper is therefore to present an alternativetheoretical framework which allows the manifold curve in CN to be characterised in a more convenient and direct manner. A continuously differentiable strictly orthonormal basis is established and forms a platform for deriving a generalised complexCartan matrix with similar properties to those established under the previous framework. Concepts such as the radius of circular approximation, the manifold curve radii vector and the frame matrix are also revisited and rederived under this new framework.

JOURNAL ARTICLE

Manikas A, Zhuang J, 2013, Interference cancellation beamforming robust to pointing errors, IET Signal Processing, Vol: 7, Pages: 120-127, ISSN: 1751-9675

JOURNAL ARTICLE

Manikas A, Kamil YI, Willerton M, 2012, Source Localization Using Sparse Large Aperture Arrays, IEEE TRANSACTIONS ON SIGNAL PROCESSING, Vol: 60, Pages: 6617-6629, ISSN: 1053-587X

JOURNAL ARTICLE

Manikas T, Thomas P, 2012, Editorial: Multi-sensor signal processing for defence: Detection, localisation & classification, IET Signal Processing, Vol: 6, Pages: 393-393, ISSN: 1751-9675

JOURNAL ARTICLE

Willerton M, Banavar M, Zhang X, Manikas A, Tepedelenlioglu C, Spanias A, Thornton T, Yeatman E, Constantinides Aet al., 2012, SEQUENTIAL WIRELESS SENSOR NETWORK DISCOVERY USING WIDE APERTURE ARRAY SIGNAL PROCESSING, 20th European Signal Processing Conference (EUSIPCO), Publisher: IEEE COMPUTER SOC, Pages: 2278-2282, ISSN: 2076-1465

CONFERENCE PAPER

Willerton M, Manikas A, 2012, Auto-Calibration of Sparse Arrays of Sensors, IEEE Transactions on Signal Processing

JOURNAL ARTICLE

Zhou Y, Adachi F, Wang X, Manikas A, Zhang X, Zhu Wet al., 2012, Broadband Wireless Communications for High Speed Vehicles, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, Vol: VOL. 30, Pages: 673-674, ISSN: 0733-8716

JOURNAL ARTICLE

Commin H, Manikas A, 2011, Spatiotemporal Arrayed MIMO Radar: Joint Doppler, Delay and DoA Estimation, IEEE Transactions on Signal Processing

Estimating the parameters of multiple closely-spaced targets is a key topic in MIMO radar research. The key to designing and analysing an array system in general lies in understanding the array manifold, which completely charac- terises the geometry of the array system. The shape of the array manifold has a profound and fundamental importance and has been extensively investigated in the literature using differential geometry. However, until now, these methods have been applied only to the receiver array of the array system. Therefore, in MIMO radar (where there also exists an arrayed transmitter), it has not previously been possible to fully characterise the whole transmit-receive system geometry within such a framework. In this paper, an equivalent ‘virtual’ SIMO (Single Input Multiple Output) representation of the MIMO radar system is established which allows direct analysis of the full MIMO system geometry. By analysing the virtual array manifold, it is shown that the fundamental detection, resolution and estimation error bounds of the MIMO configuration are generally superior to any approach that only exploits receiver array geometry (with equal performance emerging as a worst case). By employing a special sequence of transmit waveforms, this virtual SIMO framework is then incorporated into a novel space-time receiver architecture which performs joint estimation of Doppler, relative path delays and direction of arrival (DOA). In this way, the effects of Doppler and path delays are not only mitigated, but used to actively enhance the capabilities of the parameter estimation system.

JOURNAL ARTICLE

Efstathopoulos G, Manikas A, 2011, Extended Array Manifolds: Functions of Array Manifolds, IEEE TRANSACTIONS ON SIGNAL PROCESSING, Vol: 59, Pages: 3272-3287, ISSN: 1053-587X

JOURNAL ARTICLE

Manikas A, 2011, Extended Array Manifolds: Functions of Array Manifolds (vol 59, pg 3272, 2011), IEEE TRANSACTIONS ON SIGNAL PROCESSING, Vol: 59, Pages: 4501-4501, ISSN: 1053-587X

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00003729&limit=30&person=true