Imperial College London

ProfessorAnnMuggeridge

Faculty of EngineeringDepartment of Earth Science & Engineering

Consul for Faculty of Engineering and the Business School
 
 
 
//

Contact

 

+44 (0)20 7594 7379a.muggeridge Website

 
 
//

Location

 

2.38BRoyal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Alem:2019,
author = {Alem, M and Baig, T and Muggeridge, A and Jones, A},
title = {Predicting the performance of tight gas reservoirs},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Copyright 2019, Society of Petroleum Engineers. Engineers need to predict the production characteristics from hydraulically fractured wells in tight gas fields. Decline curve analysis (DCA) has been widely used over many years in conventional oil and gas fields. It is often applied to tight gas, but there is uncertainty regarding the period of production data needed for accurate prediction. In this paper decline curve analysis of simulated production data from models of hydraulically fractured wells is used to to develop improved methods for calibrating decline curve parameters from production data. The well models were constructed using data from the Khazzan field in Oman. The impact of layering, permeability and drainage area on well performance is also investigated. The contribution of each layer to recovery and the mechanisms controlling that contribution is explored. The investigation shows that increasing the amount of production data used to fit a hyperbolic decline curve does not improve predictions of recovery unless that data comes from many years (20 years for a 1mD reservoir) of production. This is because there is a long period of transient flow in tight gas reservoirs that biases the fitting and results in incorrect predictions of late time performance. Better predictions can be made by estimating the time at which boundary dominated flow is first observed (tb), omitting the preceding transient data and fitting the decline curve to a shorter interval of data starting at tb. For single layer cases, tb can be estimated analytically using the permeability, porosity, compressibility and length scale of the drainage volume associated with the well. Alternatively, tb can be determined from the production data allowing improved prediction of performance from 2-layer reservoirs provided that a) there is high crossflow or b) there is no cross-flow and the lower permeability layer either does not experience BDF during the field life time or it is established qui
AU - Alem,M
AU - Baig,T
AU - Muggeridge,A
AU - Jones,A
PY - 2019///
TI - Predicting the performance of tight gas reservoirs
ER -